Ringed Spaces (2)


Let |M| be a topological space. A presheaf of commutative algebras F on X is an assignment

U ↦ F(U), U open in |M|, F(U) is a commutative algebra, such that the following holds,

(1) If U ⊂ V are two open sets in |M|, ∃ a morphism rV, U: F(V) → F(U), called the restriction morphism and often denoted by rV, U(ƒ) = ƒ|U, such that

(i) rU, U = id,

(ii) rW, U = rV, U ○ rW, V

A presheaf ƒ is called a sheaf if the following holds:

(2) Given an open covering {Ui}i∈I of U and a family {ƒi}i∈I, ƒi ∈ F(Ui) such that ƒi|Ui ∩ Uj = ƒj|Ui ∩ Uj ∀ i, j ∈ I, ∃ a unique ƒ ∈ F(U) with ƒ|Ui = ƒi

The elements in F(U) are called sections over U, and with U = |M|, these are termed global sections.

The assignments U ↦ C(U), U open in the differentiable manifold M and U ↦ OX(U), U open in algebraic variety X are examples of sheaves of functions on the topological spaces |M| and |X| underlying the differentiable manifold M and the algebraic variety X respectively.

In the language of categories, the above definition says that we have defined a functor, F, from top(M) to (alg), where top(M) is the category of the open sets in the topological space |M|, the arrows given by the inclusions of open sets while (alg) is the category of commutative algebras. In fact, the assignment U ↦ F(U) defines F on the objects while the assignment

U ⊂ V ↦ rV, U: F(V) → F(U)

defines F on the arrows.

Let |M| be a topological space. We define a presheaf of algebras on |M| to be a functor

F: top(M)op → (alg)

The suffix “op” denotes as usual the opposite category; in other words, F is a contravariant functor from top(M) to (alg). A presheaf is a sheaf if it satisfies the property (2) of the above definition.

If F is a (pre)sheaf on |M| and U is open in |M|, we define F|U, the (pre)sheaf F restricted to U, as the functor F restricted to the category of open sets in U (viewed as a topological space itself).

Let F be a presheaf on the topological space |M| and let x be a point in |M|. We define the stalk Fx of F, at the point x, as the direct limit

lim F(U)

where the direct limit is taken ∀ the U open neighbourhoods of x in |M|. Fx consists of the disjoint union of all pairs (U, s) with U open in |M|, x ∈ U, and s ∈ F(U), modulo the equivalence relation: (U, s) ≅ (V, t) iff ∃ a neighbourhood W of x, W ⊂ U ∩ V, such that s|W = t|W.

The elements in Fx are called germs of sections.

Let F and G be presheaves on |M|. A morphism of presheaves φ: F → G, for each open set U in |M|, such that ∀ V ⊂ U, the following diagram commutes


Equivalently and more elegantly, one can also say that a morphism of presheaves is a natural transformation between the two presheaves F and G viewed as functors.

A morphism of sheaves is just a morphism of the underlying presheaves.

Clearly any morphism of presheaves induces a morphism on the stalks: φx: Fx → Gx. The sheaf property, i.e., property (2) in the above definition, ensures that if we have two morphisms of sheaves φ and ψ, such that φx = ψx ∀ x, then φ = ψ.

We say that the morphism of sheaves is injective (resp. surjective) if x is injective (resp. surjective).

On the notion of surjectivity, however, one should exert some care, since we can have a surjective sheaf morphism φ: F → G such that φU: F(U) → G(U) is not surjective for some open sets U. This strange phenomenon is a consequence of the following fact. While the assignment U ↦ ker(φ(U)) always defines a sheaf, the assignment

U ↦ im( φ(U)) = F(U)/G(U)

defines in general only a presheaf and not all the presheaves are sheaves. A simple example is given by the assignment associating to an open set U in R, the algebra of constant real functions on U. Clearly this is a presheaf, but not a sheaf.

We can always associate, in a natural way, to any presheaf a sheaf called its sheafification. Intuitively, one may think of the sheafification as the sheaf that best “approximates” the given presheaf. For example, the sheafification of the presheaf of constant functions on open sets in R is the sheaf of locally constant functions on open sets in R. We construct the sheafification of a presheaf using the étalé space, which we also need in the sequel, since it gives an equivalent approach to sheaf theory.

