The possibility of effective historical consciousness is grounded in the possibility of any specific present understanding of being futural; in contrast, the first principle of hermeneutics is the Being of Dasein, which is historicity (Geschichtlichkeit) itself. In Gadamer’s view, Dasein’s temporality, which is the basis for its historicity, grounds the tradition. The last sections of Being and Time claimed to indicate that the embodiment of temporality can be found in Dasein’s historicality. As a result of this, the tradition is circularly grounded in Dasein’s temporality, while also surpassing its borders in order to be provided by a hermeneutical reference in distance.
Day: May 10, 2017
Of Phenomenology, Noumenology and Appearances. Note Quote.
Heidegger’s project in Being and Time does not itself escape completely the problematic of transcendental reflection. The idea of fundamental ontology and its foundation in Dasein, which is concerned “with being” and the analysis of Dasein, at first seemed simply to mark a new dimension within transcendental phenomenology. But under the title of a hermeneutics of facticity, Heidegger objected to Husserl’s eidetic phenomenology that a hermeneutic phenomenology must contain also the theory of facticity, which is not in itself an eidos, Husserl’s phenomenology which consistently holds to the central idea of proto-I cannot be accepted without reservation in interpretation theory in particular that this eidos belong only to the eidetic sphere of universal essences. Phenomenology should be based ontologically on the facticity of the Dasein, and this existence cannot be derived from anything else.
Nevertheless, Heidegger’s complete reversal of reflection and its redirection of it toward “Being”, i.e, the turn or kehre, still is not so much an alteration of his point of view as the indirect result of his critique of Husserl’s concept of transcendental reflection, which had not yet become fully effective in Being and Time. Gadamer, however, would incorporate Husserl’s ideal of an eidetic ontology somewhat “alongside” transcendental constitutional research. Here, the philosophical justification lies ultimately in the completion of the transcendental reduction, which can come only at a higher level of direct access of the individual to the object. Thus there is a question of how our awareness of essences remains subordinated to transcendental phenomenology, but this does not rule out the possibility of turning transcendental phenomenology into an essence-oriented mundane science.
Heidegger does not follow Husserl from eidetic to transcendental phenomenology, but stays with the interpretation of phenomena in relation to their essences. As ‘hermeneutic’, his phenomenology still proceeds from a given Dasein in order to determine the meaning of existence, but now it takes the form of a fundamental ontology. By his careful discussion of the etymology of the words “phenomenon” and “Logos” he shows that “phenomenology” must be taken as letting that which shows itself be seen from itself, and in the very way in it which shows itself from itself. The more genuinely a methodological concept is worked out and the more comprehensively it determines the principles on which a science is to be conducted, the more deeply and primordially it is rooted in terms of the things themselves; whereas if understanding is restricted to the things themselves only so far as they correspond to those judgments considered “first in themselves”, then the things themselves cannot be addressed beyond particular judgements regarding events.
The doctrine of the thing-in-itself entails the possibility of a continuous transition from one aspect of a thing to another, which alone makes possible a unified matrix of experience. Husserl’s idea of the thing-in-itself, as Gadamer introduces it, must be understood in terms of the hermeneutic progress of our knowledge. In other words, in the hermeneutical context the maxim to the thing itself signifies to the text itself. Phenomenology here means grasping the text in such a way that every interpretation about the text must be considered first as directly exhibiting the text and then as demonstrating it with regard to other texts.
Heidegger called this “descriptive phenomenology” which is fundamentally tautological. He explains that phenomenon in Greek first signifies that which looks like something, or secondly that which is semblant or a semblance (das scheinbare, der Schein). He sees both these expressions as structurally interconnected, and having nothing to do with what is called an “appearance” or mere “appearance”. Based on the ordinary conception of phenomenon, the definition of “appearance” as referring to can be regarded also as characterizing the phenomenological concern for the text in itself and for itself. Only through referring to the text in itself can we have a real phenomenology based on appearance. This theory, however, requires a broad meaning of appearance including what does the referring as well as the noumenon.
