Category Theory of a Sketch. Thought of the Day 50.0


If a sketch can be thought of as an abstract concept, a model of a sketch is not so much an interpretation of a sketch, but a concrete or particular instantiation or realization of it. It is tempting to adopt a Kantian terminology here and say that a sketch is an abstract concept, a functor between a sketch and a category C a schema and the models of a sketch the constructions in the “intuition” of the concept.

The schema is not unique since a sketch can be realized in many different categories by many different functors. What varies from one category to the other is not the basic structure of the realizations, but the types of morphisms of the underlying category, e.g., arbitrary functions, continuous maps, etc. Thus, even though a sketch captures essential structural ingredients, others are given by the “environment” in which this structure will be realized, which can be thought of as being itself another structure. Hence, the “meaning” of some concepts cannot be uniquely given by a sketch, which is not to say that it cannot be given in a structuralist fashion.

We now distinguish the group as a structure, given by the sketch for the theory of groups, from the structure of groups, given by a category of groups, that is the category of models of the sketch for groups in a given category, be it Set or another category, e.g., the category of topological spaces with continuous maps. In the latter case, the structure is given by the exactness properties of the category, e.g., Cartesian closed, etc. This is an important improvement over the traditional framework in which one was unable to say whether we should talk about the structure common to all groups, usually taken to be given by the group axioms, or the structure generated by “all” groups. Indeed, one can now ask in a precise manner whether a category C of structures, e.g., the category of (small) groups, is sketchable, that is, whether there exists a sketch S such that Mod(S, Set) is equivalent as a category to C.

There is another category associated to a sketch, namely the theory of that sketch. The theory of a sketch S, denoted by Th(S), is in a sense “freely” constructed from S : the arrows of the underlying graph are freely composed and the diagrams are imposed as equations, and so are the cones and the cocones. Th(S) is in fact a model of S in the previous sense with the following universal property: for any other model M of S in a category C there is a unique functor F: Th(S) → C such that FU = M, where U: S → Th(S). Thus, for instance, the theory of groups is a category with a group object, the generic group, “freely” constructed from the sketch for groups. It is in a way the “universal” group in the sense that any other group in any category can be constructed from it. This is possible since it contains all possible arrows, i.e., all definable operations, obtained in a purely internal or abstract manner. It is debatable whether this category should be called the theory of the sketch. But that may be more a matter of terminology than anything else, since it is clear that the “free” category called the theory is there to stay in one way or another.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s