Appropriation of (Ir)reversibility of Noise Fluctuations to (Un)Facilitate Complexity

 

data

The logical depth is a suitable measure of subjective complexity for physical as well as mathematical objects. this, upon considering the effect of irreversibility, noise, and spatial symmetries of the equations of motion and initial conditions on the asymptotic depth-generating abilities of model systems.

“Self-organization” suggests a spontaneous increase of complexity occurring in a system with simple, generic (e.g. spatially homogeneous) initial conditions. The increase of complexity attending a computation, by contrast, is less remarkable because it occurs in response to special initial conditions. An important question, which would have interested Turing, is whether self-organization is an asymptotically qualitative phenomenon like phase transitions. In other words, are there physically reasonable models in which complexity, appropriately defined, not only increases, but increases without bound in the limit of infinite space and time? A positive answer to this question would not explain the natural history of our particular finite world, but would suggest that its quantitative complexity can legitimately be viewed as an approximation to a well-defined qualitative property of infinite systems. On the other hand, a negative answer would suggest that our world should be compared to chemical reaction-diffusion systems (e.g. Belousov-Zhabotinsky), which self-organize on a macroscopic, but still finite scale, or to hydrodynamic systems which self-organize on a scale determined by their boundary conditions.

The suitability of logical depth as a measure of physical complexity depends on the assumed ability (“physical Church’s thesis”) of Turing machines to simulate physical processes, and to do so with reasonable efficiency. Digital machines cannot of course integrate a continuous system’s equations of motion exactly, and even the notion of computability is not very robust in continuous systems, but for realistic physical systems, subject throughout their time development to finite perturbations (e.g. electromagnetic and gravitational) from an uncontrolled environment, it is plausible that a finite-precision digital calculation can approximate the motion to within the errors induced by these perturbations. Empirically, many systems have been found amenable to “master equation” treatments in which the dynamics is approximated as a sequence of stochastic transitions among coarse-grained microstates.

We concentrate arbitrarily on cellular automata, in the broad sense of discrete lattice models with finitely many states per site, which evolve according to a spatially homogeneous local transition rule that may be deterministic or stochastic, reversible or irreversible, and synchronous (discrete time) or asynchronous (continuous time, master equation). Such models cover the range from evidently computer-like (e.g. deterministic cellular automata) to evidently material-like (e.g. Ising models) with many gradations in between.

More of the favorable properties need to be invoked to obtain “self-organization,” i.e. nontrivial computation from a spatially homogeneous initial condition. A rather artificial system (a cellular automaton which is stochastic but noiseless, in the sense that it has the power to make purely deterministic as well as random decisions) undergoes this sort of self-organization. It does so by allowing the nucleation and growth of domains, within each of which a depth-producing computation begins. When two domains collide, one conquers the other, and uses the conquered territory to continue its own depth-producing computation (a computation constrained to finite space, of course, cannot continue for more than exponential time without repeating itself). To achieve the same sort of self-organization in a truly noisy system appears more difficult, partly because of the conflict between the need to encourage fluctuations that break the system’s translational symmetry, while suppressing fluctuations that introduce errors in the computation.

Irreversibility seems to facilitate complex behavior by giving noisy systems the generic ability to correct errors. Only a limited sort of error-correction is possible in microscopically reversible systems such as the canonical kinetic Ising model. Minority fluctuations in a low-temperature ferromagnetic Ising phase in zero field may be viewed as errors, and they are corrected spontaneously because of their potential energy cost. This error correcting ability would be lost in nonzero field, which breaks the symmetry between the two ferromagnetic phases, and even in zero field it gives the Ising system the ability to remember only one bit of information. This limitation of reversible systems is recognized in the Gibbs phase rule, which implies that under generic conditions of the external fields, a thermodynamic system will have a unique stable phase, all others being metastable. Even in reversible systems, it is not clear why the Gibbs phase rule enforces as much simplicity as it does, since one can design discrete Ising-type systems whose stable phase (ground state) at zero temperature simulates an aperiodic tiling of the plane, and can even get the aperiodic ground state to incorporate (at low density) the space-time history of a Turing machine computation. Even more remarkably, one can get the structure of the ground state to diagonalize away from all recursive sequences.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s