Financial Fragility in the Margins. Thought of the Day 114.0

F1.large

If micro-economic crisis is caused by the draining of liquidity from an individual company (or household), macro-economic crisis or instability, in the sense of a reduction in the level of activity in the economy as a whole, is usually associated with an involuntary outflow of funds from companies (or households) as a whole. Macro-economic instability is a ‘real’ economic phenomenon, rather than a monetary contrivance, the sense in which it is used, for example, by the International Monetary Fund to mean price inflation in the non-financial economy. Neo-classical economics has a methodological predilection for attributing all changes in economic activity to relative price changes, specifically the price changes that undoubtedly accompany economic fluctuations. But there is sufficient evidence to indicate that falls in economic activity follow outflows of liquidity from the industrial and commercial company sector. Such outflows then lead to the deflation of economic activity that is the signal feature of economic recession and depression.

Let us start with a consideration of how vulnerable financial futures market themselves are to illiquidity, since this would indicate whether the firms operating in the market are ever likely to need to realize claims elsewhere in order to meet their liabilities to the market. Paradoxically, the very high level of intra-broker trading is a safety mechanism for the market, since it raises the velocity of circulation of whatever liquidity there is in the market: traders with liabilities outside the market are much more likely to have claims against other traders to set against those claims. This may be illustrated by considering the most extreme case of a futures market dominated by intra-broker trading, namely a market in which there are only two dealers who buy and sell financial futures contracts only between each other as rentiers, in other words for a profit which may include their premium or commission. On the expiry date of the contracts, conventionally set at three-monthly intervals in actual financial futures markets, some of these contracts will be profitable, some will be loss-making. Margin trading, however, requires all the profitable contracts to be fully paid up in order for their profit to be realized. The trader whose contracts are on balance profitable therefore cannot realize his profits until he has paid up his contracts with the other broker. The other broker will return the money in paying up his contracts, leaving only his losses to be raised by an inflow of money. Thus the only net inflow of money that is required is the amount of profit (or loss) made by the traders. However, an accommodating gross inflow is needed in the first instance in order to make the initial margin payments and settle contracts so that the net profit or loss may be realized.

The existence of more traders, and the system for avoiding counterparty risk commonly found in most futures market, whereby contracts are made with a central clearing house, introduce sequencing complications which may cause problems: having a central clearing house avoids the possibility that one trader’s default will cause other traders to default on their obligations. But it also denies traders the facility of giving each other credit, and thereby reduces the velocity of circulation of whatever liquidity is in the market. Having to pay all obligations in full to the central clearing house increases the money (or gross inflow) that broking firms and investors have to put into the market as margin payments or on settlement days. This increases the risk that a firm with large net liabilities in the financial futures market will be obliged to realize assets in other markets to meet those liabilities. In this way, the integrity of the market is protected by increasing the effective obligations of all traders, at the expense of potentially unsettling claims on other markets.

This risk is enhanced by the trading of rentiers, or banks and entrepreneurs operating as rentiers, hedging their futures contracts in other financial markets. However, while such incidents generate considerable excitement around the markets at the time of their occurrence, there is little evidence that they could cause involuntary outflows from the corporate sector on such a scale as to produce recession in the real economy. This is because financial futures are still used by few industrial and commercial companies, and their demand for financial derivatives instruments is limited by the relative expense of these instruments and their own exposure to changes in financial parameters (which may more easily be accommodated by holding appropriate stocks of liquid assets, i.e., liquidity preference). Therefore, the future of financial futures depends largely on the interest in them of the contemporary rentiers in pension, insurance and various other forms of investment funds. Their interest, in turn, depends on how those funds approach their ‘maturity’.

However, the decline of pension fund surpluses poses important problems for the main securities markets of the world where insurance and pension funds are now the dominant investors, as well as for more peripheral markets like emerging markets, venture capital and financial futures. A contraction in the net cash inflow of investment funds will be reflected in a reduction in the funds that they are investing, and a greater need to realize assets when a change in investment strategy is undertaken. In the main securities markets of the world, a reduction in the ‘new money’ that pension and insurance funds are putting into those securities markets will slow down the rate of growth of the prices in those markets. How such a fall in the institutions’ net cash inflow will affect the more marginal markets, such as emerging markets, venture capital and financial futures, depends on how institutional portfolios are managed in the period of declining net contributions inflows.

In general, investment managers in their own firms, or as employees of merchant or investment banks, compete to manage institutions’ funds. Such competition is likely to increase as investment funds approach ‘maturity’, i.e., as their cash outflows to investors, pensioners or insurance policyholders, rises faster than their cash inflow from contributions and premiums, so that there are less additional funds to be managed. In principle, this should not affect financial futures markets, in the first instance, since, as argued above, the short-term nature of their instruments and the large proportion in their business of intra-market trade makes them much less dependent on institutional cash inflows. However, this does not mean that they would be unaffected by changes in the portfolio preferences of investment funds in response to lower returns from the main securities markets. Such lower returns make financial investments like financial futures, venture capital and emerging markets, which are more marginal because they are so hazardous, more attractive to normally conservative fund managers. Investment funds typically put out sections of portfolios to specialist fund managers who are awarded contracts to manage a section according to the soundness of their reputation and the returns that they have made hitherto in portfolios under their management. A specialist fund manager reporting high, but not abnormal, profits in a fund devoted to financial futures, is likely to attract correspondingly more funds to manage when returns are lower in the main markets’ securities, even if other investors in financial futures experienced large losses. In this way, the maturing of investment funds could cause an increased inflow of rentier funds into financial futures markets.

An inflow of funds into a financial market entails an increase in liabilities to the rentiers outside the market supplying those funds. Even if profits made in the market as a whole also increase, so too will losses. While brokers commonly seek to hedge their positions within the futures market, rentiers have much greater possibilities of hedging their contracts in another market, where they have assets. An inflow into futures markets means that on any settlement day there will therefore be larger net outstanding claims against individual banks or investment funds in respect of their financial derivatives contracts. With margin trading, much larger gross financial inflows into financial futures markets will be required to settle maturing contracts. Some proportion of this will require the sale of securities in other markets. But if liquidity in integrated cash markets for securities is reduced by declining net inflows into pension funds, a failure to meet settlement obligations in futures markets is the alternative to forced liquidation of other assets. In this way futures markets will become more fragile.

Moreover, because of the hazardous nature of financial futures, high returns for an individual firm are difficult to sustain. Disappointment is more likely to be followed by the transfer of funds to management in some other peripheral market that shows a temporary high profit. While this should not affect capacity utilization in the futures market, because of intra-market trade, it is likely to cause much more volatile trading, and an increase in the pace at which new instruments are introduced (to attract investors) and fall into disuse. Pension funds whose returns fall below those required to meet future liabilities because of such instability would normally be required to obtain additional contributions from employers and employees. The resulting drain on the liquidity of the companies affected would cause a reduction in their fixed capital investment. This would be a plausible mechanism for transmitting fragility in the financial system into full-scale decline in the real economy.