Let F be a presheaf on |M|. We define the étalé space of F to be the disjoint union ⊔x∈|M| Fx. Let each open U ∈ |M| and each s ∈ F(U) define the map šU: U ⊔x∈|U| Fx, šU(x) = sx. We give to the étalé space the finest topology that makes the maps š continuous, ∀ open U ⊂ |M| and all sections s ∈ F(U). We define Fet to be the presheaf on |M|:

U ↦ Fet(U) = {šU: U → ⊔x∈|U| Fx, šU(x) = sx ∈ Fx}

Let F be a presheaf on |M|. A sheafification of F is a sheaf F~, together with a presheaf morphism α: F → Fsuch that

(1) any presheaf morphism ψ: F → G, G a sheaf factors via α, i.e. ψ: F →α F~ → G,

(2) F and Fare locally isomorphic, i.e., ∃ an open cover {Ui}i∈I of |M| such that F(Ui) ≅ F~(Ui) via α.

Let F and G be sheaves of rings on some topological space |M|. Assume that we have an injective morphism of sheaves G → F such that G(U) ⊂ F(U) ∀ U open in |M|. We define the quotient F/G to be the sheafification of the image presheaf: U ↦ F(U)/G(U). In general F/G (U) ≠ F(U)/G(U), however they are locally isomorphic.

Ringed space is a pair M = (|M|, F) consisting of a topological space |M| and a sheaf of commutative rings F on |M|. This is a locally ringed space, if the stalk Fx is a local ring ∀ x ∈ |M|. A morphism of ringed spaces φ: M = (|M|, F) → N = (|N|, G) consists of a morphism |φ|: |M| → |N| of the topological spaces and a sheaf morphism φ*: ON → φ*OM, where φ*OM is a sheaf on |N| and defined as follows:

*OM)(U) = OM-1(U)) ∀ U open in |N|

Morphism of ringed spaces induces a morphism on the stalks for each

x ∈ |M|: φx: ON,|φ|(x) → OM,x

If M and N are locally ringed spaces, we say that the morphism of ringed spaces φ is a morphism of locally ringed spaces if φx is local, i.e. φ-1x(mM,x) = mN,|φ|(x), where mN,|φ|(x) and mM,x are the maximal ideals in the local rings ON,|φ|(x) and OM,x respectively.


Ringed Spaces (1)


A ringed space is a broad concept in which we can fit most of the interesting geometrical objects. It consists of a topological space together with a sheaf of functions on it.

Let M be a differentiable manifold, whose topological space is Hausdorff and second countable. For each open set U ⊂ M , let C(U) be the R-algebra of smooth functions on U .

The assignment

U ↦ C(U)

satisfies the following two properties:

(1) If U ⊂ V are two open sets in M, we can define the restriction map, which is an algebra morphism:

rV, U : C(V) → C(U), ƒ ↦ ƒ|U

which is such that

i) rU, U = id

ii) rW, U = rV, U ○ rW, V

(2) Let {Ui}i∈I be an open covering of U and let {ƒi}i∈I, ƒi ∈ C(Ui) be a family such that ƒi|Ui ∩ Uj = ƒj| Ui ∩ Uj ∀ i, j ∈ I. In other words the elements of the family {ƒi}i∈I agree on the intersection of any two open sets Ui ∩ Uj. Then there exists a unique ƒ ∈ C(U) such that ƒ|Ui = ƒi.

Such an assignment is called a sheaf. The pair (M, C), consisting of the topological space M, underlying the differentiable manifold, and the sheaf of the C functions on M is an example of locally ringed space (the word “locally” refers to a local property of the sheaf of C functions.

Given two manifolds M and N, and the respective sheaves of smooth functions CM and CN, a morphism ƒ from M to N, viewed as ringed spaces, is a morphism |ƒ|: M → N of the underlying topological spaces together with a morphism of algebras,

ƒ*: CN(V) →  CM-1(V)), ƒ*(φ)(x) = φ(|ƒ|(x))

compatible with the restriction morphisms.

Notice that, as soon as we give the continuous map |ƒ| between the topological spaces, the morphism ƒ* is automatically assigned. This is a peculiarity of the sheaf of smooth functions on a manifold. Such a property is no longer true for a generic ringed space and, in particular, it is not true for supermanifolds.

A morphism of differentiable manifolds gives rise to a unique (locally) ringed space morphism and vice versa.

