The Affinity of Mirror Symmetry to Algebraic Geometry: Going Beyond Formalism



Even though formalism of homological mirror symmetry is an established case, what of other explanations of mirror symmetry which lie closer to classical differential and algebraic geometry? One way to tackle this is the so-called Strominger, Yau and Zaslow mirror symmetry or SYZ in short.

The central physical ingredient in this proposal is T-duality. To explain this, let us consider a superconformal sigma model with target space (M, g), and denote it (defined as a geometric functor, or as a set of correlation functions), as

CFT(M, g)

In physics, a duality is an equivalence

CFT(M, g) ≅ CFT(M′, g′)

which holds despite the fact that the underlying geometries (M,g) and (M′, g′) are not classically diffeomorphic.

T-duality is a duality which relates two CFT’s with toroidal target space, M ≅ M′ ≅ Td, but different metrics. In rough terms, the duality relates a “small” target space, with noncontractible cycles of length L < ls, with a “large” target space in which all such cycles have length L > ls.

This sort of relation is generic to dualities and follows from the following logic. If all length scales (lengths of cycles, curvature lengths, etc.) are greater than ls, string theory reduces to conventional geometry. Now, in conventional geometry, we know what it means for (M, g) and (M′, g′) to be non-isomorphic. Any modification to this notion must be associated with a breakdown of conventional geometry, which requires some length scale to be “sub-stringy,” with L < ls. To state T-duality precisely, let us first consider M = M′ = S1. We parameterise this with a coordinate X ∈ R making the identification X ∼ X + 2π. Consider a Euclidean metric gR given by ds2 = R2dX2. The real parameter R is usually called the “radius” from the obvious embedding in R2. This manifold is Ricci-flat and thus the sigma model with this target space is a conformal field theory, the “c = 1 boson.” Let us furthermore set the string scale ls = 1. With this, we attain a complete physical equivalence.

CFT(S1, gR) ≅ CFT(S1, g1/R)

Thus these two target spaces are indistinguishable from the point of view of string theory.

Just to give a physical picture for what this means, suppose for sake of discussion that superstring theory describes our universe, and thus that in some sense there must be six extra spatial dimensions. Suppose further that we had evidence that the extra dimensions factorized topologically and metrically as K5 × S1; then it would make sense to ask: What is the radius R of this S1 in our universe? In principle this could be measured by producing sufficiently energetic particles (so-called “Kaluza-Klein modes”), or perhaps measuring deviations from Newton’s inverse square law of gravity at distances L ∼ R. In string theory, T-duality implies that R ≥ ls, because any theory with R < ls is equivalent to another theory with R > ls. Thus we have a nontrivial relation between two (in principle) observable quantities, R and ls, which one might imagine testing experimentally. Let us now consider the theory CFT(Td, g), where Td is the d-dimensional torus, with coordinates Xi parameterising Rd/2πZd, and a constant metric tensor gij. Then there is a complete physical equivalence

CFT(Td, g) ≅ CFT(Td, g−1)

In fact this is just one element of a discrete group of T-duality symmetries, generated by T-dualities along one-cycles, and large diffeomorphisms (those not continuously connected to the identity). The complete group is isomorphic to SO(d, d; Z).

While very different from conventional geometry, T-duality has a simple intuitive explanation. This starts with the observation that the possible embeddings of a string into X can be classified by the fundamental group π1(X). Strings representing non-trivial homotopy classes are usually referred to as “winding states.” Furthermore, since strings interact by interconnecting at points, the group structure on π1 provided by concatenation of based loops is meaningful and is respected by interactions in the string theory. Now π1(Td) ≅ Zd, as an abelian group, referred to as the group of “winding numbers”.

Of course, there is another Zd we could bring into the discussion, the Pontryagin dual of the U(1)d of which Td is an affinization. An element of this group is referred to physically as a “momentum,” as it is the eigenvalue of a translation operator on Td. Again, this group structure is respected by the interactions. These two group structures, momentum and winding, can be summarized in the statement that the full closed string algebra contains the group algebra C[Zd] ⊕ C[Zd].

In essence, the point of T-duality is that if we quantize the string on a sufficiently small target space, the roles of momentum and winding will be interchanged. But the main point can be seen by bringing in some elementary spectral geometry. Besides the algebra structure, another invariant of a conformal field theory is the spectrum of its Hamiltonian H (technically, the Virasoro operator L0 + L ̄0). This Hamiltonian can be thought of as an analog of the standard Laplacian ∆g on functions on X, and its spectrum on Td with metric g is

Spec ∆= {∑i,j=1d gijpipj; pi ∈ Zd}

On the other hand, the energy of a winding string is (intuitively) a function of its length. On our torus, a geodesic with winding number w ∈ Zd has length squared

L2 = ∑i,j=1d gijwiwj

Now, the only string theory input we need to bring in is that the total Hamiltonian contains both terms,

H = ∆g + L2 + · · ·

where the extra terms … express the energy of excited (or “oscillator”) modes of the string. Then, the inversion g → g−1, combined with the interchange p ↔ w, leaves the spectrum of H invariant. This is T-duality.