The proliferation of financial futures markets has only had been marginally successful in substituting futures contracts for Keynesian liquidity preference as a means of accommodating uncertainty. A closer look at the agents in those markets and their market mechanisms indicates that the price system in them is flawed and trading hazardous risks in them adds to uncertainty rather than reducing it. The hedging of financial futures contracts in other financial markets means that the resulting forced liquidations elsewhere in the financial system are a real source of financial instability that is likely to worsen as slower growth in stock markets makes speculative financial investments appear more attractive. Capital-adequacy regulations are unlikely to reduce such instability, and may even increase it by increasing the capital committed to trading in financial futures. Such regulations can also create an atmosphere of financial security around these markets that may increase unstable speculative flows of liquidity into the markets. For the economy as a whole, the real problems are posed by the involvement of non-financial companies in financial futures markets. With the exception of a few spectacular scandals, non-financial companies have been wary of using financial futures, and it is important that they should continue to limit their interest in financial futures markets. Industrial and commercial companies, which generate their own liquidity through trade and production and hence have more limited financial assets to realize in order to meet financial futures liabilities in times of distress, are more vulnerable to unexpected outflows of liquidity in proportion to their increased exposure to financial markets. The liquidity which they need to set aside to meet such unexpected liabilities inevitably means a reduced commitment to investment in fixed capital and new technology.

Advertisement

Bank Recapitalization. Some Scattered Thoughts on Efficacies.

Bank-Recap
If we are still thinking of Demonetization and GST as speed breakers to economy, which entirely isn’t false, the what could one say of Bank Recapitalization? Is this a master stroke of sorts to salvaging sensibility before the present ruling dispensation of BJP is red-faced before 2019 GE? Or, is Bank Recapitalization is all about safeguarding the dismal dip in the growth and especially so when the world economy is on an ascent, despite warnings of a Minsky Moment? What are the challenges to Bank Recapitalization and how would these face up to the challenges of the NPAs and PSB consolidation? These are pressing questions that simply cannot be answered by a political will getting catalyzed, but requires a deeper economic drift and traction.
So, if Bank Recapitalization to the tune of Rs. 2.1 lakh crore infusion into the public sector banks were to come through, and which it would, the budgetary allocations are a mere chunk, while raising money from the market too isn’t that major a factor. The roost is to be ruled by recapitalization bonds, or recap bonds, in short. What then are the challenges of this methodology?
Technically, in the current context, there is really not much of a risk in issuing recapitalization bonds. The outside risk of recapitalization bonds is that this move may tighten liquidity in the system if all the surplus liquidity in the banking system goes into its capital. However, since recapitalization bonds are callable in nature, this risk should not be too great. Also, the debt markets are now sufficiently deep and broad and can support the funding needs of the India corporates and hence that is unlikely to be a major issue. The only concern is that rating agencies globally will look at recapitalization as a form of off-balance sheet financing, which does not give them too much comfort. Many rating agencies look at such bonds as a means of raising debt that is not visible in the fiscal deficit. This lack of visibility is what might be the hurdles race for the government. But, then is there a way out?
Alternatively, what if the government were not to recapitalize? Then, it can look to postponing its adherence to Basel III from 2019. But that will be seen by global markets as an admission by the Government of India that it does not have the liquidity to capitalize its banks. That may not go down well with foreign investors. Under these circumstances, infusing capital into the banks through the issue of recapitalization bonds may be the best option available!
What are the main economic ramifications as a result of these? The government’s plan at recapitalization would have little impact on its target to shrink the shortfall to 3.2 percent of the GDP because the IMF rules classify such debt as “below the line” financing. Only interest expenses would be added to the fiscal deficit, and this is estimated at about Rs. 90 billion or 0.4 percent of the total budgeted spending. Technically, however, India’s accounting rules require the bonds to be included in the budget deficit, so the government would reclassify them later as off-balance sheet items. The government is yet to disclose the details on the structure and pricing of the bonds, as well as how it would raise the rest of the cash. These will determine if there is a liquidity squeeze. If the measures do revive credit growth, inflation may accelerate as well, limiting scope to lower the policy rate. When it comes to the question of who would buy these bonds, the answer is probably banks themselves, who are flush with deposits following the note ban. Banks can then cleverly invest these funds in the recap bonds which will then be ultimately routed back as equity in the system. This would ensure that the bond market would not be impacted by such a large issuance for the private sector issuers.
Now, these are serious questions questioning some of the advocacy groups have to come to terms with. For one thing, in my opinion, mergers and acquisitions to consolidate PSBs are to be put back on the back foot, for recapitalization has at least punctuated to for the time being. Second is credit growth, or more precisely credit demand, which would be induced with an energy following this exercise. Third, and most importantly, the lending might gain velocity, but only after April 2018, since banks would require a correctional facility on their balance sheets. This lending would somehow be channeled towards infrastructure giants like Sagarmala and Bharatmala with a key difference being that the Government might prioritize Engineering, Procurement and Construction (EPC) over Hybrid Annuity Model like the PPP for the obvious risks associated with the latter subsequently feeding into the NPAs and/or stressed assets. 

Indecent Bazaars. Thought of the Day 113.0

centerperiphery

Peripheral markets may be defined as markets which generate only a small proportion of their financial inflows from local business and investors, but which attract the interest of ‘global’ investors. Emerging markets and markets for financial exotica such as financial derivatives are examples of such peripheral markets. Because emerging markets are largely dependent upon attracting international funds in order to generate increases in securities prices and capital gains which will attract further funds, they are particularly good examples of the principles of Ponzi finance at work in securities markets.

A common characteristic feature of peripheral markets is that they have no history of returns to financial investment on the scale on which finance is drawn to those markets in a time of capital market inflation. Such returns in the future have to be inferred on the basis of conjecture and fragmentary information. Investment decisions are therefore more dependent on sentiment, rather than reason. Any optimism is quickly justified by the rapid increase in asset prices in response to even a modest excess net inflow of money into such a market.

Emerging markets illustrate this very clearly. Such markets exist in developing and semi-industrialized countries with relatively undeveloped pensions and insurance institutions, principally because only a small proportion of households earn enough to be able to put aside long-term savings. The first fund manager comes upon such a market in the conviction that a change of government or government policy, or some temporary change in commodity prices, has opened a cornucopia of profitable opportunities and therefore warrants the dismissal of a history of economic, financial and political instability. If he or she is able with buying and enthusiasm to attract other speculators and fund managers to enter the market, they may drive up asset prices and make the largest capital gains. The second and third fund managers to buy into that market also make capital gains. The emulatory competition of trading on reputation while competing for returns makes international investment managers especially prone to this kind of ‘herd’ investment.

For a while such capital inflows into the market make everyone happy: international fund managers are able to show good returns from the funds in their care; finance theorists can reassure themselves that greater financial risks are compensated by higher returns; the government of the country in which the emerging market is located can sell its bonds and public sector enterprises to willing foreign investors and use the proceeds to balance its budget and repay its debts; the watchdogs of financial prudence in the International Monetary Fund can hail the revival of finance, the government’s commitment to private enterprise and apparent fiscal responsibility; state enterprises, hitherto stagnating because of under-investment by over-indebted governments, suddenly find themselves in the private sector commanding seemingly limitless opportunities for raising finance; the country’s currency after years of depreciation acquires a gilt-edged stability as dollars (the principal currency of international investment) flow in to be exchanged for local currency with which to buy local securities; the central bank accumulates dollars in exchange for the local currency that it issues to enable foreign investors to invest in the local markets and, with larger reserves, secures a new ease in managing its foreign liabilities; the indigenous middle and professional classes who buy financial and property (real estate) assets in time for the boom are enriched and for once cease their perennial grumbling at the sordid reality of life in a poor country. In this conjuncture the most banal shibboleths of enterprise and economic progress under capitalism appear like the very essence of worldly wisdom.