Moreover, given two manifolds, they are isomorphic as manifolds iff they are isomorphic as (locally) ringed spaces. In the language of categories, we say we have a fully faithful functor from the category of manifolds to the category of locally ringed spaces.

The generalization of algebraic geometry to the super-setting comes somehow more naturally than the similar generalization of differentiable geometry. This is because the machinery of algebraic geometry was developed to take already into account the presence of (even) nilpotents and consequently, the language is more suitable to supergeometry.

Let X be an affine algebraic variety in the affine space An over an algebraically closed field k and let O(X) = k[x1,…., xn]/I be its coordinate ring, where the ideal I is prime. This corresponds topologically to the irreducibility of the variety X. We can think of the points of X as the zeros of the polynomials in the ideal I in An. X is a topological space with respect to the Zariski topology, whose closed sets are the zeros of the polynomials in the ideals of O(X). For each open U in X, consider the assignment

U ↦ OX(U)

where OX(U) is the k-algebra of regular functions on U. By definition, these are the functions ƒ X → k that can be expressed as a quotient of two polynomials at each point of U ⊂ X. The assignment U ↦ OX(U) is another example of a sheaf is called the structure sheaf of the variety X or the sheaf of regular functions. (X, OX) is another example of a (locally) ringed space.

Super Lie Algebra


A super Lie algebra L is an object in the category of super vector spaces together with a morphism [ , ] : L ⊗ L → L, often called the super bracket, or simply, the bracket, which satisfies the following conditions


[ , ] + [ , ] ○ cL,L = 0

which is the same as

[x, y] + (-1)|x||y|[y, x] = 0 for x, y ∈ L homogenous.

Jacobi identity,

[, [ , ]] + [, [ , ]] ○ σ + [, [ , ]] ○ σ2 = 0,

where σ ∈ S3 is a three-cycle, i.e. taking the first entity of [, [ , ]] to the second, and the second to the third, and then the third to the first. So, for x, y, z ∈ L homogenous, this reads

[x + [y, z]] + (-1)|x||y| + |x||z|[y, [z, x]] + (-1)|y||z| + |x||z|[z, [x, y]] = 0

It is important to note that in the super category, these conditions are modifications of the properties of the bracket in a Lie algebra, designed to accommodate the odd variables. We can immediately extend this definition to the case where L is an A-module for A a commutative superalgebra, thus defining a Lie superalgebra in the category of A-modules. In fact, we can make any associative superalgebra A into a Lie superalgebra by taking the bracket to be

[a, b] = ab – (-1)|a||b|ba,

i.e., we take the bracket to be the difference τ – τ ○ cA,A, where τ is the multiplication morphism on A.

A left A-module is a super vector space M with a morphism A ⊗ M → M, a ⊗ m ↦ am, of super vector spaces obeying the usual identities; that is, ∀ a, b ∈ A and x, y ∈ M, we have

a (x + y) = ax + ay

(a + b)x = ax + bx

(ab)x  = a(bx)

1x = x

A right A-module is defined similarly. Note that if A is commutative, a left A-module is also a right A-module if we define (the sign rule)

m . a = (-1)|m||a|a . m

for m ∈ M and a ∈ A. Morphisms of A-modules are defined in the obvious manner: super vector space morphisms φ: M → N such that φ(am) = aφ(m) ∀ a ∈ A and m ∈ M. So, we have the category of A-modules. For A commutative, the category of A-modules admits tensor products: for M1, M2 A-modules, M1 ⊗ M2 is taken as the tensor product of M1 as a right module with M2 as a left module.

Turning our attention to free A-modules, we have the notion of super vector kp|q over k, and so we define Ap|q := A ⊗ kp|q where

(Ap|q)0 = A0 ⊗ (kp|q)0 ⊕ A1 ⊗ (kp|q)1

(Ap|q)1 = A1 ⊗ (kp|q)0 ⊕ A0 ⊗ (kp|q)1

We say that an A-module M is free if it is isomorphic (in the category of A-modules) to Ap|q for some (p, q). This is equivalent to saying that M contains p even elements {e1, …, ep} and q odd elements {ε1, …, εq} such that

M0 = spanA0{e1, …, ep} ⊕ spanA11, …, εq}

M1 = spanA1{e1, …, ep} ⊕ spanA01, …, εq}

We shall also say M as the free module generated over A by the even elements e1, …, eand the odd elements ε1, …, εq.