There is a simple generalization of the above to the case with a non-zero B-field on the torus satisfying dB = 0. In this case, since B is a constant antisymmetric tensor, we can label CFT’s by the matrix g + B. Now, the basic T-duality relation becomes

CFT(Td, g + B) ≅ CFT(Td, (g + B)−1)

Another generalization, which is considerably more subtle, is to do T-duality in families, or fiberwise T-duality. The same arguments can be made, and would become precise in the limit that the metric on the fibers varies on length scales far greater than ls, and has curvature lengths far greater than ls. This is sometimes called the “adiabatic limit” in physics. While this is a very restrictive assumption, there are more heuristic physical arguments that T-duality should hold more generally, with corrections to the relations proportional to curvatures ls2R and derivatives ls∂ of the fiber metric, both in perturbation theory and from world-sheet instantons.


Fréchet Spaces and Presheave Morphisms.



A topological vector space V is both a topological space and a vector space such that the vector space operations are continuous. A topological vector space is locally convex if its topology admits a basis consisting of convex sets (a set A is convex if (1 – t) + ty ∈ A ∀ x, y ∈ A and t ∈ [0, 1].

We say that a locally convex topological vector space is a Fréchet space if its topology is induced by a translation-invariant metric d and the space is complete with respect to d, that is, all the Cauchy sequences are convergent.

A seminorm on a vector space V is a real-valued function p such that ∀ x, y ∈ V and scalars a we have:

(1) p(x + y) ≤ p(x) + p(y),

(2) p(ax) = |a|p(x),

(3) p(x) ≥ 0.

The difference between the norm and the seminorm comes from the last property: we do not ask that if x ≠ 0, then p(x) > 0, as we would do for a norm.

If {pi}{i∈N} is a countable family of seminorms on a topological vector space V, separating points, i.e. if x ≠ 0, there is an i with pi(x) ≠ 0, then ∃ a translation-invariant metric d inducing the topology, defined in terms of the {pi}:

d(x, y) = ∑i=1 1/2i pi(x – y)/(1 + pi(x – y))

The following characterizes Fréchet spaces, giving an effective method to construct them using seminorms.

A topological vector space V is a Fréchet space iff it satisfies the following three properties:

  • it is complete as a topological vector space;
  • it is a Hausdorff space;
  • its topology is induced by a countable family of seminorms {pi}{i∈N}, i.e., U ⊂ V is open iff for every u ∈ U ∃ K ≥ 0 and ε > 0 such that {v|pk(u – v) < ε ∀ k ≤ K} ⊂ U.

We say that a sequence (xn) in V converges to x in the Fréchet space topology defined by a family of seminorms iff it converges to x with respect to each of the given seminorms. In other words, xn → x, iff pi(xn – x) → 0 for each i.

Two families of seminorms defined on the locally convex vector space V are said to be equivalent if they induce the same topology on V.

To construct a Fréchet space, one typically starts with a locally convex topological vector space V and defines a countable family of seminorms pk on V inducing its topology and such that:

  1. if x ∈ V and pk(x) = 0 ∀ k ≥ 0, then x = 0 (separation property);
  2. if (xn) is a sequence in V which is Cauchy with respect to each seminorm, then ∃ x ∈ V such that (xn) converges to x with respect to each seminorm (completeness property).

The topology induced by these seminorms turns V into a Fréchet space; property (1) ensures that it is Hausdorff, while the property (2) guarantees that it is complete. A translation-invariant complete metric inducing the topology on V can then be defined as above.

The most important example of Fréchet space, is the vector space C(U), the space of smooth functions on the open set U ⊆ Rn or more generally the vector space C(M), where M is a differentiable manifold.

For each open set U ⊆ Rn (or U ⊂ M), for each K ⊂ U compact and for each multi-index I , we define

||ƒ||K,I := supx∈K |(∂|I|/∂xI (ƒ)) (x)|, ƒ ∈ C(U)

Each ||.||K,I defines a seminorm. The family of seminorms obtained by considering all of the multi-indices I and the (countable number of) compact subsets K covering U satisfies the properties (1) and (1) detailed above, hence makes C(U) into a Fréchet space. The sets of the form

|ƒ ∈ C(U)| ||ƒ – g||K,I < ε

with fixed g ∈ C(U), K ⊆ U compact, and multi-index I are open sets and together with their finite intersections form a basis for the topology.

All these constructions and results can be generalized to smooth manifolds. Let M be a smooth manifold and let U be an open subset of M. If K is a compact subset of U and D is a differential operator over U, then

pK,D(ƒ) := supx∈K|D(ƒ)|

is a seminorm. The family of all the seminorms  pK,D with K and D varying among all compact subsets and differential operators respectively is a separating family of seminorms endowing CM(U) with the structure of a complete locally convex vector space. Moreover there exists an equivalent countable family of seminorms, hence CM(U) is a Fréchet space. Let indeed {Vj} be a countable open cover of U by open coordinate subsets, and let, for each j, {Kj,i} be a countable family of compact subsets of Vj such that ∪i Kj,i = Vj. We have the countable family of seminorms

pK,I := supx∈K |(∂|I|/∂xI (ƒ)) (x)|, K ∈  {Kj,i}

inducing the topology. CM(U) is also an algebra: the product of two smooth functions being a smooth function.

