ε-calculus and Hilbert’s Contentual Number Theory: Proselytizing Intuitionism. Thought of the Day 67.0

Untitled

Hilbert came to reject Russell’s logicist solution to the consistency problem for arithmetic, mainly for the reason that the axiom of reducibility cannot be accepted as a purely logical axiom. He concluded that the aim of reducing set theory, and with it the usual methods of analysis, to logic, has not been achieved today and maybe cannot be achieved at all. At the same time, Brouwer’s intuitionist mathematics gained currency. In particular, Hilbert’s former student Hermann Weyl converted to intuitionism.

According to Hilbert, there is a privileged part of mathematics, contentual elementary number theory, which relies only on a “purely intuitive basis of concrete signs.” Whereas the operating with abstract concepts was considered “inadequate and uncertain,” there is a realm of extra-logical discrete objects, which exist intuitively as immediate experience before all thought. If logical inference is to be certain, then these objects must be capable of being completely surveyed in all their parts, and their presentation, their difference, their succession (like the objects themselves) must exist for us immediately, intuitively, as something which cannot be reduced to something else.

The objects in questions are signs, both numerals and the signs that make up formulas a formal proofs. The domain of contentual number theory consists in the finitary numerals, i.e., sequences of strokes. These have no meaning, i.e., they do not stand for abstract objects, but they can be operated on (e.g., concatenated) and compared. Knowledge of their properties and relations is intuitive and unmediated by logical inference. Contentual number theory developed this way is secure, according to Hilbert: no contradictions can arise simply because there is no logical structure in the propositions of contentual number theory. The intuitive-contentual operations with signs form the basis of Hilbert’s meta-mathematics. Just as contentual number theory operates with sequences of strokes, so meta-mathematics operates with sequences of symbols (formulas, proofs). Formulas and proofs can be syntactically manipulated, and the properties and relationships of formulas and proofs are similarly based in a logic-free intuitive capacity which guarantees certainty of knowledge about formulas and proofs arrived at by such syntactic operations. Mathematics itself, however, operates with abstract concepts, e.g., quantifiers, sets, functions, and uses logical inference based on principles such as mathematical induction or the principle of the excluded middle. These “concept-formations” and modes of reasoning had been criticized by Brouwer and others on grounds that they presuppose infinite totalities as given, or that they involve impredicative definitions. Hilbert’s aim was to justify their use. To this end, he pointed out that they can be formalized in axiomatic systems (such as that of Principia or those developed by Hilbert himself), and mathematical propositions and proofs thus turn into formulas and derivations from axioms according to strictly circumscribed rules of derivation. Mathematics, to Hilbert, “becomes an inventory of provable formulas.” In this way the proofs of mathematics are subject to metamathematical, contentual investigation. The goal of Hilbert is then to give a contentual, meta-mathematical proof that there can be no derivation of a contradiction, i.e., no formal derivation of a formula A and of its negation ¬A.

Hilbert and Bernays developed the ε-calculus as their definitive formalism for axiom systems for arithmetic and analysis, and the so-called ε-substitution method as the preferred approach to giving consistency proofs. Briefly, the ε-calculus is a formalism that includes ε as a term-forming operator. If A(x) is a formula, then εxA(x) is a term, which intuitively stands for a witness for A(x). In a logical formalism containing the ε-operator, the quantifiers can be defined by: ∃x A(x) ≡ A(εxA(x)) and ∀x A(x) ≡ A(εx¬A(x)). The only additional axiom necessary is the so-called “transfinite axiom,” A(t) → A(εxA(x)). Based on this idea, Hilbert and his collaborators developed axiomatizations of number theory and analysis. Consistency proofs for these systems were then given using the ε-substitution method. The idea of this method is, roughly, that the ε-terms εxA(x) occurring in a formal proof are replaced by actual numerals, resulting in a quantifier-free proof. Suppose we had a (suitably normalized) derivation of 0 = 1 that contains only one ε-term εxA(x). Replace all occurrences of εxA(x) by 0. The instances of the transfinite axiom then are all of the form A(t) → A(0). Since no other ε-terms occur in the proof, A(t) and A(0) are basic numerical formulas without quantifiers and, we may assume, also without free variables. So they can be evaluated by finitary calculation. If all such instances turn out to be true numerical formulas, we are done. If not, this must be because A(t) is true for some t, and A(0) is false. Then replace εxA(x) instead by n, where n is the numerical value of the term t. The resulting proof is then seen to be a derivation of 0 = 1 from true, purely numerical formulas using only modus ponens, and this is impossible. Indeed, the procedure works with only slight modifications even in the presence of the induction axiom, which in the ε-calculus takes the form of a least number principle: A(t) → εxA(x) ≤ t, which intuitively requires εxA(x) to be the least witness for A(x).

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s