Let T: Ap|q → Ar|s be a morphism of free A-modules and then write ep+1, …., ep+q for the odd basis elements ε1, …, εq. Then T is defined on the basis elements {e1, …, ep+q} by

T(ej) = ∑i=1p+q eitij

Hence T can be represented as a matrix of size (r + s) x (p + q)

T = (T1 T2 T3 T4)

where T1 is an r x p matrix consisting of even elements of A, T2 is an r x q matrix of odd elements, T3 is an s x p matrix of odd elements, and T4 is an s x q matrix of even elements. When we say that T is a morphism of super A-modules, it means that it must preserve parity, and therefore the parity of the blocks, T1 & T4, which are even and T2 & T3, which are odd, is determined. When we define T on the basis elements, the basis elements precedes the coordinates tij. This is important to keep the signs in order and comes naturally from composing morphisms. In other words if the module is written as a right module with T acting from the left, composition becomes matrix product in the usual manner:

(S . T)(ej) = S(∑i eitij) = ∑i,keksiktij

hence for any x ∈ Ap|q , we can express x as the column vector x = ∑eixi and so T(x) is given by the matrix product T x.

Category of Super Vector Spaces Becomes a Tensor Category


The theory of manifolds and algebraic geometry are ultimately based on linear algebra. Similarly the theory of supermanifolds needs super linear algebra, which is linear algebra in which vector spaces are replaced by vector spaces with a Z/2Z-grading, namely, super vector spaces.

A super vector space is a Z/2Z-graded vector space

V = V0 ⊕ V1

where the elements of Vare called even and that of Vodd.

The parity of v ∈ V , denoted by p(v) or |v|, is defined only on non-zero homogeneous elements, that is elements of either V0 or V1:

p(v) = |v| = 0 if v ∈ V0

= 1 if v ∈ V1

The superdimension of a super vector space V is the pair (p, q) where dim(V0) = p and dim(V1) = q as ordinary vector spaces. We simply write dim(V) = p|q.

If dim(V) = p|q, then we can find a basis {e1,…., ep} of V0 and a basis {ε1,….., εq} of V1 so that V is canonically isomorphic to the free k-module generated by {e1,…., ep, ε1,….., εq}. We denote this k-module by kp|q and we will call {e1,…., ep, ε1,….., εq} the canonical basis of kp|q. The (ei) form a basis of kp = k0p|q and the (εj) form a basis for kq = k1p|q.

A morphism from a super vector space V to a super vector space W is a linear map from V to W preserving the Z/2Z-grading. Let Hom(V, W) denote the vector space of morphisms V → W. Thus we have formed the category of super vector spaces that we denote by (smod). It is important to note that the category of super vector spaces also admits an “inner Hom”, which we denote by Hom(V, W); for super vector spaces V, W, Hom(V, W) consists of all linear maps from V to W ; it is made into a super vector space itself by:

Hom(V, W)0 = {T : V → W|T preserves parity}  (= Hom(V, W))

Hom(V, W)1 = {T : V → W|T reverses parity}

If V = km|n, W = kp|q we have in the canonical basis (ei, εj):

Hom(V, W)0 = (A 0 0 D) and Hom(V, W)1 = (0 B C 0)

where A, B, C , D are respectively (p x m), (p x n), (q x m), (q x n) – matrices with entries in k.

In the category of super vector spaces we have the parity reversing functor ∏(V → ∏V) defined by

(∏V)0 = V1, (∏V)1 = V0

The category of super vector spaces admits tensor products: for super vector spaces V, W, V ⊗ W is given the Z/2Z-grading as

(V ⊗ W)0 = (V0 ⊗ W0) ⊕ (V1 ⊗ W1),

(V ⊗ W)1 = (V0 ⊗ W1) ⊕ (V1 ⊗ W0)

The assignment V, W ↦ V ⊗ W is additive and exact in each variable as in the ordinary vector space category. The object k functions as a unit element with respect to tensor multiplication ⊗ and tensor multiplication is associative, i.e., the two products U ⊗ (V ⊗ W) and (U ⊗ V) ⊗ W are naturally isomorphic. Moreover, V ⊗ W ≅ W ⊗ V by the commutative map,

cV,W : V ⊗ W → W ⊗ V


v ⊗ w ↦ (-1)|v||w|w ⊗ v

If we are working with the category of vector spaces, the commutativity isomorphism takes v ⊗ w to w ⊗ v. In super linear algebra we have to add the sign factor in front. This is a special case of the general principle called the “sign rule”. The principle says that in making definitions and proving theorems, the transition from the usual theory to the super theory is often made by just simply following this principle, which introduces a sign factor whenever one reverses the order of two odd elements. The functoriality underlying the constructions makes sure that the definitions are all consistent.