Only in such a situation of capital market inflation are the supposed benefits of foreign direct investment realized. Such investment by multinational companies is widely held to improve the ‘quality’ or productivity of local labour, management and technical know-how in less developed countries, whose technology and organization of labour lags behind that of the more industrialized countries. But only the most doltish and ignorant peasant would not have his or her productivity increased by being set to work with a machine of relatively recent vintage under the guidance of a manager familiar with that machine and the kind of work organization that it requires. It is more doubtful whether the initial increase in productivity can be realized without a corresponding increase in the export market (developing countries have relatively small home markets). It is even more doubtful if the productivity increase can be repeated without the replacement of the machinery by even newer machinery.

The favourable conjuncture in the capital markets of developing countries can be even more temporary. There are limits on the extent to which even private sector companies may take on financial liabilities and privatization is merely a system for transferring such liabilities from the government to the private sector without increasing the financial resources of the companies privatized. But to sustain capital gains in the emerging stock market, additional funds have to continue to flow in buying new liabilities of the government or the private sector, or buying out local investors. When new securities cease to attract international fund managers, the inflow stops. Sometimes this happens when the government privatization drive pauses, because the government runs out of attractive state enterprises or there are political and procedural difficulties in selling them. A fall in the proceeds from privatization may reveal the government’s underlying fiscal deficit, causing the pundits of international finance to sense the odour of financial unsoundness. More commonly rising imports and general price inflation, due to the economic boom set off by the inflow of foreign funds, arouse just such an odour in the noses of those pundits. Such financial soundness is a subjective view. Even if nothing is wrong in the country concerned, the prospective capital gain and yield in some other market need only rise above the expected inflation and yield of the country, to cause a capital outflow which will usually be justified in retrospect by an appeal to perceived, if not actual, financial disequilibrium.

Ponzi financial structures are characterized by ephemeral liquidity. At the time when money is coming into the markets they appear to be just the neo-classical ideal of market perfection, with lots of buyers and sellers scrambling for bargains and arbitrage profits. At the moment when disinvestment takes hold the true nature of peripheral markets and their ephemeral liquidity is revealed as trades which previously sped through in the frantic paper chase for profits are now frustrated. This too is particularly apparent in emerging markets. In order to sell, a buyer is necessary. If the majority of investors in a market also wish to sell, then sales cannot be executed for want of a buyer and the apparently perfect market liquidity dries up. The crash of the emerging stock market is followed by the fall in the exchange value of the local currency. Those international investors that succeeded in selling now have local currency which has to be converted into dollars if the proceeds of the sale are to be repatriated, or invested elsewhere. Exchange through the local banking system may now be frustrated if it has inadequate dollar reserves: a strong possibility if the central bank has been using dollars to service foreign debts. In spite of all the reassurance that this time it will be different because capital inflows are secured on financial instruments issued by the private sector, international investors are at this point as much at the mercy of the central bank and the government of an emerging market as international banks were at the height of the sovereign debt crisis. Moreover, the greater the success of the peripheral market in attracting funds, and hence the greater the boom in prices in that market, the greater is the desired outflow when it comes. With the fall in liquidity of financial markets in developing countries comes a fall in the liquidity of foreign direct investment, making it difficult to secure appropriate local financial support or repatriate profits.

Another factor which contributes to the fragility of peripheral markets is the opaqueness of financial accounting in them, in the sense that however precise and discriminating may be the financial accounting conventions, rules and reporting, they do not provide accurate indicators of the financial prospects of particular investments. In emerging markets this is commonly supposed to be because they lack the accounting regulations and expertise which supports the sophisticated integrated financial markets of the industrialized countries. In those industrialized countries, where accounting procedures are supposed to be much more transparent, peripheral markets such as venture capital and financial futures still suffer from accounting inadequacies because financial innovation introduces liabilities that have no history and which are not included in conventional accounts (notably the so-called ‘off-balance sheet’ liabilities). More important than these gaps in financial reporting is the volatility of profits from financial investment in such peripheral markets, and the absence of any stable relationship between profits from trading in their instruments and the previous history of those instruments or the financial performance of the company issuing them. Thus, even where financial records are comprehensive, accurate and revealed, they are a poor indicator of prospective returns from investments in the securities of peripheral markets.

With more than usually unreliable financial data, trading in those markets is much more based on reputation than on any systematic financial analysis: the second and third investor in such a market is attracted by the reputation of the first and subsequently the second investor. Because of the direct connection between financial inflows and values in securities markets, the more trading takes place on the basis of reputation the less of a guide to prospective returns is afforded by financial analysis. Peripheral markets are therefore much more prone to ‘ramping’ than other markets.

Why would such a crisis of withdrawal not occur, at least not on such a scale, in the more locally integrated capital markets of the advanced industrialised countries? First of all, integrated capital markets such as those of the UK, and the US are the domestic base for international investors. In periods of financial turbulence, they are more likely to have funds repatriated to them than to have funds taken out of them. Second, institutional investors tend to be more responsive to pressure to be ‘responsible investors’ in their home countries. In large measure this is because home securities make up the vast majority of investment fund portfolios. Ultimately, investment institutions will use their liquidity to protect the markets in which most of their portfolio is based. Finally, the locally integrated markets of the advanced industrialized countries have investing institutions with far greater wealth than the developing or semi-industrialized countries. Those markets are home for the pension funds which dominate the world markets. Among their wealth are deposits and other liquid assets which may be easily converted to support a stock market by buying securities. The poorer countries of the world have even poorer pension funds, which could not support their markets against an outflow due to portfolio switches by international investors.

Thus integrated markets are more ‘secure’ in that they are less prone to collapse than emerging or, more generally, peripheral markets. But precisely because of the large amount of trade already concentrated in the integrated markets, prices in them are much less likely to respond to investment fund inflows from abroad. Pension and insurance fund practice is to extrapolate those capital gains into the future for the purposes of determining the solvency of those funds. However, those gains were obtained because of a combination of inflation, the increased scope of funded pensions and the flight of funds from peripheral markets.

Putin Vs Putin: Vladimir Putin Viewed from the Right

23385353

According to Dugin, Putin is far from the image of the hardcore nationalist created by Western media propaganda. He is a man of halves: half-liberal, half-Eurasianist. He has made many steps in the right direction, but somehow he never seems to reach the end goal. Putin is essentially a realist, as defined by Machiavelli and Carl Schmitt. He has not found an ideology, but rather reacts instinctively to events and circumstances.

Despite his flaws, Putin is, according to Dugin, the best leader possible; especially when compared to the standard Western politician.

Putin Vs Putin: Vladimir Putin Viewed from the Right (Alexander Dugin-Putin vs Putin_ Vladimir Putin Viewed from the Right) is not a biography but a Eurasianist analysis of Putin’s reign and of the challenges to be overcome in the future. It is an excellent introduction to Russian politics, thanks to the many footnotes, which introduce the main protagonists of the Russian political scene and the many influences at work in Moscow.

