Priest’s Razor: Metaphysics. Note Quote.


The very idea that some mathematical piece employed to develop an empirical theory may furnish us information about unobservable reality requires some care and philosophical reflection. The greatest difficulty for the scientifically minded metaphysician consists in furnishing the means for a “reading off” of ontology from science. What can come in, and what can be left out? Different strategies may provide for different results, and, as we know, science does not wear its metaphysics on its sleeves. The first worry may be making the metaphysical piece compatible with the evidence furnished by the theory.

The strategy adopted by da Costa and de Ronde may be called top-down: investigating higher science and, by judging from the features of the objects described by the theory, one can look for the appropriate logic to endow it with just those features. In this case (quantum mechanics), there is the theory, apparently attributing contradictory properties to entities, so that a logic that does cope with such feature of objects is called forth. Now, even though we believe that this is in great measure the right methodology to pursue metaphysics within scientific theories, there are some further methodological principles that also play an important role in these kind of investigation, principles that seem to lessen the preferability of the paraconsistent approach over alternatives.

To begin with, let us focus on the paraconsistent property attribution principle. According to this principle, the properties corresponding to the vectors in a superposition are all attributable to the system, they are all real. The first problem with this rendering of properties (whether they are taken to be actual or just potential) is that such a superabundance of properties may not be justified: not every bit of a mathematical formulation of a theory needs to be reified. Some of the parts of the theory are just that: mathematics required to make things work, others may correspond to genuine features of reality. The greatest difficulty is to distinguish them, but we should not assume that every bit of it corresponds to an entity in reality. So, on the absence of any justified reason to assume superpositions as a further entity on the realms of properties for quantum systems, we may keep them as not representing actual properties (even if merely possible or potential ones).

That is, when one takes into account other virtues of a metaphysical theory, such as economy and simplicity, the paraconsistent approach seems to inflate too much the population of our world. In the presence of more economical candidates doing the same job and absence of other grounds on which to choose the competing proposals, the more economical approaches take advantage. Furthermore, considering economy and the existence of theories not postulating contradictions in quantum mechanics, it seems reasonable to employ Priest’s razor – the principle according to which one should not assume contradictions beyond necessity – and stick with the consistent approaches. Once again, a useful methodological principle seems to deem the interpretation of superposition as contradiction as unnecessary.

The paraconsistent approach could take advantage over its competitors, even in the face of its disadvantage in order to accommodate such theoretical virtues, if it could endow quantum mechanics with a better understanding of quantum phenomena, or even if it could add some explanatory power to the theory. In the face of some such kind of gain, we could allow for some ontological extravagances: in most cases explanatory power rules over matters of economy. However, it does not seem that the approach is indeed going to achieve some such result.

Besides that lack of additional explanatory power or enlightenment on the theory, there are some additional difficulties here. There is a complete lack of symmetry with the standard case of property attribution in quantum mechanics. As it is usually understood, by adopting the minimal property attribution principle, it is not contentious that when a system is in one eigenstate of an observable, then we may reasonably infer that the system has the property represented by the associated observable, so that the probability of obtaining the eigenvalue associated is 1. In the case of superpositions, if they represented properties of their own, there is a complete disanalogy with that situation: probabilities play a different role, a system has a contradictory property attributed by a superposition irrespective of probability attribution and the role of probabilities in determining measurement outcomes. In a superposition, according to the proposal we are analyzing, probabilities play no role, the system simply has a given contradictory property by the simple fact of being in a (certain) superposition.

For another disanalogy with the usual case, one does not expect to observe a sys- tem in such a contradictory state: every measurement gives us a system in particular state, never in a superposition. If that is a property in the same foot as any other, why can’t we measure it? Obviously, this does not mean that we put measurement as a sign of the real, but when doubt strikes, it may be a good advice not to assume too much on the unobservable side. As we have observed before, a new problem is created by this interpretation, because besides explaining what is it that makes a measurement give a specific result when the system measured is in a superposition (a problem usually addressed by the collapse postulate, which seems to be out of fashion now), one must also explain why and how the contradictory properties that do not get actualized vanish. That is, besides explaining how one particular property gets actual, one must explain how the properties posed by the system that did not get actual vanish.

Furthermore, even if states like 1/√2 (| ↑x ⟩ + | ↓x ⟩) may provide for an example of a  candidate of a contradictory property, because the system seems to have both spin up and down in a given direction, there are some doubts when the distribution of probabilities is different, in cases such as 2/√7 | ↑x ⟩ + √(3/7) | ↓x ⟩. What are we to think about that? Perhaps there is still a contradiction, but it is a little more inclined to | ↓x⟩ than to | ↑x⟩? That is, it is difficult to see how a contradiction arises in such cases. Or should we just ignore the probabilities and take the states composing the superposition as somehow opposed to form a contradiction anyway? That would put metaphysics way too much ahead of science, by leaving the role of probabilities unexplained in quantum mechanics in order to allow a metaphysical view of properties in.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s