Conjuncted: Canonical Hamiltonian as Road to Gauge Freedom.

Vector Fields Tangent to the Surfaces of Foliation. Note Quote.


Although we are interested in gauge field theories, we will use mainly the language of mechanics that is, of a finite number of degrees of freedom, which is sufficient for our purposes. A quick switch to the field theory language can be achieved by using DeWitt’s condensed notation. Consider, as our starting point a time-independent first- order Lagrangian L(q, q ̇) defined in configuration-velocity space TQ, that is, the tangent bundle of some configuration manifold Q that we assume to be of dimension n. Gauge theories rely on singular as opposed to regular Lagrangians, that is, Lagrangians whose Hessian matrix with respect to the velocities (where q stands, in a free index notation, for local coordinates in Q),

Wij ≡ ∂2L/∂q.i∂q.j —– (1)

is not invertible. Two main consequences are drawn from this non-invertibility. First notice that the Euler-Lagrange equations of motion [L]i = 0, with

[L]i : = αi − Wijq ̈j


αi := ∂2L/∂q.i∂q.j q.j

cannot be written in a normal form, that is, isolating on one side the accelerations q ̈ = f (q, q ̇). This makes the usual theorems about the existence and uniqueness of solutions of ordinary differential equations inapplicable. Consequently, there may be points in the tangent bundle where there are no solutions passing through the point, and others where there is more than one solution.

The second consequence of the Hessian matrix being singular concerns the construction of the canonical formalism. The Legendre map from the tangent bundle TQ to the cotangent bundle —or phase space— T ∗Q (we use the notation pˆ(q, q ̇) := ∂L/∂q ̇),

FL : TQ → T ∗ Q —– (2)

(q, q ̇) → (q, p=pˆ) —– (3)

is no longer invertible because ∂pˆ/∂q ̇ = ∂L/∂q ̇∂q ̇ is the Hessian matrix. There appears then an issue about the projectability of structures from the tangent bundle to phase space: there will be functions defined on TQ that cannot be translated (projected) to functions on phase space. This feature of the formalisms propagates in a corresponding way to the tensor structures, forms, vector fields, etc.

In order to better identify the problem and to obtain the conditions of projectability, we must be more specific. We will make a single assumption, which is that the rank of the Hessian matrix is constant everywhere. If this condition is not satisfied throughout the whole tangent bundle, we will restrict our considerations to a region of it, with the same dimensionality, where this condition holds. So we are assuming that the rank of the Legendre map FL is constant throughout T Q and equal to, say, 2n − k. The image of FL will be locally defined by the vanishing of k independent functions, φμ(q, p), μ = 1, 2, .., k. These functions are the primary constraints, and their pullback FL ∗ φμ to the tangent bundle is identically zero:

(FL ∗ φμ)(q, q ̇) := φμ(q, pˆ) = 0, ∀ q, q ̇—– (4)

The primary constraints form a generating set of the ideal of functions that vanish on the image of the Legendre map. With their help it is easy to obtain a basis of null vectors for the Hessian matrix. Indeed, applying ∂/∂q. to (4) we get

Wij = (∂φμ/∂pj)|p=pˆ = 0, ∀ q, q ̇ —– (5)

With this result in hand, let us consider some geometrical aspects of the Legendre map. We already know that its image in T∗Q is given by the primary constraints’ surface. A foliation in TQ is also defined, with each element given as the inverse image of a point in the primary constraints’ surface in T∗Q. One can easily prove that the vector fields tangent to the surfaces of the foliation are generated by

Γμ= (∂φμ/∂pj)|p=pˆ = ∂/∂q.j —– (6)

The proof goes as follows. Consider two neighboring points in TQ belonging to the same sheet, (q, q ̇) and (q, q ̇ + δq ̇) (the configuration coordinates q must be the same because they are preserved by the Legendre map). Then, using the definition of the Legendre map, we must have pˆ(q, q ̇) = pˆ(q, q ̇ + δq ̇), which implies, expanding to first order,

∂pˆ/ ∂q ̇ δ q ̇ = 0

which identifies δq ̇ as a null vector of the Hessian matrix (here expressed as ∂pˆ/∂q ̇). Since we already know a basis for such null vectors, (∂φμ /∂pj)|p=pˆ, μ = 1, 2, …, k, it follows that the vector fields Γμ form a basis for the vector fields tangent to the foliation.

The knowledge of these vector fields is instrumental for addressing the issue of the projectability of structures. Consider a real-valued function fL: TQ → R. It will — locally— define a function fH: T∗Q −→ R iff it is constant on the sheets of the foliation, that is, when

ΓμfL = 0, μ = 1,2,…,k. (7)

Equation (7) is the projectability condition we were looking for. We express it in the following way:

ΓμfL = 0, μ = 1,2,…,k ⇔ there exists fH such that FL ∗ fH = fL

Conjuncted: The Prerogative of Category Theory Over Set Theory in Physics. Note Quote.


When it comes to deal with structures, in particular in abstract branches of mathematics – abstract in comparison to number theory, analysis and the geometry of figures, curves and planes -, such as algebraic topology, homology and homotopy theory, universal algebra, and what have you, a vast majority of mathematicians considers Category-Theory (CT) vastly superior to set-theory. CT also is the only rival to ZFC (Zermelo–Fraenkel Choice set theory) in providing a general theory of mathematical structure and in founding the whole of mathematics. The language of CT is two-sorted: it contains object-variables and arrow-variables. An arrow sends objects to objects; an identity-arrow sends an object to itself. Simply put, structures are categories, and a category is something that has objects and arrows, such that the arrows can be composed so as to form a composition monoid, which means that: (i) every object has an identity-arrow, and (ii) arrow-composition is associative. The languages of CT (L↑) and ZFC (L∈) are inter-translatable. In CT there is the specific category Set, whose objects can be identified with sets and whose arrows are maps. In ZFC one can identify objects with sets and arrows with ordered pair-sets of type ⟨f, C⟩, consisting of a mapping f and a co-domain C.

In spite of the fact that some mathematical physicists have applied categories to physics, not a single structural realist on record has advocated replacing ZFC with CT. One of the very few critics of the use of set-theory for Structural Realism is E.M. Landry, who has argued that the set-theoretical framework does not always do the work it has been suggested to do; but even she does not openly advocate CT as the superior framework for StrR, although she does advocate it for mathematical structuralism.

The objects of CT are more general than the Ur-elements one can introduce in ZFC, because whereas primordial elements are not sets, the objects of CT can be anything, arrows, sets, functors and categories included. Similar to ZFCU is that CT does not have axioms that somehow restrict the interpretation of ‘object’. A CT-object is anything that can be sent around by an arrow, similar to the fact that a set-theoretical Ur-element is anything that can be put in a set. CT-objects obtain an ‘identity’, a ‘nature’, from the category they are in: different category, different identity. Outside categories, these objects lose whatever properties and relations they had in the category they came from and they become essentially indiscernible.

One great advantage of CT is that structures, i.e. categories, are not accompanied by all these sets that arise by iterated applications of the power-set and union-set operation. Nevertheless, the grim story we have been telling for Structural Realism in the framework of ZFC, can be repeated in the framework of CT, of course with a few appropriate adjustments.