A Fréchet space V is said to be a Fréchet algebra if its topology can be defined by a countable family of submultiplicative seminorms, i.e., a countable family {qi)i∈N of seminorms satisfying

qi(ƒg) ≤qi (ƒ) qi(g) ∀ i ∈ N

Let F be a sheaf of real vector spaces over a manifold M. F is a Fréchet sheaf if:

(1)  for each open set U ⊆ M, F(U) is a Fréchet space;

(2)  for each open set U ⊆ M and for each open cover {Ui} of U, the topology of F(U) is the initial topology with respect to the restriction maps F(U) → F(Ui), that is, the coarsest topology making the restriction morphisms continuous.

As a consequence, we have the restriction map F(U) → F(V) (V ⊆ U) as continuous. A morphism of sheaves ψ: F → F’ is said to be continuous if the map F(U) → F'(U) is open for each open subset U ⊆ M.

Categories of Pointwise Convergence Topology: Theory(ies) of Bundles.

Let H be a fixed, separable Hilbert space of dimension ≥ 1. Lets denote the associated projective space of H by P = P(H). It is compact iff H is finite-dimensional. Let PU = PU(H) = U(H)/U(1) be the projective unitary group of H equipped with the compact-open topology. A projective bundle over X is a locally trivial bundle of projective spaces, i.e., a fibre bundle P → X with fibre P(H) and structure group PU(H). An application of the Banach-Steinhaus theorem shows that we may identify projective bundles with principal PU(H)-bundles and the pointwise convergence topology on PU(H).

If G is a topological group, let GX denote the sheaf of germs of continuous functions G → X, i.e., the sheaf associated to the constant presheaf given by U → F(U) = G. Given a projective bundle P → X and a sufficiently fine good open cover {Ui}i∈I of X, the transition functions between trivializations P|Ui can be lifted to bundle isomorphisms gij on double intersections Uij = Ui ∩ Uj which are projectively coherent, i.e., over each of the triple intersections Uijk = Ui ∩ Uj ∩ Uk the composition gki gjk gij is given as multiplication by a U(1)-valued function fijk : Uijk → U(1). The collection {(Uij, fijk)} defines a U(1)-valued two-cocycle called a B-field on X,which represents a class BP in the sheaf cohomology group H2(X, U(1)X). On the other hand, the sheaf cohomology H1(X, PU(H)X) consists of isomorphism classes of principal PU(H)-bundles, and we can consider the isomorphism class [P] ∈ H1(X,PU(H)X).

There is an isomorphism

H1(X, PU(H)X) → H2(X, U(1)X) provided by the

boundary map [P] ↦ BP. There is also an isomorphism

H2(X, U(1)X) → H3(X, ZX) ≅ H3(X, Z)

The image δ(P) ∈ H3(X, Z) of BP is called the Dixmier-Douady invariant of P. When δ(P) = [H] is represented in H3(X, R) by a closed three-form H on X, called the H-flux of the given B-field BP, we will write P = PH. One has δ(P) = 0 iff the projective bundle P comes from a vector bundle E → X, i.e., P = P(E). By Serre’s theorem every torsion element of H3(X,Z) arises from a finite-dimensional bundle P. Explicitly, consider the commutative diagram of exact sequences of groups given by


where we identify the cyclic group Zn with the group of n-th roots of unity. Let P be a projective bundle with structure group PU(n), i.e., with fibres P(Cn). Then the commutative diagram of long exact sequences of sheaf cohomology groups associated to the above commutative diagram of groups implies that the element BP ∈ H2(X, U(1)X) comes from H2(X, (Zn)X), and therefore its order divides n.

One also has δ(P1 ⊗ P2) = δ(P1) + δ(P2) and δ(P) = −δ(P). This follows from the commutative diagram


and the fact that P ⊗ P = P(E) where E is the vector bundle of Hilbert-Schmidt endomorphisms of P . Putting everything together, it follows that the cohomology group H3(X, Z) is isomorphic to the group of stable equivalence classes of principal PU(H)-bundles P → X with the operation of tensor product.

We are now ready to define the twisted K-theory of the manifold X equipped with a projective bundle P → X, such that Px = P(H) ∀ x ∈ X. We will first give a definition in terms of Fredholm operators, and then provide some equivalent, but more geometric definitions. Let H be a Z2-graded Hilbert space. We define Fred0(H) to be the space of self-adjoint degree 1 Fredholm operators T on H such that T2 − 1 ∈ K(H), together with the subspace topology induced by the embedding Fred0(H) ֒→ B(H) × K(H) given by T → (T, T2 − 1) where the algebra of bounded linear operators B(H) is given the compact-open topology and the Banach algebra of compact operators K = K(H) is given the norm topology.