Ramping the Markets: Banking on Ponzi Finance. Thought of the Day 112.0

China Minsky

When funded pension schemes were first put forward at the beginning of the 1970s as a private sector alternative to state earnings-related pensions, the merchant (investment) banks and stockbroking firms that promoted them did not anticipate how successful they would become in that, by the following decades, pension schemes and allied forms of life assurance would come to own most of the stocks and shares quoted on the world’s stock markets. When pension funds held a minority of stocks, the funds could altogether put money into stock markets by buying stocks, or withdraw it by selling, without significantly affecting prices or the liquidity of the market as a whole. Now that pension funds and allied life assurance and mutual funds constitute the majority of the market, it is not possible for them to withdraw funds altogether without causing a fall in prices, or even a stock market crash.

Because of their success, pension funds have become the newest and possibly the most catastrophic example of Ponzi finance. The term Ponzi finance was invented by the American economist Hyman P. Minsky as part of his analysis of financial market inflation. It describes a form of finance in which new liabilities are issued to finance existing liabilities. According to Minsky, financial crises are caused by the collapse of ‘financial structures’ whose failure is precipitated by their increasing ‘financial fragility’. Financial structures are simply commitments to make payments in the future, against claims that result in incoming payments in the future. For Minsky, the characteristic feature of financial markets and financial speculation is that they afford opportunities for economic units to enter into future financial commitments, in the expectation of gain. In this respect, at least, they are similar to fixed capital investment. Success in securing gains persuades speculators to enter into further commitments, which become more ‘fragile’, i.e., more prone to collapse because future commitments become more speculative and less covered by assured financial inflows.

Minsky identifies three types of financial commitments, which are distinguished by the different degree of financial risk that they entail. In hedge finance, future commitments are exactly matched by cash inflows. A common example is the practice in banking of lending at variable or floating rates of interest. In this way, if a bank has to pay more interest to its depositors, it can recoup the increase by raising the interest rates that it charges to its borrowers (assuming that its depositors cannot withdraw their deposits before the term of the loan expires).

Speculative finance is characterized by certain commitments which have to be covered by cash inflows which may rise or fall, or uncertain commitments against a fixed cash inflow. If a bank lends money at a fixed rate of interest it is engaging in speculative finance, because it is running the risk that it may have to pay a higher rate of interest to depositors if interest rates rise. However, to set against this risk it has the possibility that the interest rates paid to depositors may fall, and it will thereby make additional gains from a wider margin between lending and borrowing rates.

Ponzi finance, in Minsky’s view, is a situation in which both commitments and cash inflows are uncertain, so that there is a possibility of an even more enhanced profit if commitments fall and the cash inflow rises. Against this has to be set the possibility that commitments and the cash inflow will move together so that only a minimal profit will be secured, or that commitments will rise and the cash inflow will fall, in which case a much more serious loss will be entered than would have occurred under speculative finance.

Ponzi finance lies behind the view that is no less erroneous for being widely repeated, that a higher return reflects the ‘greater risk’ of an enterprise. This is exemplified in the practice of banks charging higher rates of interest for what they perceive as greater risks. Behind this view lies the Austrian tradition, from Böhm-Bawerk onwards, of regarding economic outcomes as analogous to the gains and lotteries obtainable from repeated routine games, such as the tossing of a dice. The certain pay-off (or ‘certainty-equivalent’) is held to be lower than some possible pay-off. The association of the greater payoff with its lower probability then leads to a presumption that the latter ‘causes’ the former. However, the profits of companies and financial institutions are not the proceeds of gaming, however much enterprise in an unstable market system may appear similar to gambling. In fact, these profits are the outcomes of financial flows that ebb and progress through the economy, propelled by actual expenditure and financing decisions. The systems of financial claims and liabilities arising from those decisions become more fragile, as first speculative and then Ponzi financing structures come to predominate, and larger gains and larger losses may then be made. But the possibility of extraordinary profits or losses in Ponzi financing structures in no way means that realization of such profits is caused or justified by the possibility of the losses. Ponzi finance arises out of objective contractual obligations. The ‘greater risk’, which is held to justify a higher cost of finance, may be entirely subjective or a cover for monopoly profits in finance.

The simplest example of Ponzi finance is borrowing money to pay interest on a loan. In this case, the financial liability is increased, with no reduction in the original loan. Pyramid bank deposit schemes were the schemes after which this phenomenon is named, and they are perhaps the most extreme example of such financial structures. In a pyramid deposit scheme, the financier might take, say, Rs. 100 from a depositor, and promise to double this money after a month if the depositor introduces two new depositors at the end of that month. The two new depositors get the same terms and when they pay in their Rs. 100 respectively, Rs. 100 goes to double the money of the first depositor, and the other Rs. 100 is the financier’s profit. The two new depositors get their profit at the end of the next month from the new deposits paid in by the four new depositors that they introduce to the scheme, and so on. Initially, such schemes promise and deliver good profits. But their flaw lies in the fact that they require deposits to rise exponentially in order to pay the promised rewards to depositors. In the example that is described above, deposits have to double each month so that after one year, the scheme requires Rs. 409,600 in deposits just to keep solvent. After the thirteenth month, Rs. 819,200 would need to be deposited to keep up promised payments to depositors. Such schemes therefore usually collapse when they run out of gullible people to deposit their savings in them. While their life can be briefly extended by persuading depositors not to withdraw their profits, this cannot work for more than one or two payment periods, because such schemes are so dependent on increasing amounts of additional money being paid into them in each successive period.

Ponzi schemes are named after Charles Ponzi, an Italian immigrant who swindled Boston investors in 1919 and 1920 with a pyramid banking scheme. Minsky noted that Ponzi’s scheme ‘swept through the working classes and even affected “respectable” folk’. Because they prey on the poor and the ignorant, Ponzi schemes in banking are usually banned, although this does not prevent them from occurring in countries where it is difficult to regulate them. In Minsky’s view, financial collapses occur because booms in financial markets result in sufficient profits for speculative and Ponzi finance to induce a shift from hedge finance to speculative and Ponzi finance.

Ponzi finance in securities markets is much more common than in banking. Indeed, it is arguable that such finance is essential for the liquidity of markets in long-term securities: if a security is bought, it may have an assured ‘residual liquidity’ if it is a bond in that, when it matures, the money will then be returned to the investor. If, however, the security is a share which is not repaid by the issuer except on liquidation of the company, then it has no assured residual liquidity. Its liquidity depends on some other investor wishing to buy it at a reasonable price. If the share is to be sold at a profit, then the condition for this to happen is that demand for it has risen since it was bought. In this respect, liquidity and capital gains in the markets for long-term securities depend on Ponzi finance.

