Many important spaces in topology and algebraic geometry have no odd-dimensional homology. For such spaces, functorial spatial homology truncation simplifies considerably. On the theory side, the simplification arises as follows: To define general spatial homology truncation, we used intermediate auxiliary structures, the n-truncation structures. For spaces that lack odd-dimensional homology, these structures can be replaced by a much simpler structure. Again every such space can be embedded in such a structure, which is the analogon of the general theory. On the application side, the crucial simplification is that the truncation functor t<n will not require that in truncating a given continuous map, the map preserve additional structure on the domain and codomain of the map. In general, t<n is defined on the category CWn⊃∂, meaning that a map must preserve chosen subgroups “Y ”. Such a condition is generally necessary on maps, for otherwise no truncation exists. So arbitrary continuous maps between spaces with trivial odd-dimensional homology can be functorially truncated. In particular the compression rigidity obstructions arising in the general theory will not arise for maps between such spaces.
Let ICW be the full subcategory of CW whose objects are simply connected CW-complexes K with finitely generated even-dimensional homology and vanishing odd-dimensional homology for any coefficient group. We call ICW the interleaf category.
For example, the space K = S2 ∪2 e3 is simply connected and has vanishing integral homology in odd dimensions. However, H3(K;Z/2) = Z/2 ≠ 0.
Let X be a space whose odd-dimensional homology vanishes for any coefficient group. Then the even-dimensional integral homology of X is torsion-free.
Taking the coefficient group Q/Z, we have
Tor(H2k(X),Q/Z) = H2k+1(X) ⊗ Q/Z ⊕ Tor(H2k(X),Q/Z) = H2k+1(X;Q/Z) = 0.
Thus H2k(X) is torsion-free, since the group Tor(H2k(X),Q/Z) is isomorphic to the torsion subgroup of H2k(X).
Any simply connected closed 4-manifold is in ICW. Indeed, such a manifold is homotopy equivalent to a CW-complex of the form
Vi=1kSi2∪ƒe4
where the homotopy class of the attaching map ƒ : S3 → Vi=1k Si2 may be viewed as a symmetric k × k matrix with integer entries, as π3(Vi=1kSi2) ≅ M(k), with M(k) the additive group of such matrices.
Any simply connected closed 6-manifold with vanishing integral middle homology group is in ICW. If G is any coefficient group, then H1(M;G) ≅ H1(M) ⊗ G ⊕ Tor(H0M,G) = 0, since H0(M) = Z. By Poincaré duality,
0 = H3(M) ≅ H3(M) ≅ Hom(H3M,Z) ⊕ Ext(H2M,Z),
so that H2(M) is free. This implies that Tor(H2M,G) = 0 and hence H3(M;G) ≅ H3(M) ⊗ G ⊕ Tor(H2M,G) = 0. Finally, by G-coefficient Poincaré duality,
H5(M;G) ≅ H1(M;G) ≅ Hom(H1M,G) ⊕ Ext(H0M,G) = Ext(Z,G) = 0
Any smooth, compact toric variety X is in ICW: Danilov’s Theorem implies that H∗(X;Z) is torsion-free and the map A∗(X) → H∗(X;Z) given by composing the canonical map from Chow groups to homology, Ak(X) = An−k(X) → H2n−2k(X;Z), where n is the complex dimension of X, with Poincaré duality H2n−2k(X;Z) ≅ H2k(X;Z), is an isomorphism. Since the odd-dimensional cohomology of X is not in the image of this map, this asserts in particular that Hodd(X;Z) = 0. By Poincaré duality, Heven(X;Z) is free and Hodd(X;Z) = 0. These two statements allow us to deduce from the universal coefficient theorem that Hodd(X;G) = 0 for any coefficient group G. If we only wanted to establish Hodd(X;Z) = 0, then it would of course have been enough to know that the canonical, degree-doubling map A∗(X) → H∗(X;Z) is onto. One may then immediately reduce to the case of projective toric varieties because every complete fan Δ has a projective subdivision Δ′, the corresponding proper birational morphism X(Δ′) → X(Δ) induces a surjection H∗(X(Δ′);Z) → H∗(X(Δ);Z) and the diagram
commutes.
Let G be a complex, simply connected, semisimple Lie group and P ⊂ G a connected parabolic subgroup. Then the homogeneous space G/P is in ICW. It is simply connected, since the fibration P → G → G/P induces an exact sequence
1 = π1(G) → π1(G/P) → π0(P) → π0(G) = 0,
which shows that π1(G/P) → π0(P) is a bijection. Accordingly, ∃ elements sw(P) ∈ H2l(w)(G/P;Z) (“Schubert classes,” given geometrically by Schubert cells), indexed by w ranging over a certain subset of the Weyl group of G, that form a basis for H∗(G/P;Z). (For w in the Weyl group, l(w) denotes the length of w when written as a reduced word in certain specified generators of the Weyl group.) In particular Heven(G/P;Z) is free and Hodd(G/P;Z) = 0. Thus Hodd(G/P;G) = 0 for any coefficient group G.
The linear groups SL(n, C), n ≥ 2, and the subgroups S p(2n, C) ⊂ SL(2n, C) of transformations preserving the alternating bilinear form
x1yn+1 +···+ xny2n −xn+1y1 −···−x2nyn
on C2n × C2n are examples of complex, simply connected, semisimple Lie groups. A parabolic subgroup is a closed subgroup that contains a Borel group B. For G = SL(n,C), B is the group of all upper-triangular matrices in SL(n,C). In this case, G/B is the complete flag manifold
G/B = {0 ⊂ V1 ⊂···⊂ Vn−1 ⊂ Cn}
of flags of subspaces Vi with dimVi = i. For G = Sp(2n,C), the Borel subgroups B are the subgroups preserving a half-flag of isotropic subspaces and the quotient G/B is the variety of all such flags. Any parabolic subgroup P may be described as the subgroup that preserves some partial flag. Thus (partial) flag manifolds are in ICW. A special case is that of a maximal parabolic subgroup, preserving a single subspace V. The corresponding quotient SL(n, C)/P is a Grassmannian G(k, n) of k-dimensional subspaces of Cn. For G = Sp(2n,C), one obtains Lagrangian Grassmannians of isotropic k-dimensional subspaces, 1 ≤ k ≤ n. So Grassmannians are objects in ICW. The interleaf category is closed under forming fibrations.