Let P = PH → X be a projective Hilbert bundle. Then we can construct an associated bundle Fred0(P) whose fibres are Fred0(H). We define the twisted K-theory group of the pair (X, P) to be the group of homotopy classes of maps

K0(X, H) = [X, Fred0(PH)]

The group K0(X, H) depends functorially on the pair (X, PH), and an isomorphism of projective bundles ρ : P → P′ induces a group isomorphism ρ∗ : K0(X, H) → K0(X, H′). Addition in K0(X, H) is defined by fibre-wise direct sum, so that the sum of two elements lies in K0(X, H2) with [H2] = δ(P ⊗ P(C2)) = δ(P) = [H]. Under the isomorphism H ⊗ C2 ≅ H, there is a projective bundle isomorphism P → P ⊗ P(C2) for any projective bundle P and so K0(X, H2) is canonically isomorphic to K0(X, H). When [H] is a non-torsion element of H3(X, Z), so that P = PH is an infinite-dimensional bundle of projective spaces, then the index map K0(X, H) → Z is zero, i.e., any section of Fred0(P) takes values in the index zero component of Fred0(H).

Let us now describe some other models for twisted K-theory which will be useful in our physical applications later on. A definition in algebraic K-theory may given as follows. A bundle of projective spaces P yields a bundle End(P) of algebras. However, if H is an infinite-dimensional Hilbert space, then one has natural isomorphisms H ≅ H ⊕ H and

End(H) ≅ Hom(H ⊕ H, H) ≅ End(H) ⊕ End(H)

as left End(H)-modules, and so the algebraic K-theory of the algebra End(H) is trivial. Instead, we will work with the Banach algebra K(H) of compact operators on H with the norm topology. Given that the unitary group U(H) with the compact-open topology acts continuously on K(H) by conjugation, to a given projective bundle PH we can associate a bundle of compact operators EH → X given by


with δ(EH) = [H]. The Banach algebra AH := C0(X, EH) of continuous sections of EH vanishing at infinity is the continuous trace C∗-algebra CT(X, H). Then the twisted K-theory group K(X, H) of X is canonically isomorphic to the algebraic K-theory group K(AH).

We will also need a smooth version of this definition. Let AH be the smooth subalgebra of AH given by the algebra CT(X, H) = C(X, L1PH),

where L1PH = PH ×PUL1. Then the inclusion CT(X, H) → CT(X, H) induces an isomorphism KCT(X, H) → KCT(X, H) of algebraic K-theory groups. Upon choosing a bundle gerbe connection, one has an isomorphism KCT(X, H) ≅ K(X, H) with the twisted K-theory defined in terms of projective Hilbert bundles P = PH over X.

Finally, we propose a general definition based on K-theory with coefficients in a sheaf of rings. It parallels the bundle gerbe approach to twisted K-theory. Let B be a Banach algebra over C. Let E(B, X) be the category of continuous B-bundles over X, and let C(X, B) be the sheaf of continuous maps X → B. The ring structure in B equips C(X, B) with the structure of a sheaf of rings over X. We can therefore consider left (or right) C(X, B)-modules, and in particular the category LF C(X, B) of locally free C(X, B)-modules. Using the functor in the usual way, for X an equivalence of additive categories

E(B, X) ≅ LF (C(X, B))

Since these are both additive categories, we can apply the Grothendieck functor to each of them and obtain the abelian groups K(LF(C(X, B))) and K(E(B, X)). The equivalence of categories ensures that there is a natural isomorphism of groups

K(LF (C(X, B))) ≅ K(E(B, X))

This motivates the following general definition. If A is a sheaf of rings over X, then we define the K-theory of X with coefficients in A to be the abelian group

K(X, A) := K LF(A)

For example, consider the case B = C. Then C(X, C) is just the sheaf of continuous functions X → C, while E(C, X) is the category of complex vector bundles over X. Using the isomorphism of K-theory groups we then have

K(X, C(X,C)) := K(LF (C(X, C))) ≅ K (E(C, X)) = K0(X)

The definition of twisted K-theory uses another special instance of this general construction. For this, we define an Azumaya algebra over X of rank m to be a locally trivial algebra bundle over X with fibre isomorphic to the algebra of m × m complex matrices over C, Mm(C). An example is the algebra End(E) of endomorphisms of a complex vector bundle E → X. We can define an equivalence relation on the set A(X) of Azumaya algebras over X in the following way. Two Azumaya algebras A, A′ are called equivalent if there are vector bundles E, E′ over X such that the algebras A ⊗ End(E), A′ ⊗ End(E′) are isomorphic. Then every Azumaya algebra of the form End(E) is equivalent to the algebra of functions C(X) on X. The set of all equivalence classes is a group under the tensor product of algebras, called the Brauer group of X and denoted Br(X). By Serre’s theorem there is an isomorphism

δ : Br(X) → tor(H3(X, Z))

where tor(H3(X, Z)) is the torsion subgroup of H3(X, Z).