The commutativity isomorphism satisfies the so-called hexagon diagram:


where, if we had not suppressed the arrows of the associativity morphisms, the diagram would have the shape of a hexagon.

The definition of the commutativity isomorphism, also informally referred to as the sign rule, has the following very important consequence. If V1, …, Vn are the super vector spaces and σ and τ are two permutations of n-elements, no matter how we compose associativity and commutativity morphisms, we always obtain the same isomorphism from Vσ(1) ⊗ … ⊗ Vσ(n) to Vτ(1) ⊗ … ⊗ Vτ(n) namely:

Vσ(1) ⊗ … ⊗ Vσ(n) → Vτ(1) ⊗ … ⊗ Vτ(n)

vσ(1) ⊗ … ⊗ vσ(n) ↦ (-1)N vτ(1) ⊗ … ⊗ vτ(n)

where N is the number of pair of indices i, j such that vi and vj are odd and σ-1(i) < σ-1(j) with τ-1(i) > τ-1(j).

The dual V* of V is defined as

V* := Hom (V, k)

If V is even, V = V0, V* is the ordinary dual of V consisting of all even morphisms V → k. If V is odd, V = V1, then V* is also an odd vector space and consists of all odd morphisms V1 → k. This is because any morphism from V1 to k = k1|0 is necessarily odd and sends odd vectors into even ones. The category of super vector spaces thus becomes what is known as a tensor category with inner Hom and dual.

Canonical Actions on Bundles – Philosophizing Identity Over Gauge Transformations.


In physical applications, fiber bundles often come with a preferred group of transformations (usually the symmetry group of the system). The modem attitude of physicists is to regard this group as a fundamental structure which should be implemented from the very beginning enriching bundles with a further structure and defining a new category.

A similar feature appears on manifolds as well: for example, on ℜ2 one can restrict to Cartesian coordinates when we regard it just as a vector space endowed with a differentiable structure, but one can allow also translations if the “bigger” affine structure is considered. Moreover, coordinates can be chosen in much bigger sets: for instance one can fix the symplectic form w = dx ∧ dy on ℜ2 so that ℜ2 is covered by an atlas of canonical coordinates (which include all Cartesian ones). But ℜ2 also happens to be identifiable with the cotangent bundle T*ℜ so that we can restrict the previous symplectic atlas to allow only natural fibered coordinates. Finally, ℜ2 can be considered as a bare manifold so that general curvilinear coordinates should be allowed accordingly; only if the full (i.e., unrestricted) manifold structure is considered one can use a full maximal atlas. Other choices define instead maximal atlases in suitably restricted sub-classes of allowed charts. As any manifold structure is associated with a maximal atlas, geometric bundles are associated to “maximal trivializations”. However, it may happen that one can restrict (or enlarge) the allowed local trivializations, so that the same geometrical bundle can be trivialized just using the appropriate smaller class of local trivializations. In geometrical terms this corresponds, of course, to impose a further structure on the bare bundle. Of course, this newly structured bundle is defined by the same basic ingredients, i.e. the same base manifold M, the same total space B, the same projection π and the same standard fiber F, but it is characterized by a new maximal trivialization where, however, maximal refers now to a smaller set of local trivializations.

Examples are: vector bundles are characterized by linear local trivializations, affine bundles are characterized by affine local trivializations, principal bundles are characterized by left translations on the fiber group. Further examples come from Physics: gauge transformations are used as transition functions for the configuration bundles of any gauge theory. For these reasons we give the following definition of a fiber bundle with structure group.