Ponzi finance was present at the very inception of modern stock markets. The South Sea Company and the Mississippi Company, whose stocks featured in the first stock market collapse of 1720, both ended up issuing stocks to raise finance in order to buy stocks to keep the market in their stocks liquid and stable. In modern times, this is a common feature of merger and takeover activity in capital markets. Corporate takeovers are frequently financed by issuing securities. The proceeds of the new issue are used to buy in the target company’s stock ‘at a premium’, i.e., at a price that is greater than the pre-takeover market price. The money raised by issuing the new stocks is used to pay the higher return to the stock-holders of the company being taken over. In this case, issuing new stock is exactly equivalent to the pyramid banking practice of taking in new deposits in order to pay an enhanced return to older depositors, which is the premium on the target company’s stock. The main difference between the two types of operation is that, during such takeover activity, the stock market as a whole functions as a pyramid banking scheme. However, precisely because it is the market as a whole which is operating in this Ponzi way, the pyramid nature of the venture is less obvious, and the gains are greater, because more and wealthier contributors are involved. Since this is an outcome of the normal functioning of the market, which may hitherto have been acting in a perfectly proper and respectable fashion, raising finance for industry and providing for widows and orphans, it is not possible to ‘finger’ the perpetrator of the pyramid scheme.

A more obviously controversial kind of Ponzi finance is the practice known as ‘ramping’ the market. A financier discreetly buys up a particular stock over a period of time, and then announces with great fanfare that he or she is buying in the stock. There are few markets in which emulatory competition is as strong as financial markets, where being conservative in practice and faddish in innovation are preconditions for a ‘sound’ reputation. The ‘sounder’ that reputation, the more likely it is other investors will imitate the buying strategy. Indeed, there is an element of compulsion about it, depending on the reputation of the investor. Those investors without reputation must follow for whatever reasons the investment direction signalled by investors with reputation, or else languish among lower-growth stocks. As the price of the stock rises due to the increased demand for it, such reputable financiers quietly sell out at a profit to their imitators, thereby confirming their reputation for financial ‘soundness’. Obviously, the better the reputation of the financier, the greater the gain from such an operation. To support such a reputation and legitimize the profits from trading on it, financiers will obviously attribute the gains from this practice to their own financial acumen, rather than confessing to having ramped the market.

The almost instantaneous dissemination of relevant information on which modern financial markets pride themselves (and which many financial economists believe makes them near perfect), also facilitates this kind of market manipulation. In securities markets, the investors emulating the financier are the equivalent of the new depositors. They too may make money, if they too can persuade subsequent new investors to buy at higher prices. As with the pyramid banking case, ramping markets depends on increasing interest by additional investors. Because in practice it is indistinguishable from normal trading (unlike pyramid banking, which is rather more obvious), and because any losers usually have other wealth to fall back on, such practices are frowned upon in securities markets, but cannot be eliminated. However, in the case of pension funds, the eventual losers will be ordinary working people, who will only have a minimal state pension in the future to fall back on. This makes it all the more important to understand how a reputable system for financing pensions has become a Ponzi finance scheme which will in future collapse.

Banking and Lending/Investment. How Monetary Policy Becomes Decisive? Some Branching Rumination.

the-state-of-global-monetary-policy-in-a-chart-and-a-map

Among the most notoriously pernicious effects of asset price inflation is that it offers speculators the prospect of gain in excess of the costs of borrowing the money to buy the asset whose price is being inflated. This is how many unstable Ponzi financing structures begin. There are usually strict regulations to prevent or limit banks’ direct investment in financial instruments without any assured residual liquidity, such as equity or common stocks. However, it is less easy to prevent banks from lending to speculative investors, who then use the proceeds of their loans to buy securities or to limit lending secured on financial assets. As long as asset markets are being inflated, such credit expansions also conceal from banks, their shareholders and their regulators the disintermediation that occurs when the banks’ best borrowers, governments and large companies, use bills and company paper instead of bank loans for their short-term financing. As long as the boom proceeds, banks can enjoy the delusion that they can replace the business of governments and large companies with good lending secured on stocks.

In addition to undermining the solvency of the banking system, and distracting commerce and industry with the possibilities of lucrative corporate restructuring, capital market inflation also tends to make monetary policy ineffective. Monetary policy is principally the fixing of reserve requirements, buying and selling short-term paper or bills in the money or inter-bank markets, buying and selling government bonds and fixing short-term interest rates. As noted in the previous section, with capital market inflation there has been a proliferation of short-term financial assets traded in the money markets, as large companies and banks find it cheaper to issue their own paper than to borrow for banks. This disintermediation has extended the range of short-term liquid assets which banks may hold. As a result of this it is no longer possible for central banks, in countries experiencing capital market inflation, to control the overall amount of credit available in the economy: attempts to squeeze the liquidity of banks in order to limit their credit advances by, say, open market operations (selling government bonds) are frustrated by the ease with which banks may restore their liquidity by selling bonds or their holdings of short-term paper or bills. In this situation central banks have been forced to reduce the scope of their monetary policy to the setting of short-term interest rates.

Economists have long believed that monetary policy is effective in controlling price inflation in the economy at large, as opposed to inflation of securities prices. Various rationalizations have been advanced for this efficacy of monetary policy. For the most part they suppose some automatic causal connection between changes in the quantity of money in circulation and changes in prices, although the Austrian School of Economists (here, here, here, and here) tended on occasion to see the connection as being between changes in the rate of interest and changes in prices.

Whatever effect changes in the rate of interest may have on the aggregate of money circulating in the economy, the effect of such changes on prices has to be through the way in which an increase or decrease in the rate of interest causes alterations in expenditure in the economy. Businesses and households are usually hard-headed enough to decide their expenditure and financial commitments in the light of their nominal revenues and cash outflows, which may form their expectations, rather than in accordance with their expectations or optimizing calculations. If the same amount of money continues to be spent in the economy, then there is no effective reason for the business-people setting prices to vary prices. Only if expenditure in markets is rising or falling would retailers and industrialists consider increasing or decreasing prices. Because price expectations are observable directly with difficulty, they may explain everything in general and therefore lack precision in explaining anything in particular. Notwithstanding their effects on all sorts of expectations, interest rate changes affect inflation directly through their effects on expenditure.

The principal expenditure effects of changes in interest rates occur among net debtors in the economy, i.e., economic units whose financial liabilities exceed their financial assets. This is in contrast to net creditors, whose financial assets exceed their liabilities, and who are usually wealthy enough not to have their spending influenced by changes in interest rates. If they do not have sufficient liquid savings out of which to pay the increase in their debt service payments, then net debtors have their expenditure squeezed by having to devote more of their income to debt service payments. The principal net debtors are governments, households with mortgages and companies with large bank loans.

With or without capital market inflation, higher interest rates have never constrained government spending because of the ease with which governments may issue debt. In the case of indebted companies, the degree to which their expenditure is constrained by higher interest rates depends on their degree of indebtedness, the available facilities for additional financing and the liquidity of their assets. As a consequence of capital market inflation, larger companies reduce their borrowing from banks because it becomes cheaper and more convenient to raise even short- term finance in the booming securities markets. This then makes the expenditure of even indebted companies less immediately affected by changes in bank interest rates, because general changes in interest rates cannot affect the rate of discount or interest paid on securities already issued. Increases in short-term interest rates to reduce general price inflation can then be easily evaded by companies financing themselves by issuing longer-term securities, whose interest rates tend to be more stable. Furthermore, with capital market inflation, companies are more likely to be over-capitalized and have excessive financial liabilities, against which companies tend to hold a larger stock of more liquid assets. As inflated financial markets have become more unstable, this has further increased the liquidity preference of large companies. This excess liquidity enables the companies enjoying it to gain higher interest income to offset the higher cost of their borrowing and to maintain their planned spending. Larger companies, with access to capital markets, can afford to issue securities to replenish their liquid reserves.

