Bacteria’s Perception-Action Circle: Materiality of the Ontological. Thought of the Day 136.0

diatoms_in_the_ice

The unicellular organism has thin filaments protruding from its cell membrane, and in the absence of any stimuli, it simply wanders randomly around by changing between two characteristical movement patterns. One is performed by rotating the flagella counterclockwise. In that case, they form a bundle which pushes the cell forward along a curved path, a ‘run’ of random duration with these runs interchanging with ‘tumbles’ where the flagella shifts to clockwise rotation, making them work independently and hence moving the cell erratically around with small net displacement. The biased random walk now consists in the fact than in the presence of a chemical attractant, the runs happening to carry the cell closer to the attractant are extended, while runs in other directions are not. The sensation of the chemical attractant is performed temporally rather than spatially, because the cell moves too rapidly for concentration comparisons between its two ends to be possible. A chemical repellant in the environment gives rise to an analogous behavioral structure – now the biased random walk takes the cell away from the repellant. The bias saturates very quickly – which is what prevents the cell from continuing in a ‘false’ direction, because a higher concentration of attractant will now be needed to repeat the bias. The reception system has three parts, one detecting repellants such as leucin, the other detecting sugars, the third oxygen and oxygen-like substances.

Fig-4-Uexkull's-model-of-the-functional-cycle

The cell’s behavior forms a primitive, if full-fledged example of von Uexküll’s functional circle connecting specific perception signs and action signs. Functional circle behavior is thus no privilege for animals equipped with central nervous systems (CNS). Both types of signs involve categorization. First, the sensory receptors of the bacterium evidently are organized after categorization of certain biologically significant chemicals, while most chemicals that remain insignificant for the cell’s metabolism and survival are ignored. The self-preservation of metabolism and cell structure is hence the ultimate regulator which is supported by the perception-action cycles described. The categorization inherent in the very structure of the sensors is mirrored in the categorization of act types. Three act types are outlined: a null-action, composed of random running and tumbling, and two mirroring biased variants triggered by attractants and repellants, respectively. Moreover, a negative feed-back loop governed by quick satiation grants that the window of concentration shifts to which the cell is able to react appropriately is large – it so to speak calibrates the sensory system so that it does not remain blinded by one perception and does not keep moving the cell forward on in one selected direction. This adaptation of the system grants that it works in a large scale of different attractor/repellor concentrations. These simple signals at stake in the cell’s functional circle display an important property: at simple biological levels, the distinction between signs and perception vanish – that distinction is supposedly only relevant for higher CNS-based animals. Here, the signals are based on categorical perception – a perception which immediately categorizes the entity perceived and thus remains blind to internal differences within the category.

Pandemic e coli

The mechanism by which the cell identifies sugar, is partly identical to what goes on in human taste buds. Sensation of sugar gradients must, of course, differ from the consumption of it – while the latter, of course, destroys the sugar molecule, the former merely reads an ‘active site’ on the outside of the macromolecule. E . Coli – exactly like us – may be fooled by artificial sweeteners bearing the same ‘active site’ on their outer perimeter, even if being completely different chemicals (this is, of course, the secret behind such sweeteners, they are not sugars and hence do not enter the digestion process carrying the energy of carbohydrates). This implies that E . coli may be fooled. Bacteria may not lie, but a simpler process than lying (which presupposes two agents and the ability of being fooled) is, in fact, being fooled (presupposing, in turn, only one agent and an ambiguous environment). E . coli has the ability to categorize a series of sugars – but, by the same token, the ability to categorize a series of irrelevant substances along with them. On the one hand, the ability to recognize and categorize an object by a surface property only (due to the weak van der Waal-bonds and hydrogen bonds to the ‘active site’, in contrast to the strong covalent bonds holding the molecule together) facilitates perception economy and quick action adaptability. On the other hand, the economy involved in judging objects from their surface only has an unavoidable flip side: it involves the possibility of mistake, of being fooled by allowing impostors in your categorization. So in the perception-action circle of a bacterium, some of the self-regulatory stability of a metabolism involving categorized signal and action involvement with the surroundings form intercellular communication in multicellular organisms to reach out to complicated perception and communication in higher animals.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s