Closed String Algebra as a Graded-Commutative Algebra C: Cochain Complex Differentials: Part 2, Note Quote.

Screen Shot 2018-08-09 at 11.13.06 AM

The most general target category we can consider is a symmetric tensor category: clearly we need a tensor product, and the axiom HY1⊔Y2 ≅ HY1 ⊗ HY2 only makes sense if there is an involutory canonical isomorphism HY1 ⊗ HY2 ≅ HY2 ⊗ HY1 .

A very common choice in physics is the category of super vector spaces, i.e., vector spaces V with a mod 2 grading V = V0 ⊕ V1, where the canonical isomorphism V ⊗ W ≅ W ⊗ V is v ⊗ w ↦ (−1)deg v deg ww ⊗ v. One can also consider the category of Z-graded vector spaces, with the same sign convention for the tensor product.

In either case the closed string algebra is a graded-commutative algebra C with a trace θ : C → C. In principle the trace should have degree zero, but in fact the commonly encountered theories have a grading anomaly which makes the trace have degree −n for some integer n.

We define topological-spinc theories, which model 2d theories with N = 2 supersymmetry, by replacing “manifolds” with “manifolds with spinc structure”.

A spinc structure on a surface with a conformal structure is a pair of holomorphic line bundles L1, L2 with an isomorphism L1 ⊗ L2 ≅ TΣ of holomorphic line bundles. A spin structure is the particular case when L1 = L2. On a 1-manifold S a spinc structure means a spinc structure on a ribbon neighbourhood of S in a surface with conformal structure. An N = 2 superconformal theory assigns a vector space HS;L1,L2 to each 1-manifold S with spinc structure, and an operator

US0;L1,L2: HS0;L1,L2 → HS1;L1,L2

to each spinc-cobordism from S0 to S1. To explain the rest of the structure we need to define the N = 2 Lie superalgebra associated to a spin1-manifold (S;L1,L2). Let G = Aut(L1) denote the group of bundle isomorphisms L1 → L1 which cover diffeomorphisms of S. (We can identify this group with Aut(L2).) It has a homomorphism onto the group Diff+(S) of orientation-preserving diffeomorphisms of S, and the kernel is the group of fibrewise automorphisms of L1, which can be identified with the group of smooth maps from S to C×. The Lie algebra Lie(G) is therefore an extension of the Lie algebra Vect(S) of Diff+(S) by the commutative Lie algebra Ω0(S) of smooth real-valued functions on S. Let Λ0S;L1,L2 denote the complex Lie algebra obtained from Lie(G) by complexifying Vect(S). This is the even part of a Lie super algebra whose odd part is Λ1S;L1,L2 = Γ(L1) ⊕ Γ(L2). The bracket Λ1 ⊗ Λ1 → Λ0 is completely determined by the property that elements of Γ(L1) and of Γ(L2) anticommute among themselves, while the composite

Γ(L1) ⊗ Γ(L2) → Λ0 → VectC(S)

takes (λ12) to λ1λ2 ∈ Γ(TS).

In an N = 2 theory we require the superalgebra Λ(S;L1,L2) to act on the vector space HS;L1,L2, compatibly with the action of the group G, and with a similar intertwining property with the cobordism operators to that of the N = 1 case. For an N = 2 theory the state space always has an action of the circle group coming from its embedding in G as the group of fibrewise multiplications on L1 and L2. Equivalently, the state space is always Z-graded.

An N = 2 theory always gives rise to two ordinary conformal field theories by equipping a surface Σ with the spinc structures (C,TΣ) and (TΣ,C). These are called the “A-model” and the “B-model” associated to the N = 2 theory. In each case the state spaces are cochain complexes in which the differential is the action of the constant section of the trivial component of the spinc-structure.