A fiber bundle with structure group G is given by a sextuple B = (E, M, π; F ;>.., G) such that:

  • (E, M, π; F) is a fiber bundle. The structure group G is a Lie group (possibly a discrete one) and λ : G —–> Diff(F) defines a left action of G on the standard fiber F .
  • There is a family of preferred trivializations {(Uα, t(α)}α∈I of B such that the following holds: let the transition functions be gˆ(αβ) : Uαβ —–> Diff(F) and let eG be the neutral element of G. ∃ a family of maps g(αβ) : Uαβ —–> G such

    that, for each x ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ

    g(αα)(x) = eG

    g(αβ)(x) = [g(βα)(x)]-1

    g(αβ)(x) . g(βγ)(x) . g(γα)(x) = eG


    (αβ)(x) = λ(g(αβ)(x)) ∈ Diff(F)

The maps g(αβ) : Uαβ —–> G, which depend on the trivialization, are said to form a cocycle with values in G. They are called the transition functions with values in G (or also shortly the transition functions). The preferred trivializations will be said to be compatible with the structure. Whenever dealing with fiber bundles with structure group the choice of a compatible trivialization will be implicitly assumed.

Fiber bundles with structure group provide the suitable framework to deal with bundles with a preferred group of transformations. To see this, let us begin by introducing the notion of structure bundle of a fiber bundle with structure group B = (B, M, π; F; x, G).

Let B = (B, M, π; F; x, G) be a bundle with a structure group; let us fix a trivialization {(Uα, t(α)}α∈I and denote by g(αβ) : Uαβ —–> G its transition functions. By using the canonical left action L : G —–> Diff(G) of G onto itself, let us define gˆ(αβ) : Uαβ —–> Diff(G) given by gˆ(αβ)(x) = L (g(αβ)(x)); they obviously satisfy the cocycle properties. Now by constructing a (unique modulo isomorphisms) principal bundle PB = P(B) having G as structure group and g(αβ) as transition functions acting on G by left translation Lg : G —> G.

The principal bundle P(B) = (P, M, p; G) constructed above is called the structure bundle of B = (B, M, π; F; λ, G).

Notice that there is no similar canonical way of associating a structure bundle to a geometric bundle B = (B, M, π; F), since in that case the structure group G is at least partially undetermined.

Each automorphism of P(B) naturally acts over B.

Let, in fact, {σ(α)}α∈I be a trivialization of PB together with its transition functions g(αβ) : Uαβ —–> G defined by σ(β) = σ(α) . g(αβ). Then any principal morphism Φ = (Φ, φ) over PB is locally represented by local maps ψ(α) : Uα —> G such that

Φ : [x, h]α ↦ [φ(α)(x), ψ(α)(x).h](α)

Since Φ is a global automorphism of PB for the above local expression, the following property holds true in Uαβ.

φ(α)(x) = φ(β)(x) ≡ x’

ψ(α)(x) = g(αβ)(x’) . ψ(β)(x) . g(βα)(x)

By using the family of maps {(φ(α), ψ(α))} one can thence define a family of global automorphisms of B. In fact, using the trivialization {(Uα, t(α)}α∈I, one can define local automorphisms of B given by

Φ(α)B : (x, y) ↦ (φ(α)(x), [λ(ψ(α)(x))](y))

These local maps glue together to give a global automorphism ΦB of the bundle B, due to the fact that g(αβ) are also transition functions of B with respect to its trivialization {(Uα, t(α)}α∈I.

In this way B is endowed with a preferred group of transformations, namely the group Aut(PB) of automorphisms of the structure bundle PB, represented on B by means of the canonical action. These transformations are called (generalized) gauge transformations. Vertical gauge transformations, i.e. gauge transformations projecting over the identity, are also called pure gauge transformations.

Principal Bundles Preserve Structures…


A bundle P = (P, M ,π; G) is a principal bundle if the standard fiber is a Lie group G and ∃ (at least) one trivialization the transition functions of which act on G by left translations Lg : G → G : h ↦ f  g . h (where . denotes here the group multiplication).

The principal bundles are slightly different from affine bundles and vector bundles. In fact, while in affine bundles the fibers π-1(x) have a canonical structure of affine spaces and in vector bundles the fibers π-1(x) have a canonical structure of vector spaces, in principal bundles the fibers have no canonical Lie group structure. This is due to the fact that, while in affine bundles transition functions act by means of affine transformations and in vector bundles transition functions act by means of linear transformations, in principal bundles transition functions act by means of left translations which are not group automorphisms. Thus the fibers of a principal bundle do not carry a canonical group structure, but rather many non-canonical (trivialization-depending) group structures. In the fibers of a vector bundle there exists a preferred element (the “zero”) the definition of which does not depend on the local trivialization. On the contrary, in the fibers of a principal bundle there is no preferred point which is fixed by transition functions to be selected as an identity. Thus, while in affine bundles affine morphisms are those which preserve the affine structure of the fibers and in vector bundles linear morphisms are the ones which preserve the linear structure of the fibers, in a principal bundle P = (P, M, π; G) principal morphisms preserve instead a structure, the right action of G on P.