Heidegger explains that what does the referring must show itself in itself. Further, the appearance “of something” does not mean showing-itself, but that the thing itself announces itself through something which does show itself. Thus, Heidegger urges that what appears does not show itself and anything which fails to show itself can never seem. On the other hand, while appearing is never a showing-itself in the sense of phenomenon, it is preconditioned by something showing-itself (through which the thing announces itself). This showing itself is not appearing itself, but makes the appearing possible. Appearing then is an announcing-itself (das sich-melden) through something that shows itself.
Also, a phenomenon cannot be represented by the word “appearance” if it alludes to that wherein something appears without itself being an appearance. That wherein something appears means that wherein something announces itself without showing itself, in other words without being itself an “appearance” (appearance signifying the showing itself which belongs essentially to that “wherein” something announces itself). Based upon this argument, phenomena are never appearances. This, however, does not deny the fact that every appearance is dependent on phenomena.
Harmonies of the Orphic Mystery: Emanation of Music
As the Buddhist sage Nagarjuna states in his Seventy Verses on Sunyata, “Being does not arise, since it exists . . .” In similar fashion it can be said that mind exists, and if we human beings manifest its qualities, then the essence and characteristics of mind must be a component of our cosmic source. David Bohm’s theory of the “implicate order” within the operations of nature suggests that observed phenomena do not operate only when they become objective to our senses. Rather, they emerge out of a subjective state or condition that contains the potentials in a latent yet really existent state that is just awaiting the necessary conditions to manifest. Thus within the explicate order of things and beings in our familiar world there is the implicate order out of which all of these emerge in their own time.
Clearly, sun and its family of planets function in accordance with natural laws. The precision of the orbital and other electromagnetic processes is awesome, drawing into one operation the functions of the smallest subparticles and the largest families of sun-stars in their galaxies, and beyond even them. These individual entities are bonded together in an evident unity that we may compare with the oceans of our planet: uncountable numbers of water molecules appear to us as a single mass of substance. In seeking the ultimate particle, the building block of the cosmos, some researchers have found themselves confronted with the mystery of what it is that holds units together in an organism — any organism!
As in music where a harmony consists of many tones bearing an inherent relationship, so must there be harmony embracing all the children of cosmos. Longing for the Harmonies: Themes and Variations from Modern Physics is a book by Frank Wilczek, an eminent physicist, and his wife Betsy Devine, an engineering scientist and freelance writer. The theme of their book is set out in their first paragraph:
From Pythagoras measuring harmonies on a lyre string to R. P. Feynman beating out salsa on his bongos, many a scientist has fallen in love with music. This love is not always rewarded with perfect mastery. Albert Einstein, an ardent amateur of the violin, provoked a more competent player to bellow at him, “Einstein, can’t you count?”
Both music and scientific research, Einstein wrote, “are nourished by the same source of longing, and they complement one another in the release they offer.” It seems to us, too, that the mysterious longing behind a scientist’s search for meaning is the same that inspires creativity in music, art, or any other enterprise of the restless human spirit. And the release they offer is to inhabit, if only for a moment, some point of union between the lonely world of subjectivity and the shared universe of external reality.
In a very lucid text, Wilczek and Devine show us that the laws of nature, and the structure of the universe and all its contributing parts, can be presented in such a way that the whole compares with a musical composition comprising themes that are fused together. One of the early chapters begins with the famous lines of the great astronomer Johannes Kepler, who in 1619 referred to the music of the spheres:
The heavenly motions are nothing but a continuous song for several voices (perceived by the intellect, not by the ear); a music which, through discordant tensions, through sincopes [sic] and cadenzas, as it were (as men employ them in imitation of those natural discords) progresses towards certain pre-designed quasi six-voiced clausuras, and thereby sets landmarks in the immeasurable flow of time. — The Harmony of the World (Harmonice mundi)
Discarding the then current superstitions and misinformed speculation, through the cloud of which Kepler had to work for his insights, Wilczek and Devine note that Kepler’s obsession with the idea of the harmony of the world is actually rooted in Pythagoras’s theory that the universe is built upon number, a concept of the Orphic mystery-religions of Greece. The idea is that “the workings of the world are governed by relations of harmony and, in particular, that music is associated with the motion of the planets — the music of the spheres” (Wilczek and Devine). Arthur Koestler, in writing of Kepler and his work, claimed that the astronomer attempted
to bare the ultimate secret of the universe in an all-embracing synthesis of geometry, music, astrology, astronomy and epistemology. — The Sleepwalkers
In Longing for the Harmonies the authors refer to the “music of the spheres” as a notion that in time past was “vague, mystical, and elastic.” As the foundations of music are rhythm and harmony, they remind us that Kepler saw the planets moving around the sun “to a single cosmic rhythm.” There is some evidence that he had association with a “neo-Pythagorean” movement and that, owing to the religious-fomented opposition to unorthodox beliefs, he kept his ideas hidden under allegory and metaphor.
