Universal Inclusion of the Void. Thought of the Day 38.0

entering-the-void

The universal inclusion of the void means that the intersection between two sets whatsoever is comparable with the void set. That is to say, there is no multiple that does not include within it some part of the “inconsistency” that it structures. The diversity of multiplicity can exhibit multiple modes of articulation, but as multiples, they have nothing to do with one another, they are two absolutely heterogeneous presentations, and this is why this relation – of non-relation – can only be thought under the signifier of being (of the void), which indicates that the multiples in question have nothing in common apart from being multiples. The universal inclusion of the void thus guarantees the consistency of the infinite multiplicities immanent to its presentation. That is to say, it underlines the universal distribution of the ontological structure seized at the point of the axiom of the void set. The void does not merely constitute a consistency at a local point but also organises, from this point of difference, a universal structure that legislates on the structure of all sets, the universe of consistent multiplicity.

This final step, the carrying over of the void seized as a local point of the presentation of the unpresentable, to a global field of sets provides us with the universal point of difference, applicable equally to any number of sets, that guarantees the universal consistency of ontological presentation. In one sense, the universal inclusion of the void demonstrates that, as a unit of presentation, the void anchors the set theoretical universe by its universal inclusion. As such, every presentation in ontological thought is situated in this elementary seizure of ontological difference. The void is that which “fills” ontological or set theoretical presentation. It is what makes common the universe of sets. It is in this sense that the “substance” or constitution of ontology is the void. At the same stroke, however, the universal inclusion of the void also concerns the consistency of set theory in a logical sense.

The universal inclusion of the void provides an important synthesis of the consistency of presentation. What is presented is necessarily consistent but its consistency gives way to two distinct senses. Consistency can refer to its own “substance,” its immanent presentation. Distinct presentations constitute different presentations principally because “what” they present are different. Ontology’s particularity is its presentation of the void. On the other hand, a political site might present certain elements just as a scientific procedure might present yet others. The other sense of consistency is tied to presentation as such, the consistency of presentation in its generality. When one speaks loosely about the “world” being consistent, where natural laws are verifiable against a background of regularity, it is this consistency that is invoked and not the elements that constitute the particularity of their presentation. This sense of consistency, occurring across presentations would certainly take us beyond the particularity of ontology. That is to say, ontological presentation presents a species of this consistency. However, the possibility of multiple approaches does not exclude an ontological treatment of this consistency.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s