If A is an Azumaya algebra bundle, then the space of continuous sections C(X, A) of X is a ring and we can consider the algebraic K-theory group K(A) := K0(C(X,A)) of equivalence classes of projective C(X, A)-modules, which depends only on the equivalence class of A in the Brauer group. Under the equivalence, we can represent the Brauer group Br(X) as the set of isomorphism classes of sheaves of Azumaya algebras. Let A be a sheaf of Azumaya algebras, and LF(A) the category of locally free A-modules. Then as above there is an isomorphism

K(X, C(X, A)) ≅ K Proj (C(X, A))

where Proj (C(X, A)) is the category of finitely-generated projective C(X, A)-modules. The group on the right-hand side is the group K(A). For given [H] ∈ tor(H3(X, Z)) and A ∈ Br(X) such that δ(A) = [H], this group can be identified as the twisted K-theory group K0(X, H) of X with twisting A. This definition is equivalent to the description in terms of bundle gerbe modules, and from this construction it follows that K0(X, H) is a subgroup of the ordinary K-theory of X. If δ(A) = 0, then A is equivalent to C(X) and we have K(A) := K0(C(X)) = K0(X). The projective C(X, A)-modules over a rank m Azumaya algebra A are vector bundles E → X with fibre Cnm ≅ (Cm)⊕n, which is naturally an Mm(C)-module.



Intuitive Algebra (Groupoid/Categorical Structure) of Open Strings As Morphisms

A geometric Dirichlet brane is a triple (L, E, ∇E) – a submanifold L ⊂ M, carrying a vector bundle E, with connection ∇E.

The real dimension of L is also often brought into the nomenclature, so that one speaks of a Dirichlet p-brane if p = dimRL.

An open string which stretches from a Dirichlet brane (L, E, ∇E) to a Dirichlet brane (K, F, ∇F), is a map X from an interval I ≅ [0,1] to M, such that X(0) ∈ L and X(1) ∈ K. An “open string history” is a map from R into open strings, or equivalently a map from a two-dimensional surface with boundary, say Σ ≡ I × R, to M , such that the two boundaries embed into L and K.


The quantum theory of these open strings is defined by a functional integral over these histories, with a weight which depends on the connections ∇E and ∇F. It describes the time evolution of an open string state which is a wave function in a Hilbert space HB,B′ labelled by the two choices of brane B = (L, E, ∇E) and B′ = (K, F, ∇F).


Distinct Dirichlet branes can embed into the same submanifold L. One way to represent this would be to specify the configurations of Dirichlet branes as a set of submanifolds with multiplicity. However, we can also represent this choice by using the choice of bundle E. Thus, a set of N identical branes will be represented by tensoring the bundle E with CN. The connection is also obtained by tensor product. An N-fold copy of the Dirichlet brane (L, E, ∇E) is thus a triple (L, E ⊗CN, ∇E ⊗ idN).

In physics, one visualizes this choice by labelling each open string boundary with a basis vector of CN, which specifies a choice among the N identical branes. These labels are called Chan-Paton factors. One then uses them to constrain the interactions between open strings. If we picture such an interaction as the joining of two open strings to one, the end of the first to the beginning of the second, we require not only the positions of the two ends to agree, but also the Chan-Paton factors. This operation is the intuitive algebra of open strings.

Mathematically, an algebra of open strings can always be tensored with a matrix algebra, in general producing a noncommutative algebra. More generally, if there is more than one possible boundary condition, then, rather than an algebra, it is better to think of this as a groupoid or categorical structure on the boundary conditions and the corresponding open strings. In the language of groupoids, particular open strings are elements of the groupoid, and the composition law is defined only for pairs of open strings with a common boundary. In the categorical language, boundary conditions are objects, and open strings are morphisms. The simplest intuitive argument that a non-trivial choice can be made here is to call upon the general principle that any local deformation of the world-sheet action should be a physically valid choice. In particular, particles in physics can be charged under a gauge field, for example the Maxwell field for an electron, the color Yang-Mills field for a quark, and so on. The wave function for a charged particle is then not complex-valued, but takes values in a bundle E.

Now, the effect of a general connection ∇E is to modify the functional integral by modifying the weight associated to a given history of the particle. Suppose the trajectory of a particle is defined by a map φ : R → M; then a natural functional on trajectories associated with a connection ∇ on M is simply its holonomy along the trajectory, a linear map from E|φ(t1) to E|φ(t2). The functional integral is now defined physically as a sum over trajectories with this holonomy included in the weight.

The simplest way to generalize this to a string is to consider the ls → 0 limit. Now the constraint of finiteness of energy is satisfied only by a string of vanishingly small length, effectively a particle. In this limit, both ends of the string map to the same point, which must therefore lie on L ∩ K.