If capital market inflation reduces the effectiveness of monetary policy against product price inflation, because of the reduced borrowing of companies and the ability of booming asset markets to absorb large quantities of bank credit, interest rate increases have appeared effective in puncturing asset market bubbles in general and capital market inflations in particular. Whether interest rate rises actually can effect an end to capital market inflation depends on how such rises actually affect the capital market. In asset markets, as with anti-inflationary policy in the rest of the economy, such increases are effective when they squeeze the liquidity of indebted economic units by increasing the outflow of cash needed to service debt payments and by discouraging further speculative borrowing. However, they can only be effective in this way if the credit being used to inflate the capital market is short term or is at variable rates of interest determined by the short-term rate.

Keynes’s speculative demand for money is the liquidity preference or demand for short-term securities of rentiers in relation to the yield on long-term securities. Keynes’s speculative motive is ‘a continuous response to gradual changes in the rate of interest’ in which, as interest rates along the whole maturity spectrum decline, there is a shift in rentiers’ portfolio preference toward more liquid assets. Keynes clearly equated a rise in equity (common stock) prices with just such a fall in interest rates. With falling interest rates, the increasing preference of rentiers for short-term financial assets could keep the capital market from excessive inflation.

But the relationship between rates of interest, capital market inflation and liquidity preference is somewhat more complicated. In reality, investors hold liquid assets not only for liquidity, which gives them the option to buy higher-yielding longer-term stocks when their prices fall, but also for yield. This marginalizes Keynes’s speculative motive for liquidity. The motive was based on Keynes’s distinction between what he called ‘speculation’ (investment for capital gain) and ‘enterprise’ (investment long term for income). In our times, the modern rentier is the fund manager investing long term on behalf of pension and insurance funds and competing for returns against other funds managers. An inflow into the capital markets in excess of the financing requirements of firms and governments results in rising prices and turnover of stock. This higher turnover means greater liquidity so that, as long as the capital market is being inflated, the speculative motive for liquidity is more easily satisfied in the market for long-term securities.

Furthermore, capital market inflation adds a premium of expected inflation, or prospective capital gain, to the yield on long-term financial instruments. Hence when the yield decreases, due to an increase in the securities’ market or actual price, the prospective capital gain will not fall in the face of this capital appreciation, but may even increase if it is large or abrupt. Rising short-term interest rates will therefore fail to induce a shift in the liquidity preference of rentiers towards short-term instruments until the central bank pushes these rates of interest above the sum of the prospective capital gain and the market yield on long-term stocks. Only at this point will there be a shift in investors’ preferences, causing capital market inflation to cease, or bursting an asset bubble.

This suggests a new financial instability hypothesis, albeit one that is more modest and more limited in scope and consequence than Minsky’s Financial Instability Hypothesis. During an economic boom, capital market inflation adds a premium of expected capital gain to the market yield on long-term stocks. As long as this yield plus the expected capital gain exceed the rate of interest on short-term securities set by the central bank’s monetary policy, rising short-term interest rates will have no effect on the inflow of funds into the capital market and, if this inflow is greater than the financing requirements of firms and governments, the resulting capital market inflation. Only when the short-term rate of interest exceeds the threshold set by the sum of the prospective capital gain and the yield on long-term stocks will there be a shift in rentiers’ preferences. The increase in liquidity preference will reduce the inflow of funds into the capital market. As the rise in stock prices moderates, the prospective capital gain gets smaller, and may even become negative. The rentiers’ liquidity preference increases further and eventually the stock market crashes, or ceases to be active in stocks of longer maturities.

At this point, the minimal or negative prospective capital gain makes equity or common stocks unattractive to rentiers at any positive yield, until the rate of interest on short-term securities falls below the sum of the prospective capital gain and the market yield on those stocks. When the short-term rate of interest does fall below this threshold, the resulting reduction in rentiers’ liquidity preference revives the capital market. Thus, in between the bursting of speculative bubbles and the resurrection of a dormant capital market, monetary policy has little effect on capital market inflation. Hence it is a poor regulator for ‘squeezing out inflationary expectations’ in the capital market.

Principal Bundles Preserve Structures…

Untitled

A bundle P = (P, M ,π; G) is a principal bundle if the standard fiber is a Lie group G and ∃ (at least) one trivialization the transition functions of which act on G by left translations Lg : G → G : h ↦ f  g . h (where . denotes here the group multiplication).

The principal bundles are slightly different from affine bundles and vector bundles. In fact, while in affine bundles the fibers π-1(x) have a canonical structure of affine spaces and in vector bundles the fibers π-1(x) have a canonical structure of vector spaces, in principal bundles the fibers have no canonical Lie group structure. This is due to the fact that, while in affine bundles transition functions act by means of affine transformations and in vector bundles transition functions act by means of linear transformations, in principal bundles transition functions act by means of left translations which are not group automorphisms. Thus the fibers of a principal bundle do not carry a canonical group structure, but rather many non-canonical (trivialization-depending) group structures. In the fibers of a vector bundle there exists a preferred element (the “zero”) the definition of which does not depend on the local trivialization. On the contrary, in the fibers of a principal bundle there is no preferred point which is fixed by transition functions to be selected as an identity. Thus, while in affine bundles affine morphisms are those which preserve the affine structure of the fibers and in vector bundles linear morphisms are the ones which preserve the linear structure of the fibers, in a principal bundle P = (P, M, π; G) principal morphisms preserve instead a structure, the right action of G on P.

Let P = (P, M, π; G) be a principal bundle and {(Uα, t(α)}α∈I a trivialization. We can locally consider the maps

R(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, h . g](α) —– (1)

∃ a (global) right action Rg of G on P which is free, vertical and transitive on fibers; the local expression in the given trivialization of this action is given by R(α)g .

Using the local trivialization, we set p = [x, h](α) = [x, g(βα)(x) . h]β following diagram commutes:

Untitled

which clearly shows that the local expressions agree on the overlaps Uαβ, to define a right action. This is obviously a vertical action; it is free because of the following:

Rgp = p => [x, h . g](α) = [x, h](α) => h · g = h => g = e —– (2)

Finally, if p = [x, h1](α) and q = [x, h2](α) are two points in the same fiber of p, one can choose g = h2-1 . h1 (where · denotes the group multiplication) so that p = Rgq. This shows that the right action is also transitive on the fibers.

On the contrary, that a global left action cannot be defined by using the local maps

L(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, g . h](α) —– (3)

since these local maps do not satisfy a compatibility condition analogous to the condition of the commuting diagram.

let P = (P, M, π; G) and P’ = (P’, M’, π’ ; G’ ) be two principal bundles and θ : G → G’ be a homomorphism of Lie groups. A bundle morphism Φ = (Φ, φ) : P → P’ is a principal morphism with respect to θ if the following diagram is commutative:

Untitled

When G = G’ and θ = idG we just say that Φ is a principal morphism.

A trivial principal bundle (M x G, M, π; G) naturally admits the global unity section I ∈ Γ(M x G), defined with respect to a global trivialization, I : x ↦ (x, e), e being the unit element of G. Also, principal bundles allow global sections iff they are trivial. In fact, on principal bundles there is a canonical correspondence between local sections and local trivializations, due to the presence of the global right action.

