Holonomies: Philosophies of Conjugacy. Part 1.


Suppose that N is an irreducible 2n-dimensional Riemannian symmetric space. We may realise N as a coset space N = G/K with Gτ ⊂ K ⊂ (Gτ)0 for some involution τ of G. Now K is (a covering of) the holonomy group of N and similarly the coset fibration G → G/K covers the holonomy bundle P → N. In this setting, J(N) is associated to G:

J(N) ≅ G ×K J (R2n)

and if K/H is a K-orbit in J(R2n) then the corresponding subbundle is G ×K K/H = G/H and the projection is just the coset fibration. Thus, the subbundles of J(N) are just the orbits of G in J(N).

Let j ∈ J (N). Then G · j is an almost complex submanifold of J (N) on which J is integrable iff j lies in the zero-set of the Nijenhuis tensor NJ.

This focusses our attention on the zero-set of NJ which we denote by Z. In favourable circumstances, the structure of this set can be completely described. We begin by assuming that N is of compact type so that G is compact and semi-simple. We also assume that N is inner i.e. that τ is an inner involution of G or, equivalently, that rankG = rankK. The class of inner symmetric spaces include the even-dimensional spheres, the Hermitian symmetric spaces, the quaternionic Kähler symmetric spaces and indeed all symmetric G-spaces for G = SO(2n+1), Sp(n), E7, E8, F4 and G2. Moreover, all inner symmetric spaces are necessarily even-dimensional and so fit into our framework.

Let N = G/K be a simply-connected inner Riemannian symmetric space of compact type. Then Z consists of a finite number of connected components on each of which G acts transitively. Moreover, any G-flag manifold is realised as such an orbit for some N.

The proof for the above requires a detour into the geometry of flag manifolds and reveals an interesting interaction between the complex geometry of flag manifolds and the real geometry of inner symmetric spaces. For this, we begin by noting that a coset space of the form G/C(T) admits several invariant Kählerian complex structures in general. Using a complex realisation of G/C(T) as follows: having fixed a complex structure, the complexified group GC acts transitively on G/C(T) by biholomorphisms with parabolic subgroups as stabilisers. Conversely, if P ⊂ GC is a parabolic subgroup then the action of G on GC/P is transitive and G ∩ P is the centraliser of a torus in G. For the infinitesimal situation: let F = G/C(T) be a flag manifold and let o ∈ F. We have a splitting of the Lie algebra of G

gC = h ⊕ m

with m ≅ ToF and h the Lie algebra of the stabiliser of o in G. An invariant complex structure on F induces an ad h-invariant splitting of mC into (1, 0) and (0, 1) spaces mC = m+ ⊕ m− with [m+, m+] ⊂ m+ by integrability. One can show that m+ and m are nilpotent subalgebras of gC and in fact hC ⊕ m is a parabolic subalgebra of gC with nilradical m. If P is the corresponding parabolic subgroup of GC then P is the stabiliser of o and we obtain a biholomorphism between the complex coset space GC/P and the flag manifold F.

Conversely, let P ⊂ GC be a parabolic subgroup with Lie algebra p and let n be the conjugate of the nilradical of p (with respect to the real form g). Then H = G ∩ P is the centraliser of a torus and we have orthogonal decompositions (with respect to the Killing inner product)

p = hC ⊕ n, gC = hC ⊕ n ⊕ n

which define an invariant complex structure on G/H realising the biholomorphism with GC/P.

The relationship between a flag manifold F = GC/P and an inner symmetric space comes from an examination of the central descending series of n. This is a filtration 0 = nk+1 ⊂ nk ⊂…⊂ n1 = n of n defined by ni = [n, ni−1].

We orthogonalise this filtration using the Killing inner product by setting

gi = ni+1 ∩ ni

for i ≥ 1 and extend this to a decomposition of gC by setting g0 = hC = (g ∩ p)C and g−i = gfor i ≥ 1. Then

gC = ∑gi

is an orthogonal decomposition with

p = ∑i≤0 gi, n = ∑i>0 g

The crucial property of this decomposition is that

[gi, gj] ⊂ gi+j

which can be proved by demonstrating the existence of an element ξ ∈ h with the property that, for each i, adξ has eigenvalue √−1i on gi. This element ξ (necessarily unique since g is semi-simple) is the canonical element of p. Since ad ξ has eigenvalues in √−1Z, ad exp πξ is an involution of g which we exponentiate to obtain an inner involution τξ of G and thus an inner symmetric space G/K where K = (Gτξ)0. Clearly, K has Lie algebra given by

k = g ∩ ∑i g2i


One thought on “Holonomies: Philosophies of Conjugacy. Part 1.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s