The upshot is that, in this limit, the wave function of an open string between Dirichlet branes (L, E, ∇) and (K, F, ∇F) transforms as a section of E ⊠ F over L ∩ K, with the natural connection on the direct product. In the special case of (L, E, ∇E) ≅ (K, F, ∇F), this reduces to the statement that an open string state is a section of EndE. Open string states are sections of a graded vector bundle End E ⊗ Λ•T∗L, the degree-1 part of which corresponds to infinitesimal deformations of ∇E. In fact, these open string states are the infinitesimal deformations of ∇E, in the standard sense of quantum field theory, i.e., a single open string is a localized excitation of the field obtained by quantizing the connection ∇E. Similarly, other open string states are sections of the normal bundle of L within X, and are related in the same way to infinitesimal deformations of the submanifold. These relations, and their generalizations to open strings stretched between Dirichlet branes, define the physical sense in which the particular set of Dirichlet branes associated to a specified background X can be deduced from string theory.


Conjuncted: Affine Schemes: How Would Functors Carry the Same Information?


If we go to the generality of schemes, the extra structure overshadows the topological points and leaves out crucial details so that we have little information, without the full knowledge of the sheaf. For example the evaluation of odd functions on topological points is always zero. This implies that the structure sheaf of a supermanifold cannot be reconstructed from its underlying topological space.

The functor of points is a categorical device to bring back our attention to the points of a scheme; however the notion of point needs to be suitably generalized to go beyond the points of the topological space underlying the scheme.

Grothendieck’s idea behind the definition of the functor of points associated to a scheme is the following. If X is a scheme, for each commutative ring A, we can define the set of the A-points of X in analogy to the way the classical geometers used to define the rational or integral points on a variety. The crucial difference is that we do not focus on just one commutative ring A, but we consider the A-points for all commutative rings A. In fact, the scheme we start from is completely recaptured only by the collection of the A-points for every commutative ring A, together with the admissible morphisms.

Let (rings) denote the category of commutative rings and (schemes) the category of schemes.

Let (|X|, OX) be a scheme and let T ∈ (schemes). We call the T-points of X, the set of all scheme morphisms {T → X}, that we denote by Hom(T, X). We then define the functor of points hX of the scheme X as the representable functor defined on the objects as

hX: (schemes)op → (sets), haX(A) = Hom(Spec A, X) = A-points of X

Notice that when X is affine, X ≅ Spec O(X) and we have

haX(A) = Hom(Spec A, O(X)) = Hom(O(X), A)

In this case the functor haX is again representable.

Consider the affine schemes X = Spec O(X) and Y = Spec O(Y). There is a one-to-one correspondence between the scheme morphisms X → Y and the ring morphisms O(X) → O(Y). Both hX and haare defined on morphisms in the natural way. If φ: T → S is a morphism and ƒ ∈ Hom(S, X), we define hX(φ)(ƒ) = ƒ ○ φ. Similarly, if ψ: A → Bis a ring morphism and g ∈ Hom(O(X), A), we define haX(ψ)(g) = ψ ○ g. The functors hX and haare for a given scheme X not really different but carry the same information. The functor of points hof a scheme X is completely determined by its restriction to the category of affine schemes, or equivalently by the functor

haX: (rings) → (sets), haX(A) = Hom(Spec A, X)

Let M = (|M|, OM) be a locally ringed space and let (rspaces) denote the category of locally ringed spaces. We define the functor of points of locally ringed spaces M as the representable functor

hM: (rspaces)op → (sets), hM(T) = Hom(T, M)

hM is defined on the manifold as

hM(φ)(g) = g ○ φ

If the locally ringed space M is a differentiable manifold, then

Hom(M, N) ≅ Hom(C(N), C(M))

This takes us to the theory of Yoneda’s Lemma.

Let C be a category, and let X, Y be objects in C and let hX: Cop → (sets) be the representable functors defined on the objects as hX(T) = Hom(T, X), and on the arrows as hX(φ)(ƒ) = ƒ . φ, for φ: T → S, ƒ ∈ Hom(T, X)

If F: Cop → (sets), then we have a one-to-one correspondence between sets:

{hX → F} ⇔ F(X)

The functor

h: C → Fun(Cop, (sets)), X ↦ hX,

is an equivalence of C with a full subcategory of functors. In particular, hX ≅ hY iff X ≅ Y and the natural transformations hX → hY are in one-to-one correspondence with the morphisms X → Y.

Two schemes (manifolds) are isomorphic iff their functors of points are isomorphic.

The advantages of using the functorial language are many. Morphisms of schemes are just maps between the sets of their A-points, respecting functorial properties. This often simplifies matters, allowing allowing for leaving the sheaves machinery in the background. The problem with such an approach, however, is that not all the functors from (schemes) to (sets) are the functors of points of a scheme, i.e., they are representable.

