Capital As Power.

DYxMn9QXcAIh8-W.jpg-large

One has the Eric Fromm angle of consciousness as linear and directly proportional to exploitation as one of the strands of Marxian thinking, the non-linearity creeps up from epistemology on the technological side, with, something like, say Moore’s Law, where ascension of conscious thought is or could be likened to exponentials. Now, these exponentials are potent in ridding of the pronouns, as in the “I” having a compossibility with the “We”, for if these aren’t gotten rid of, there is asphyxiation in continuing with them, an effort, an energy expendable into the vestiges of waste, before Capitalism comes sweeping in over such deliberately pronounced islands of pronouns. This is where the sweep is of the “IT”. And this is emancipation of the highest order, where teleology would be replaced by Eschatology. Alienation would be replaced with emancipation. Teleology is alienating, whereas eschatology is emancipating. Agency would become un-agency. An emancipation from alienation, from being, into the arms of becoming, for the former is a mere snapshot of the illusory order, whereas the latter is a continuum of fluidity, the fluid dynamics of the deracinated from the illusory order. The “IT” is pure and brute materialism, the cosmic unfoldings beyond our understanding and importantly mirrored in on the terrestrial. “IT” is not to be realized. “It” is what engulfs us, kills us, and in the process emancipates us from alienation. “IT” is “Realism”, a philosophy without “we”, Capitalism’s excessive power. “IT” enslaves “us” to the point of us losing any identification. In a nutshell, theory of capital is a catalogue of heresies to be welcomed to set free from the vantage of an intention to emancipate economic thought from the etherealized spheres of choice and behaviors or from the paradigm of the disembodied minds.

Jonathan Nitzan and Shimshon Bichler‘s Capital as Power A Study of Order and Creorder

Symmetrical – Asymmetrical Dialectics Within Catastrophical Dynamics. Thought of the Day 148.0

Screen Shot 2018-05-29 at 7.49.54 AM

Catastrophe theory has been developed as a deterministic theory for systems that may respond to continuous changes in control variables by a discontinuous change from one equilibrium state to another. A key idea is that system under study is driven towards an equilibrium state. The behavior of the dynamical systems under study is completely determined by a so-called potential function, which depends on behavioral and control variables. The behavioral, or state variable describes the state of the system, while control variables determine the behavior of the system. The dynamics under catastrophe models can become extremely complex, and according to the classification theory of Thom, there are seven different families based on the number of control and dependent variables.

Let us suppose that the process yt evolves over t = 1,…, T as

dyt = -dV(yt; α, β)dt/dyt —– (1)

where V (yt; α, β) is the potential function describing the dynamics of the state variable ycontrolled by parameters α and β determining the system. When the right-hand side of (1) equals zero, −dV (yt; α, β)/dyt = 0, the system is in equilibrium. If the system is at a non-equilibrium point, it will move back to its equilibrium where the potential function takes the minimum values with respect to yt. While the concept of potential function is very general, i.e. it can be quadratic yielding equilibrium of a simple flat response surface, one of the most applied potential functions in behavioral sciences, a cusp potential function is defined as

−V(yt; α, β) = −1/4yt4 + 1/2βyt2 + αyt —– (2)

with equilibria at

-dV(yt; α, β)dt/dyt = -yt3 + βyt + α —– (3)

being equal to zero. The two dimensions of the control space, α and β, further depend on realizations from i = 1 . . . , n independent variables xi,t. Thus it is convenient to think about them as functions

αx = α01x1,t +…+ αnxn,t —– (4)

βx = β0 + β1x1,t +…+ βnxn,t —– (5)

The control functions αx and βx are called normal and splitting factors, or asymmetry and bifurcation factors, respectively and they determine the predicted values of yt given xi,t. This means that for each combination of values of independent variables there might be up to three predicted values of the state variable given by roots of

-dV(yt; αx, βx)dt/dyt = -yt3 + βyt + α = 0 —– (6)

This equation has one solution if

δx = 1/4αx2 − 1/27βx3 —– (7)

is greater than zero, δx > 0 and three solutions if δx < 0. This construction can serve as a statistic for bimodality, one of the catastrophe flags. The set of values for which the discriminant is equal to zero, δx = 0 is the bifurcation set which determines the set of singularity points in the system. In the case of three roots, the central root is called an “anti-prediction” and is least probable state of the system. Inside the bifurcation, when δx < 0, the surface predicts two possible values of the state variable which means that the state variable is bimodal in this case.

Screen Shot 2018-05-29 at 7.36.54 AM

Most of the systems in behavioral sciences are subject to noise stemming from measurement errors or inherent stochastic nature of the system under study. Thus for a real-world applications, it is necessary to add non-deterministic behavior into the system. As catastrophe theory has primarily been developed to describe deterministic systems, it may not be obvious how to extend the theory to stochastic systems. An important bridge has been provided by the Itô stochastic differential equations to establish a link between the potential function of a deterministic catastrophe system and the stationary probability density function of the corresponding stochastic process. Adding a stochastic Gaussian white noise term to the system

dyt = -dV(yt; αx, βx)dt/dyt + σytdWt —– (8)

where -dV(yt; αx, βx)dt/dyt is the deterministic term, or drift function representing the equilibrium state of the cusp catastrophe, σyt is the diffusion function and Wt is a Wiener process. When the diffusion function is constant, σyt = σ, and the current measurement scale is not to be nonlinearly transformed, the stochastic potential function is proportional to deterministic potential function and probability distribution function corresponding to the solution from (8) converges to a probability distribution function of a limiting stationary stochastic process as dynamics of yt are assumed to be much faster than changes in xi,t. The probability density that describes the distribution of the system’s states at any t is then

fs(y|x) = ψ exp((−1/4)y4 + (βx/2)y2 + αxy)/σ —– (9)

The constant ψ normalizes the probability distribution function so its integral over the entire range equals to one. As bifurcation factor βx changes from negative to positive, the fs(y|x) changes its shape from unimodal to bimodal. On the other hand, αx causes asymmetry in fs(y|x).