Metric. Part 1.

maxresdefault

A (semi-Riemannian) metric on a manifold M is a smooth field gab on M that is symmetric and invertible; i.e., there exists an (inverse) field gbc on M such that gabgbc = δac.

The inverse field gbc of a metric gab is symmetric and unique. It is symmetric since

gcb = gnb δnc = gnb(gnm gmc) = (gmn gnb)gmc = δmb gmc = gbc

(Here we use the symmetry of gnm for the third equality.) It is unique because if g′bc is also an inverse field, then

g′bc = g′nc δnb = g′nc(gnm gmb) = (gmn g′nc) gmb = δmc gmb = gcb = gbc

(Here again we use the symmetry of gnm for the third equality; and we use the symmetry of gcb for the final equality.) The inverse field gbc of a metric gab is smooth. This follows, essentially, because given any invertible square matrix A (over R), the components of the inverse matrix A−1 depend smoothly on the components of A.

The requirement that a metric be invertible can be given a second formulation. Indeed, given any field gab on the manifold M (not necessarily symmetric and not necessarily smooth), the following conditions are equivalent.

(1) There is a tensor field gbc on M such that gabgbc = δac.

(2) ∀ p in M, and all vectors ξa at p, if gabξa = 0, then ξa =0.

(When the conditions obtain, we say that gab is non-degenerate.) To see this, assume first that (1) holds. Then given any vector ξa at any point p, if gab ξa = 0, it follows that ξc = δac ξa = gbc gab ξa = 0. Conversely, suppose that (2) holds. Then at any point p, the map from (Mp)a to (Mp)b defined by ξa → gab ξa is an injective linear map. Since (Mp)a and (Mp)b have the same dimension, it must be surjective as well. So the map must have an inverse gbc defined by gbc(gab ξa) = ξc or gbc gab = δac.

Untitled

In the presence of a metric gab, it is customary to adopt a notation convention for “lowering and raising indices.” Consider first the case of vectors. Given a contravariant vector ξa at some point, we write gab ξa as ξb; and given a covariant vector ηb, we write gbc ηb as ηc. The notation is evidently consistent in the sense that first lowering and then raising the index of a vector (or vice versa) leaves the vector intact.

One would like to extend this notational convention to tensors with more complex index structure. But now one confronts a problem. Given a tensor αcab at a point, for example, how should we write gmc αcab? As αmab? Or as αamb? Or as αabm? In general, these three tensors will not be equal. To get around the problem, we introduce a new convention. In any context where we may want to lower or raise indices, we shall write indices, whether contravariant or covariant, in a particular sequence. So, for example, we shall write αabc or αacb or αcab. (These tensors may be equal – they belong to the same vector space – but they need not be.) Clearly this convention solves our problem. We write gmc αabc as αabm; gmc αacb as αamb; and so forth. No ambiguity arises. (And it is still the case that if we first lower an index on a tensor and then raise it (or vice versa), the result is to leave the tensor intact.)

We claimed in the preceding paragraph that the tensors αabc and αacb (at some point) need not be equal. Here is an example. Suppose ξ1a, ξ2a, … , ξna is a basis for the tangent space at a point p. Further suppose αabc = ξia ξjb ξkc at the point. Then αacb = ξia ξjc ξkb. Hence, lowering indices, we have αabc =ξia ξjb ξkc but αacb =ξia ξjc ξib at p. These two will not be equal unless j = k.

We have reserved special notation for two tensor fields: the index substiution field δba and the Riemann curvature field Rabcd (associated with some derivative operator). Our convention will be to write these as δab and Rabcd – i.e., with contravariant indices before covariant ones. As it turns out, the order does not matter in the case of the first since δab = δba. (It does matter with the second.) To verify the equality, it suffices to observe that the two fields have the same action on an arbitrary field αb:

δbaαb = (gbngamδnmb = gbnganαb = gbngnaαb = δabαb

Now suppose gab is a metric on the n-dimensional manifold M and p is a point in M. Then there exists an m, with 0 ≤ m ≤ n, and a basis ξ1a, ξ2a,…, ξna for the tangent space at p such that

gabξia ξib = +1 if 1≤i≤m

gabξiaξib = −1 if m<i≤n

gabξiaξjb = 0 if i ≠ j

Such a basis is called orthonormal. Orthonormal bases at p are not unique, but all have the same associated number m. We call the pair (m, n − m) the signature of gab at p. (The existence of orthonormal bases and the invariance of the associated number m are basic facts of linear algebraic life.) A simple continuity argument shows that any connected manifold must have the same signature at each point. We shall henceforth restrict attention to connected manifolds and refer simply to the “signature of gab

A metric with signature (n, 0) is said to be positive definite. With signature (0, n), it is said to be negative definite. With any other signature it is said to be indefinite. A Lorentzian metric is a metric with signature (1, n − 1). The mathematics of relativity theory is, to some degree, just a chapter in the theory of four-dimensional manifolds with Lorentzian metrics.

Suppose gab has signature (m, n − m), and ξ1a, ξ2a, . . . , ξna is an orthonormal basis at a point. Further, suppose μa and νa are vectors there. If

μa = ∑ni=1 μi ξia and νa = ∑ni=1 νi ξia, then it follows from the linearity of gab that

gabμa νb = μ1ν1 +…+ μmνm − μ(m+1)ν(m+1) −…−μnνn.

In the special case where the metric is positive definite, this comes to

gabμaνb = μ1ν1 +…+ μnνn

And where it is Lorentzian,

gab μaνb = μ1ν1 − μ2ν2 −…− μnνn

Metrics and derivative operators are not just independent objects, but, in a quite natural sense, a metric determines a unique derivative operator.

Suppose gab and ∇ are both defined on the manifold M. Further suppose

γ : I → M is a smooth curve on M with tangent field ξa and λa is a smooth field on γ. Both ∇ and gab determine a criterion of “constancy” for λa. λa is constant with respect to ∇ if ξnnλa = 0 and is constant with respect to gab if gab λa λb is constant along γ – i.e., if ξnn (gab λa λb = 0. It seems natural to consider pairs gab and ∇ for which the first condition of constancy implies the second. Let us say that ∇ is compatible with gab if, for all γ and λa as above, λa is constant w.r.t. gab whenever it is constant with respect to ∇.

2 thoughts on “Metric. Part 1.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s