A functor F: (rings) → (sets) is of the form F(A) = Hom(Spec A, X) for a scheme X iff:

F is local or is a sheaf in Zariski Topology. This means that for each ring R and for every collection αi ∈ F(Rƒi), with (ƒi, i ∈ I) = R, so that αi and αj map to the same element in F(Rƒiƒj) ∀ i and j ∃ a unique element α ∈ F(R) mapping to each αi, and

F admits a cover by open affine subfunctors, which means that ∃ a family Ui of subfunctors of F, i.e. Ui(R) ⊂ F(R) ∀ R ∈ (rings), Ui = hSpec Ui, with the property that ∀ natural transformations ƒ: hSpec A  → F, the functors ƒ-1(Ui), defined as ƒ-1(Ui)(R) = ƒ-1(Ui(R)), are all representable, i.e. ƒ-1(Ui) = hVi, and the Vi form an open covering for Spec A.

This states the conditions we expect for F to be the functor of points of a scheme. Namely, locally, F must look like the functor of points of a scheme, moreover F must be a sheaf, i.e. F must have a gluing property that allows us to patch together the open affine cover.


Affine Schemes


Let us associate to any commutative ring A its spectrum, that is the topological space Spec A. As a set, Spec A consists of all the prime ideals in A. For each subset S A we define as closed sets in Spec A:

V(S) := {p ∈ Spec A | S ⊂ p} ⊂ Spec A

If X is an affine variety, defined over an algebraically closed field, and O(X) is its coordinate ring, we have that the points of the topological space underlying X are in one-to-one correspondence with the maximal ideals in O(X).

We also define the basic open sets in Spec A as

Uƒ := Spec A \ V(ƒ) = Spec Aƒ with ƒ ∈ A,

where Aƒ = A[ƒ-1] is the localization of A obtained by inverting the element ƒ. The collection of the basic open sets Uƒ, ∀ ƒ ∈ A forms a base for Zariski topology. Next, we define the structure sheaf OA on the topological space Spec A. In order to do this, it is enough to give an assignment

U ↦ OA(U) for each basic open set U = Uƒ in Spec A.

The assignment

Uƒ ↦ Aƒ

defines a B-sheaf on the topological space Spec A and it extends uniquely to a sheaf of commutative rings on Spec A, called the structure sheaf and denoted by OA. Moreover, the stalk at a point p ∈ Spec A, OA,p is the localization Ap of the ring at the prime p. While the differentiable manifolds are locally modeled, as ringed spaces, by (Rn, CRn), the schemes are geometric objects modeled by the spectrum of commutative rings.

Affine scheme is a locally ringed space isomorphic to Spec A for some commutative ring A. We say that X is a scheme if X = (|X|, OX) is a locally ringed space, which is locally isomorphic to affine schemes. In other words, for each x ∈ |X|, ∃ an open set Ux ⊂ |X| such that (Ux, OX|Ux) is an affine scheme. A morphism of schemes is just a morphism of locally ringed spaces.

There is an equivalence of categories between the category of affine schemes (aschemes) and the category of commutative rings (rings). This equivalence is defined on the objects by

(rings)op → (aschemes), A Spec A

In particular a morphism of commutative rings A → B contravariantly to a morphism Spec B → Spec A of the corresponding affine superschemes.

Since any affine variety X is completely described by the knowledge of its coordinate ring O(X), we can associate uniquely to an affine variety X, the affine scheme Spec O(X). A morphism between algebraic varieties determines uniquely a morphism between the corresponding schemes. In the language of categories, we say we have a fully faithful functor from the category of algebraic varieties to the category of schemes.


Ringed Spaces (2)


Let |M| be a topological space. A presheaf of commutative algebras F on X is an assignment

U ↦ F(U), U open in |M|, F(U) is a commutative algebra, such that the following holds,

(1) If U ⊂ V are two open sets in |M|, ∃ a morphism rV, U: F(V) → F(U), called the restriction morphism and often denoted by rV, U(ƒ) = ƒ|U, such that

(i) rU, U = id,

(ii) rW, U = rV, U ○ rW, V

A presheaf ƒ is called a sheaf if the following holds:

(2) Given an open covering {Ui}i∈I of U and a family {ƒi}i∈I, ƒi ∈ F(Ui) such that ƒi|Ui ∩ Uj = ƒj|Ui ∩ Uj ∀ i, j ∈ I, ∃ a unique ƒ ∈ F(U) with ƒ|Ui = ƒi

The elements in F(U) are called sections over U, and with U = |M|, these are termed global sections.

The assignments U ↦ C(U), U open in the differentiable manifold M and U ↦ OX(U), U open in algebraic variety X are examples of sheaves of functions on the topological spaces |M| and |X| underlying the differentiable manifold M and the algebraic variety X respectively.

In the language of categories, the above definition says that we have defined a functor, F, from top(M) to (alg), where top(M) is the category of the open sets in the topological space |M|, the arrows given by the inclusions of open sets while (alg) is the category of commutative algebras. In fact, the assignment U ↦ F(U) defines F on the objects while the assignment

U ⊂ V ↦ rV, U: F(V) → F(U)

defines F on the arrows.

