Husserl’s Flip-Flop on Arithmetic Axiomatics. Thought of the Day 118.0


Husserl’s position in his Philosophy of Arithmetic (Psychological and Logical Investigations with Supplementary Texts) was resolutely anti-axiomatic. He attacked those who fell into remote, artificial constructions which, with the intent of building the elementary arithmetic concepts out of their ultimate definitional properties, interpret and change their meaning so much that totally strange, practically and scientifically useless conceptual formations finally result. Especially targeted was Frege’s ideal of the

founding of arithmetic on a sequence of formal definitions, out of which all the theorems of that science could be deduced purely syllogistically.

As soon as one comes to the ultimate, elemental concepts, Husserl reasoned, all defining has to come to an end. All one can then do is to point to the concrete phenomena from or through which the concepts are abstracted and show the nature of the abstractive process. A verbal explanation should place us in the proper state of mind for picking out, in inner or outer intuition, the abstract moments intended and for reproducing in ourselves the mental processes required for the formation of the concept. He said that his analyses had shown with incontestable clarity that the concepts of multiplicity and unity rest directly upon ultimate, elemental psychical data, and so belong among the indefinable concepts. Since the concept of number was so closely joined to them, one could scarcely speak of defining it either. All these points are made on the only pages of Philosophy of Arithmetic that Husserl ever explicitly retracted.

In On the Concept of Number, Husserl had set out to anchor arithmetical concepts in direct experience by analyzing the actual psychological processes to which he thought the concept of number owed its genesis. To obtain the concept of number of a concrete set of objects, say A, A, and A, he explained, one abstracts from the particular characteristics of the individual contents collected, only considering and retaining each one insofar as it is a something or a one. Regarding their collective combination, one thus obtains the general form of the set belonging to the set in question: one and one, etc. and. . . and one, to which a number name is assigned.

The enthusiastic espousal of psychologism of On the Concept of Number is not found in Philosophy of Arithmetic. Husserl later confessed that doubts about basic differences between the concept of number and the concept of collecting, which was all that could be obtained from reflection on acts, had troubled and tormented him from the very beginning and had eventually extended to all categorial concepts and to concepts of objectivities of any sort whatsoever, ultimately to include modern analysis and the theory of manifolds, and simultaneously to mathematical logic and the entire field of logic in general. He did not see how one could reconcile the objectivity of mathematics with psychological foundations for logic.

In sharp contrast to Brouwer who denounced logic as a source of truth, from the mid-1890s on, Husserl defended the view, which he attributed to Frege’s teacher Hermann Lotze, that pure arithmetic was basically no more than a branch of logic that had undergone independent development. He bid students not to be “scared” by that thought and to grow used to Lotze’s initially strange idea that arithmetic was only a particularly highly developed piece of logic.

Years later, Husserl would explain in Formal and Transcendental Logic that his

war against logical psychologism was meant to serve no other end than the supremely important one of making the specific province of analytic logic visible in its purity and ideal particularity, freeing it from the psychologizing confusions and misinterpretations in which it had remained enmeshed from the beginning.

He had come to see arithmetic truths as being analytic, as grounded in meanings independently of matters of fact. He had come to believe that the entire overthrowing of psychologism through phenomenology showed that his analyses in On the Concept of Number and Philosophy of Arithmetic had to be considered a pure a priori analysis of essence. For him, pure arithmetic, pure mathematics, and pure logic were a priori disciplines entirely grounded in conceptual essentialities, where truth was nothing other than the analysis of essences or concepts. Pure mathematics as pure arithmetic investigated what is grounded in the essence of number. Pure mathematical laws were laws of essence.

He is said to have told his students that it was to be stressed repeatedly and emphatically that the ideal entities so unpleasant for empiricistic logic, and so consistently disregarded by it, had not been artificially devised either by himself, or by Bolzano, but were given beforehand by the meaning of the universal talk of propositions and truths indispensable in all the sciences. This, he said, was an indubitable fact that had to be the starting point of all logic. All purely mathematical propositions, he taught, express something about the essence of what is mathematical. Their denial is consequently an absurdity. Denying a proposition of the natural sciences, a proposition about real matters of fact, never means an absurdity, a contradiction in terms. In denying the law of gravity, I cast experience to the wind. I violate the evident, extremely valuable probability that experience has established for the laws. But, I do not say anything “unthinkable,” absurd, something that nullifies the meaning of the word as I do when I say that 2 × 2 is not 4, but 5.

Husserl taught that every judgment either is a truth or cannot be a truth, that every presentation either accorded with a possible experience adequately redeeming it, or was in conflict with the experience, and that grounded in the essence of agreement was the fact that it was incompatible with the conflict, and grounded in the essence of conflict that it was incompatible with agreement. For him, that meant that truth ruled out falsehood and falsehood ruled out truth. And, likewise, existence and non-existence, correctness and incorrectness cancelled one another out in every sense. He believed that that became immediately apparent as soon as one had clarified the essence of existence and truth, of correctness and incorrectness, of Evidenz as consciousness of givenness, of being and not-being in fully redeeming intuition.

At the same time, Husserl contended, one grasps the “ultimate meaning” of the basic logical law of contradiction and of the excluded middle. When we state the law of validity that of any two contradictory propositions one holds and the other does not hold, when we say that for every proposition there is a contradictory one, Husserl explained, then we are continually speaking of the proposition in its ideal unity and not at all about mental experiences of individuals, not even in the most general way. With talk of truth it is always a matter of propositions in their ideal unity, of the meaning of statements, a matter of something identical and atemporal. What lies in the identically-ideal meaning of one’s words, what one cannot deny without invalidating the fixed meaning of one’s words has nothing at all to do with experience and induction. It has only to do with concepts. In sharp contrast to this, Brouwer saw intuitionistic mathematics as deviating from classical mathematics because the latter uses logic to generate theorems and in particular applies the principle of the excluded middle. He believed that Intuitionism had proven that no mathematical reality corresponds to the affirmation of the principle of the excluded middle and to conclusions derived by means of it. He reasoned that “since logic is based on mathematics – and not vice versa – the use of the Principle of the Excluded Middle is not permissible as part of a mathematical proof.”