Shakespeare, too, phrases the thought of tonal vibrations emitted by the planets and stars as the “music of the spheres,” the notes likened to those of the “heavenly choir” of cherubim. This calls to mind that Plato’s Cratylus terms the planets theoi, from theein meaning “to run, to move.” Motion does suggest animation, or beings imbued with life, and indeed the planets are living entities so much grander than human beings that the Greeks and other peoples called them “gods.” Not the physical bodies were meant, but the essence within them, in the same way that a human being is known by the inner qualities expressed through the personality.
When classical writers spoke of planets and starry entities as “animals” they did not refer to animals such as we know on Earth, but to the fact that the celestial bodies are “animated,” embodying energies received from the sun and cosmos and transmitted with their own inherent qualities added.
Many avenues open up for our reflection upon the nature of the cosmos and ourselves, and our interrelationship, as we consider the structure of natural laws as Wilczek and Devine present them. For example, the study of particles, their interactions, their harmonizing with those laws, is illuminating intrinsically and, additionally, because of their universal application. The processes involved occur here on earth, and evidently also within the solar system and beyond, explaining certain phenomena that had been awaiting clarification.
The study of atoms here on earth and their many particles and subparticles has enabled researchers to deduce how stars are born, how and why they shine, and how they die. Now some researchers are looking at what it is, whether a process or an energy, that unites the immeasurably small with the very large cosmic bodies we now know. If nature is infinite, it must be so in a qualitative sense, not merely a quantitative.
One of the questions occupying the minds of cosmologists is whether the universal energy is running down like the mechanism of an unwinding Swiss watch, or whether there is enough mass to slow the outward thrust caused by the big bang that has been assumed to have started our cosmos going. In other words, is our universe experiencing entropy — dying as its energy is being used up — or will there be a “brake” put upon the expansion that could, conceivably, result in a return to the source of the initial explosion billions of years ago? Cosmologists have been looking for enough “dark mass” to serve as such a brake.
Among the topics treated by Wilczek and Devine in threading their way through many themes and variations in modern physics, is what is known as the mass-generating Higgs field. This is a proposition formulated by Peter Higgs, a Scottish physicist, who suggests there is an electromagnetic field that pervades the cosmos and universally provides the electron particles with mass.
The background Higgs field must have very accurately the same value throughout the universe. After all, we know — from the fact that the light from distant galaxies contains the same spectral lines we find on Earth — that electrons have the same mass throughout the universe. So if electrons are getting their mass from the Higgs field, this field had better have the same strength everywhere. What is the meaning of this all-pervasive field, which exists with no apparent source? Why is it there? (Wilczek and Devine).
What is the meaning? Why is it there? These are among the most important questions that can be asked. Though physicists may provide profound mathematical equations, they will thereby offer only more precise detail as to what is happening. We shall not receive an answer to the “What” and the “Why” without recourse to meta-physics, beyond the realm of brain-devised definitions.
The human mind is limited in its present stage of evolution. It may see the logical necessity of infinity referent to space and time; for if not infinity, what then is on the other side of the “fence” that is our outermost limit? But, being able to perceive the logical necessity of infinity, the finite mind still cannot span the limitless ranges of space, time, and substance.
If we human beings are manifold in our composition, and since we draw our very existence and sustenance from the universe at large, our conjoint nature must be drawn from the sources of life, substance, and energy, in which our and all other cosmic lives are immersed.
As the authors conclude their fascinating work:
“The worlds opened to our view are graced with wonderful symmetry and uniformity. Learning to know them, to appreciate their many harmonies, is like deepening an acquaintance with some great and meaningful piece of music — surely one of the best things life has to offer.”