Let |M| be a topological space. We define a presheaf of algebras on |M| to be a functor

F: top(M)op → (alg)

The suffix “op” denotes as usual the opposite category; in other words, F is a contravariant functor from top(M) to (alg). A presheaf is a sheaf if it satisfies the property (2) of the above definition.

If F is a (pre)sheaf on |M| and U is open in |M|, we define F|U, the (pre)sheaf F restricted to U, as the functor F restricted to the category of open sets in U (viewed as a topological space itself).

Let F be a presheaf on the topological space |M| and let x be a point in |M|. We define the stalk Fx of F, at the point x, as the direct limit

lim F(U)

where the direct limit is taken ∀ the U open neighbourhoods of x in |M|. Fx consists of the disjoint union of all pairs (U, s) with U open in |M|, x ∈ U, and s ∈ F(U), modulo the equivalence relation: (U, s) ≅ (V, t) iff ∃ a neighbourhood W of x, W ⊂ U ∩ V, such that s|W = t|W.

The elements in Fx are called germs of sections.

Let F and G be presheaves on |M|. A morphism of presheaves φ: F → G, for each open set U in |M|, such that ∀ V ⊂ U, the following diagram commutes


Equivalently and more elegantly, one can also say that a morphism of presheaves is a natural transformation between the two presheaves F and G viewed as functors.

A morphism of sheaves is just a morphism of the underlying presheaves.

Clearly any morphism of presheaves induces a morphism on the stalks: φx: Fx → Gx. The sheaf property, i.e., property (2) in the above definition, ensures that if we have two morphisms of sheaves φ and ψ, such that φx = ψx ∀ x, then φ = ψ.

We say that the morphism of sheaves is injective (resp. surjective) if x is injective (resp. surjective).

On the notion of surjectivity, however, one should exert some care, since we can have a surjective sheaf morphism φ: F → G such that φU: F(U) → G(U) is not surjective for some open sets U. This strange phenomenon is a consequence of the following fact. While the assignment U ↦ ker(φ(U)) always defines a sheaf, the assignment

U ↦ im( φ(U)) = F(U)/G(U)

defines in general only a presheaf and not all the presheaves are sheaves. A simple example is given by the assignment associating to an open set U in R, the algebra of constant real functions on U. Clearly this is a presheaf, but not a sheaf.

We can always associate, in a natural way, to any presheaf a sheaf called its sheafification. Intuitively, one may think of the sheafification as the sheaf that best “approximates” the given presheaf. For example, the sheafification of the presheaf of constant functions on open sets in R is the sheaf of locally constant functions on open sets in R. We construct the sheafification of a presheaf using the étalé space, which we also need in the sequel, since it gives an equivalent approach to sheaf theory.

Let F be a presheaf on |M|. We define the étalé space of F to be the disjoint union ⊔x∈|M| Fx. Let each open U ∈ |M| and each s ∈ F(U) define the map šU: U ⊔x∈|U| Fx, šU(x) = sx. We give to the étalé space the finest topology that makes the maps š continuous, ∀ open U ⊂ |M| and all sections s ∈ F(U). We define Fet to be the presheaf on |M|:

U ↦ Fet(U) = {šU: U → ⊔x∈|U| Fx, šU(x) = sx ∈ Fx}

Let F be a presheaf on |M|. A sheafification of F is a sheaf F~, together with a presheaf morphism α: F → Fsuch that

(1) any presheaf morphism ψ: F → G, G a sheaf factors via α, i.e. ψ: F →α F~ → G,

(2) F and Fare locally isomorphic, i.e., ∃ an open cover {Ui}i∈I of |M| such that F(Ui) ≅ F~(Ui) via α.

Let F and G be sheaves of rings on some topological space |M|. Assume that we have an injective morphism of sheaves G → F such that G(U) ⊂ F(U) ∀ U open in |M|. We define the quotient F/G to be the sheafification of the image presheaf: U ↦ F(U)/G(U). In general F/G (U) ≠ F(U)/G(U), however they are locally isomorphic.

Ringed space is a pair M = (|M|, F) consisting of a topological space |M| and a sheaf of commutative rings F on |M|. This is a locally ringed space, if the stalk Fx is a local ring ∀ x ∈ |M|. A morphism of ringed spaces φ: M = (|M|, F) → N = (|N|, G) consists of a morphism |φ|: |M| → |N| of the topological spaces and a sheaf morphism φ*: ON → φ*OM, where φ*OM is a sheaf on |N| and defined as follows:

*OM)(U) = OM-1(U)) ∀ U open in |N|

Morphism of ringed spaces induces a morphism on the stalks for each

x ∈ |M|: φx: ON,|φ|(x) → OM,x

If M and N are locally ringed spaces, we say that the morphism of ringed spaces φ is a morphism of locally ringed spaces if φx is local, i.e. φ-1x(mM,x) = mN,|φ|(x), where mN,|φ|(x) and mM,x are the maximal ideals in the local rings ON,|φ|(x) and OM,x respectively.