Interleaves

Untitled

Many important spaces in topology and algebraic geometry have no odd-dimensional homology. For such spaces, functorial spatial homology truncation simplifies considerably. On the theory side, the simplification arises as follows: To define general spatial homology truncation, we used intermediate auxiliary structures, the n-truncation structures. For spaces that lack odd-dimensional homology, these structures can be replaced by a much simpler structure. Again every such space can be embedded in such a structure, which is the analogon of the general theory. On the application side, the crucial simplification is that the truncation functor t<n will not require that in truncating a given continuous map, the map preserve additional structure on the domain and codomain of the map. In general, t<n is defined on the category CWn⊃∂, meaning that a map must preserve chosen subgroups “Y ”. Such a condition is generally necessary on maps, for otherwise no truncation exists. So arbitrary continuous maps between spaces with trivial odd-dimensional homology can be functorially truncated. In particular the compression rigidity obstructions arising in the general theory will not arise for maps between such spaces.

Let ICW be the full subcategory of CW whose objects are simply connected CW-complexes K with finitely generated even-dimensional homology and vanishing odd-dimensional homology for any coefficient group. We call ICW the interleaf category.

For example, the space K = S22 e3 is simply connected and has vanishing integral homology in odd dimensions. However, H3(K;Z/2) = Z/2 ≠ 0.

Let X be a space whose odd-dimensional homology vanishes for any coefficient group. Then the even-dimensional integral homology of X is torsion-free.

Taking the coefficient group Q/Z, we have

Tor(H2k(X),Q/Z) = H2k+1(X) ⊗ Q/Z ⊕ Tor(H2k(X),Q/Z) = H2k+1(X;Q/Z) = 0.

Thus H2k(X) is torsion-free, since the group Tor(H2k(X),Q/Z) is isomorphic to the torsion subgroup of H2k(X).

Any simply connected closed 4-manifold is in ICW. Indeed, such a manifold is homotopy equivalent to a CW-complex of the form

Vi=1kSi2ƒe4

where the homotopy class of the attaching map ƒ : S3 → Vi=1k Si2 may be viewed as a symmetric k × k matrix with integer entries, as π3(Vi=1kSi2) ≅ M(k), with M(k) the additive group of such matrices.

Any simply connected closed 6-manifold with vanishing integral middle homology group is in ICW. If G is any coefficient group, then H1(M;G) ≅ H1(M) ⊗ G ⊕ Tor(H0M,G) = 0, since H0(M) = Z. By Poincaré duality,

0 = H3(M) ≅ H3(M) ≅ Hom(H3M,Z) ⊕ Ext(H2M,Z),

so that H2(M) is free. This implies that Tor(H2M,G) = 0 and hence H3(M;G) ≅ H3(M) ⊗ G ⊕ Tor(H2M,G) = 0. Finally, by G-coefficient Poincaré duality,

H5(M;G) ≅ H1(M;G) ≅ Hom(H1M,G) ⊕ Ext(H0M,G) = Ext(Z,G) = 0

Any smooth, compact toric variety X is in ICW: Danilov’s Theorem implies that H(X;Z) is torsion-free and the map A(X) → H(X;Z) given by composing the canonical map from Chow groups to homology, Ak(X) = An−k(X) → H2n−2k(X;Z), where n is the complex dimension of X, with Poincaré duality H2n−2k(X;Z) ≅ H2k(X;Z), is an isomorphism. Since the odd-dimensional cohomology of X is not in the image of this map, this asserts in particular that Hodd(X;Z) = 0. By Poincaré duality, Heven(X;Z) is free and Hodd(X;Z) = 0. These two statements allow us to deduce from the universal coefficient theorem that Hodd(X;G) = 0 for any coefficient group G. If we only wanted to establish Hodd(X;Z) = 0, then it would of course have been enough to know that the canonical, degree-doubling map A(X) → H(X;Z) is onto. One may then immediately reduce to the case of projective toric varieties because every complete fan Δ has a projective subdivision Δ, the corresponding proper birational morphism X(Δ) → X(Δ) induces a surjection H(X(Δ);Z) → H(X(Δ);Z) and the diagram

Untitled

commutes.

Let G be a complex, simply connected, semisimple Lie group and P ⊂ G a connected parabolic subgroup. Then the homogeneous space G/P is in ICW. It is simply connected, since the fibration P → G → G/P induces an exact sequence

1 = π1(G) → π1(G/P) → π0(P) → π0(G) = 0,

which shows that π1(G/P) → π0(P) is a bijection. Accordingly, ∃ elements sw(P) ∈ H2l(w)(G/P;Z) (“Schubert classes,” given geometrically by Schubert cells), indexed by w ranging over a certain subset of the Weyl group of G, that form a basis for H(G/P;Z). (For w in the Weyl group, l(w) denotes the length of w when written as a reduced word in certain specified generators of the Weyl group.) In particular Heven(G/P;Z) is free and Hodd(G/P;Z) = 0. Thus Hodd(G/P;G) = 0 for any coefficient group G.

The linear groups SL(n, C), n ≥ 2, and the subgroups S p(2n, C) ⊂ SL(2n, C) of transformations preserving the alternating bilinear form

x1yn+1 +···+ xny2n −xn+1y1 −···−x2nyn

on C2n × C2n are examples of complex, simply connected, semisimple Lie groups. A parabolic subgroup is a closed subgroup that contains a Borel group B. For G = SL(n,C), B is the group of all upper-triangular matrices in SL(n,C). In this case, G/B is the complete flag manifold

G/B = {0 ⊂ V1 ⊂···⊂ Vn−1 ⊂ Cn}

of flags of subspaces Vi with dimVi = i. For G = Sp(2n,C), the Borel subgroups B are the subgroups preserving a half-flag of isotropic subspaces and the quotient G/B is the variety of all such flags. Any parabolic subgroup P may be described as the subgroup that preserves some partial flag. Thus (partial) flag manifolds are in ICW. A special case is that of a maximal parabolic subgroup, preserving a single subspace V. The corresponding quotient SL(n, C)/P is a Grassmannian G(k, n) of k-dimensional subspaces of Cn. For G = Sp(2n,C), one obtains Lagrangian Grassmannians of isotropic k-dimensional subspaces, 1 ≤ k ≤ n. So Grassmannians are objects in ICW. The interleaf category is closed under forming fibrations.

The Illicit Trade of Firearms, Explosives and Ammunition on the Dark Web

keyboard

DATACRYPTO is a web crawler/scraper class of software that systematically archives websites and extracts information from them. Once a cryptomarket has been identified, DATACRYPTO is set up to log in to the market and download its contents, beginning at the web page fixed by the researchers (typically the homepage). After downloading that page, DATACRYPTO parses it for hyperlinks to other pages hosted on the same market and follows each, adding new hyperlinks encountered, and visiting and downloading these, until no new pages are found. This process is referred to as web crawling. DATACRYPTO then switches from crawler to scraper mode, extracting information from the pages it has downloaded into a single database.

