From P(t,s) = exp {−∫0s−t f(t,x)dx}, we get
dt logP(t,s) = f(t,x) dt − ∫0xdy dt f(t,y) —– (1)
dtF(f) = ∂F/df dtf + 1/2 ∫ dx ∫ dx′ ∂2F/∂f(t,x)∂f(t,x′) Cov [dtf(t,x), dtf(t,x′)] —– (2)
dP(t,s)/P(t,s) = [dt f(t,x) − ∫0x dyEt,dtf(t,y) + 1/2 ∫0x dy ∫0x dy′ Cov dtf(t,y) dtf(t,y′)] –
∫0x dy [dtf(t,y) − Et,dtf(t,y)] —– (3)