Let P = (P, M, π; G) be a principal bundle and {(Uα, t(α)}α∈I a trivialization. We can locally consider the maps

R(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, h . g](α) —– (1)

∃ a (global) right action Rg of G on P which is free, vertical and transitive on fibers; the local expression in the given trivialization of this action is given by R(α)g .

Using the local trivialization, we set p = [x, h](α) = [x, g(βα)(x) . h]β following diagram commutes:


which clearly shows that the local expressions agree on the overlaps Uαβ, to define a right action. This is obviously a vertical action; it is free because of the following:

Rgp = p => [x, h . g](α) = [x, h](α) => h · g = h => g = e —– (2)

Finally, if p = [x, h1](α) and q = [x, h2](α) are two points in the same fiber of p, one can choose g = h2-1 . h1 (where · denotes the group multiplication) so that p = Rgq. This shows that the right action is also transitive on the fibers.

On the contrary, that a global left action cannot be defined by using the local maps

L(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, g . h](α) —– (3)

since these local maps do not satisfy a compatibility condition analogous to the condition of the commuting diagram.

let P = (P, M, π; G) and P’ = (P’, M’, π’ ; G’ ) be two principal bundles and θ : G → G’ be a homomorphism of Lie groups. A bundle morphism Φ = (Φ, φ) : P → P’ is a principal morphism with respect to θ if the following diagram is commutative:


When G = G’ and θ = idG we just say that Φ is a principal morphism.

A trivial principal bundle (M x G, M, π; G) naturally admits the global unity section I ∈ Γ(M x G), defined with respect to a global trivialization, I : x ↦ (x, e), e being the unit element of G. Also, principal bundles allow global sections iff they are trivial. In fact, on principal bundles there is a canonical correspondence between local sections and local trivializations, due to the presence of the global right action.



Many important spaces in topology and algebraic geometry have no odd-dimensional homology. For such spaces, functorial spatial homology truncation simplifies considerably. On the theory side, the simplification arises as follows: To define general spatial homology truncation, we used intermediate auxiliary structures, the n-truncation structures. For spaces that lack odd-dimensional homology, these structures can be replaced by a much simpler structure. Again every such space can be embedded in such a structure, which is the analogon of the general theory. On the application side, the crucial simplification is that the truncation functor t<n will not require that in truncating a given continuous map, the map preserve additional structure on the domain and codomain of the map. In general, t<n is defined on the category CWn⊃∂, meaning that a map must preserve chosen subgroups “Y ”. Such a condition is generally necessary on maps, for otherwise no truncation exists. So arbitrary continuous maps between spaces with trivial odd-dimensional homology can be functorially truncated. In particular the compression rigidity obstructions arising in the general theory will not arise for maps between such spaces.

Let ICW be the full subcategory of CW whose objects are simply connected CW-complexes K with finitely generated even-dimensional homology and vanishing odd-dimensional homology for any coefficient group. We call ICW the interleaf category.

For example, the space K = S22 e3 is simply connected and has vanishing integral homology in odd dimensions. However, H3(K;Z/2) = Z/2 ≠ 0.

Let X be a space whose odd-dimensional homology vanishes for any coefficient group. Then the even-dimensional integral homology of X is torsion-free.

Taking the coefficient group Q/Z, we have

Tor(H2k(X),Q/Z) = H2k+1(X) ⊗ Q/Z ⊕ Tor(H2k(X),Q/Z) = H2k+1(X;Q/Z) = 0.

Thus H2k(X) is torsion-free, since the group Tor(H2k(X),Q/Z) is isomorphic to the torsion subgroup of H2k(X).