One challenge connected to crawling cryptomarkets arises when, despite appearances to the contrary, the crawler has indexed only a subset of a marketplace’s web pages. This problem is particularly exacerbated by sluggish download speeds on the Tor network which, combined with marketplace downtime, may prevent DATACRYPTO from completing the crawl of a cryptomarket. DATACRYPTO was designed to prevent partial marketplace crawls through its ‘state-aware’ capability, meaning that the result of each page request is analysed and logged by the software. In the event of service disruptions on the marketplace or on the Tor network, DATACRYPTO pauses and then attempts to continue its crawl a few minutes later. If a request for a page returns a different page (e.g. asking for a listing page and receiving the home page of the cryptomarket), the request is marked as failed, with each crawl tallying failed page requests.

DATACRYPTO is programmed for each market to extract relevant information connected to listings and vendors, which is then collected into a single database:

  • Product title;
  • Product description;
  • Listing price;
  • Number of customer feedbacks for the listing;
  • The country or region from which a vendor ships the product;
  • The country or regions to which the vendor placing the listing is willing to ship.

DATACRYPTO is not the first crawler to mirror the dark web, but is novel in its ability to pull information from a variety of cryptomarkets at once, despite differences in page structure and naming conventions across sites. For example, “$…” on one market may give you the price of a listing. On another market, price might be signified by “VALUE…” or “PRICE…” instead.

Researchers who want to create a similar tool to gather data through crawling the web should detail which information exactly they would like to extract. When building a web crawler it is, for example, very important to carefully study the structure and characteristics of the websites to be mirrored. Before setting the crawler loose, ensure that it extracts and parses correct and complete information. Because the process of building a crawler-tool like DATACRYPTO can be costly and time consuming, it is also important to anticipate on future data needs, and build in capabilities to extract that kind of data later on, so no large future modifications are necessary.

Building a complex tool like DATACRYPTO is no easy feat. The crawler needs to be able to copy pages, but also stealthily get around CAPTCHAs and log itself in onto the TOR server. Due to their bulkiness, web crawlers can place a heavy burden on a website’s server, and are easily detected due to their repetitive pattern moving between pages. Site administrators are therefore not afraid to IP-ban badly designed crawlers from their sites.

The Illicit Trade of Firearms Explosives and Ammunition on the Dark Web

Collateral Debt Obligations. Thought of the Day 111.0

A CDO is a general term that describes securities backed by a pool of fixed-income assets. These assets can be bank loans (CLOs), bonds (CBOs), residential mortgages (residential- mortgage–backed securities, or RMBSs), and many others. A CDO is a subset of asset- backed securities (ABS), which is a general term for a security backed by assets such as mortgages, credit card receivables, auto loans, or other debt.

To create a CDO, a bank or other entity transfers the underlying assets (“the collateral”) to a special-purpose vehicle (SPV) that is a separate legal entity from the issuer. The SPV then issues securities backed with cash flows generated by assets in the collateral pool. This general process is called securitization. The securities are separated into tranches, which differ primarily in the priority of their rights to the cash flows coming from the asset pool. The senior tranche has first priority, the mezzanine second, and the equity third. Allocation of cash flows to specific securities is called a “waterfall”. A waterfall is specified in the CDO’s indenture and governs both principal and interest payments.

Untitled

1: If coverage tests are not met, and to the extent not corrected with principal proceeds, the remaining interest proceeds will be used to redeem the most senior notes to bring the structure back into compliance with the coverage tests. Interest on the mezzanine securities may be deferred and compounded if cash flow is not available to pay current interest due.

One may observe that the creation of a CDO is a complex and costly process. Professionals such as bankers, lawyers, rating agencies, accountants, trustees, fund managers, and insurers all charge considerable fees to create and manage a CDO. In other words, the cash coming from the collateral is greater than the sum of the cash paid to all security holders. Professional fees to create and manage the CDO make up the difference.

CDOs are designed to offer asset exposure precisely tailored to the risk that investors desire, and they provide liquidity because they trade daily on the secondary market. This liquidity enables, for example, a finance minister from the Chinese government to gain exposure to the U.S. mortgage market and to buy or sell that exposure at will. However, because CDOs are more complex securities than corporate bonds, they are designed to pay slightly higher interest rates than correspondingly rated corporate bonds.

CDOs enable a bank that specializes in making loans to homeowners to make more loans than its capital would otherwise allow, because the bank can sell its loans to a third party. The bank can therefore originate more loans and take in more origination fees. As a result, consumers have more access to capital, banks can make more loans, and investors a world away can not only access the consumer loan market but also invest with precisely the level of risk they desire.

Untitled

1: To the extent not paid by interest proceeds.

2: To the extent senior note coverage tests are met and to the extent not already paid by interest proceeds. If coverage tests are not met, the remaining principal proceeds will be used to redeem the most senior notes to bring the structure back into compliance with the coverage tests. Interest on the mezzanine securities may be deferred and compounded if cash flow is not available to pay current interest due.

The Structured Credit Handbook provides an explanation of investors’ nearly insatiable appetite for CDOs:

Demand for [fixed income] assets is heavily bifurcated, with the demand concentrated at the two ends of the safety spectrum . . . Prior to the securitization boom, the universe of fixed-income instruments issued tended to cluster around the BBB rating, offering neither complete safety nor sizzling returns. For example, the number of AA and AAA-rated companies is quite small, as is debt issuance of companies rated B or lower. Structured credit technology has evolved essentially in order to match investors’ demands with the available profile of fixed-income assets. By issuing CDOs from portfolios of bonds or loans rated A, BBB, or BB, financial intermediaries can create a larger pool of AAA-rated securities and a small unrated or low-rated bucket where almost all the risk is concentrated.

CDOs have been around for more than twenty years, but their popularity skyrocketed during the late 1990s. CDO issuance nearly doubled in 2005 and then again in 2006, when it topped $500 billion for the first time. “Structured finance” groups at large investment banks (the division responsible for issuing and managing CDOs) became one of the fastest-growing areas on Wall Street. These divisions, along with the investment banking trading desks that made markets in CDOs, contributed to highly successful results for the banking sector during the 2003–2007 boom. Many CDOs became quite liquid because of their size, investor breadth, and rating agency coverage.

Rating agencies helped bring liquidity to the CDO market. They analyzed each tranche of a CDO and assigned ratings accordingly. Equity tranches were often unrated. The rating agencies had limited manpower and needed to gauge the risk on literally thousands of new CDO securities. The agencies also specialized in using historical models to predict risk. Although CDOs had been around for a long time, they did not exist in a significant number until recently. Historical models therefore couldn’t possibly capture the full picture. Still, the underlying collateral could be assessed with a strong degree of confidence. After all, banks have been making home loans for hundreds of years. The rating agencies simply had to allocate risk to the appropriate tranche and understand how the loans in the collateral base were correlated with each other – an easy task in theory perhaps, but not in practice.

The most difficult part of valuing a CDO tranche is determining correlation. If loans are uncorrelated, defaults will occur evenly over time and asset diversification can solve most problems. With low correlation, an AAA-rated senior tranche should be safe and the interest rate attached to this tranche should be close to the rate for AAA-rated corporate bonds. High correlation, however, creates nondiversifiable risk, in which case the senior tranche has a reasonable likelihood of becoming impaired. Correlation does not affect the price of the CDO in total because the expected value of each individual loan remains the same. Correlation does, however, affect the relative price of each tranche: Any increase in the yield of a senior tranche (to compensate for additional correlation) will be offset by a decrease in the yield of the junior tranches.