Any simply connected closed 4-manifold is in ICW. Indeed, such a manifold is homotopy equivalent to a CW-complex of the form


where the homotopy class of the attaching map ƒ : S3 → Vi=1k Si2 may be viewed as a symmetric k × k matrix with integer entries, as π3(Vi=1kSi2) ≅ M(k), with M(k) the additive group of such matrices.

Any simply connected closed 6-manifold with vanishing integral middle homology group is in ICW. If G is any coefficient group, then H1(M;G) ≅ H1(M) ⊗ G ⊕ Tor(H0M,G) = 0, since H0(M) = Z. By Poincaré duality,

0 = H3(M) ≅ H3(M) ≅ Hom(H3M,Z) ⊕ Ext(H2M,Z),

so that H2(M) is free. This implies that Tor(H2M,G) = 0 and hence H3(M;G) ≅ H3(M) ⊗ G ⊕ Tor(H2M,G) = 0. Finally, by G-coefficient Poincaré duality,

H5(M;G) ≅ H1(M;G) ≅ Hom(H1M,G) ⊕ Ext(H0M,G) = Ext(Z,G) = 0

Any smooth, compact toric variety X is in ICW: Danilov’s Theorem implies that H(X;Z) is torsion-free and the map A(X) → H(X;Z) given by composing the canonical map from Chow groups to homology, Ak(X) = An−k(X) → H2n−2k(X;Z), where n is the complex dimension of X, with Poincaré duality H2n−2k(X;Z) ≅ H2k(X;Z), is an isomorphism. Since the odd-dimensional cohomology of X is not in the image of this map, this asserts in particular that Hodd(X;Z) = 0. By Poincaré duality, Heven(X;Z) is free and Hodd(X;Z) = 0. These two statements allow us to deduce from the universal coefficient theorem that Hodd(X;G) = 0 for any coefficient group G. If we only wanted to establish Hodd(X;Z) = 0, then it would of course have been enough to know that the canonical, degree-doubling map A(X) → H(X;Z) is onto. One may then immediately reduce to the case of projective toric varieties because every complete fan Δ has a projective subdivision Δ, the corresponding proper birational morphism X(Δ) → X(Δ) induces a surjection H(X(Δ);Z) → H(X(Δ);Z) and the diagram



Let G be a complex, simply connected, semisimple Lie group and P ⊂ G a connected parabolic subgroup. Then the homogeneous space G/P is in ICW. It is simply connected, since the fibration P → G → G/P induces an exact sequence

1 = π1(G) → π1(G/P) → π0(P) → π0(G) = 0,

which shows that π1(G/P) → π0(P) is a bijection. Accordingly, ∃ elements sw(P) ∈ H2l(w)(G/P;Z) (“Schubert classes,” given geometrically by Schubert cells), indexed by w ranging over a certain subset of the Weyl group of G, that form a basis for H(G/P;Z). (For w in the Weyl group, l(w) denotes the length of w when written as a reduced word in certain specified generators of the Weyl group.) In particular Heven(G/P;Z) is free and Hodd(G/P;Z) = 0. Thus Hodd(G/P;G) = 0 for any coefficient group G.

The linear groups SL(n, C), n ≥ 2, and the subgroups S p(2n, C) ⊂ SL(2n, C) of transformations preserving the alternating bilinear form

x1yn+1 +···+ xny2n −xn+1y1 −···−x2nyn

on C2n × C2n are examples of complex, simply connected, semisimple Lie groups. A parabolic subgroup is a closed subgroup that contains a Borel group B. For G = SL(n,C), B is the group of all upper-triangular matrices in SL(n,C). In this case, G/B is the complete flag manifold

G/B = {0 ⊂ V1 ⊂···⊂ Vn−1 ⊂ Cn}

of flags of subspaces Vi with dimVi = i. For G = Sp(2n,C), the Borel subgroups B are the subgroups preserving a half-flag of isotropic subspaces and the quotient G/B is the variety of all such flags. Any parabolic subgroup P may be described as the subgroup that preserves some partial flag. Thus (partial) flag manifolds are in ICW. A special case is that of a maximal parabolic subgroup, preserving a single subspace V. The corresponding quotient SL(n, C)/P is a Grassmannian G(k, n) of k-dimensional subspaces of Cn. For G = Sp(2n,C), one obtains Lagrangian Grassmannians of isotropic k-dimensional subspaces, 1 ≤ k ≤ n. So Grassmannians are objects in ICW. The interleaf category is closed under forming fibrations.