Homotopically Truncated Spaces.

The Eckmann–Hilton dual of the Postnikov decomposition of a space is the homology decomposition (or Moore space decomposition) of a space.

A Postnikov decomposition for a simply connected CW-complex X is a commutative diagram

Untitled

such that pn∗ : πr(X) → πr(Pn(X)) is an isomorphism for r ≤ n and πr(Pn(X)) = 0 for r > n. Let Fn be the homotopy fiber of qn. Then the exact sequence

πr+1(PnX) →qn∗ πr+1(Pn−1X) → πr(Fn) → πr(PnX) →qn∗ πr(Pn−1X)

shows that Fn is an Eilenberg–MacLane space K(πnX, n). Constructing Pn+1(X) inductively from Pn(X) requires knowing the nth k-invariant, which is a map of the form kn : Pn(X) → Yn. The space Pn+1(X) is then the homotopy fiber of kn. Thus there is a homotopy fibration sequence

K(πn+1X, n+1) → Pn+1(X) → Pn(X) → Yn

This means that K(πn+1X, n+1) is homotopy equivalent to the loop space ΩYn. Consequently,

πr(Yn) ≅ πr−1(ΩYn) ≅ πr−1(K(πn+1X, n+1) = πn+1X, r = n+2,

= 0, otherwise.

and we see that Yn is a K(πn+1X, n+2). Thus the nth k-invariant is a map kn : Pn(X) → K(πn+1X, n+2)

Note that it induces the zero map on all homotopy groups, but is not necessarily homotopic to the constant map. The original space X is weakly homotopy equivalent to the inverse limit of the Pn(X).

Applying the paradigm of Eckmann–Hilton duality, we arrive at the homology decomposition principle from the Postnikov decomposition principle by changing:

    • the direction of all arrows
    • π to H
    • loops Ω to suspensions S
    • fibrations to cofibrations and fibers to cofibers
    • Eilenberg–MacLane spaces K(G, n) to Moore spaces M(G, n)
    • inverse limits to direct limits

A homology decomposition (or Moore space decomposition) for a simply connected CW-complex X is a commutative diagram

Untitled

such that jn∗ : Hr(X≤n) → Hr(X) is an isomorphism for r ≤ n and Hr(X≤n) = 0 for

r > n. Let Cn be the homotopy cofiber of in. Then the exact sequence

Hr(X≤n−1) →in∗ Hr(X≤n) → Hr(Cn) →in∗ Hr−1(X≤n−1) → Hr−1(X≤n)

shows that Cn is a Moore space M(HnX, n). Constructing X≤n+1 inductively from X≤n requires knowing the nth k-invariant, which is a map of the form kn : Yn → X≤n.

The space X≤n+1 is then the homotopy cofiber of kn. Thus there is a homotopy cofibration sequence

Ynkn X≤nin+1 X≤n+1 → M(Hn+1X, n+1)

This means that M(Hn+1X, n+1) is homotopy equivalent to the suspension SYn. Consequently,

H˜r(Yn) ≅ Hr+1(SYn) ≅ Hr+1(M(Hn+1X, n+1)) = Hn+1X, r = n,

= 0, otherwise

and we see that Yn is an M(Hn+1X, n). Thus the nth k-invariant is a map kn : M(Hn+1X, n) → X≤n

It induces the zero map on all reduced homology groups, which is a nontrivial statement to make in degree n:

kn∗ : Hn(M(Hn+1X, n)) ∼= Hn+1(X) → Hn(X) ∼= Hn(X≤n)

The original space X is homotopy equivalent to the direct limit of the X≤n. The Eckmann–Hilton duality paradigm, while being a very valuable organizational principle, does have its natural limitations. Postnikov approximations possess rather good functorial properties: Let pn(X) : X → Pn(X) be a stage-n Postnikov approximation for X, that is, pn(X) : πr(X) → πr(Pn(X)) is an isomorphism for r ≤ n and πr(Pn(X)) = 0 for r > n. If Z is a space with πr(Z) = 0 for r > n, then any map g : X → Z factors up to homotopy uniquely through Pn(X). In particular, if f : X → Y is any map and pn(Y) : Y → Pn(Y) is a stage-n Postnikov approximation for Y, then, taking Z = Pn(Y) and g = pn(Y) ◦ f, there exists, uniquely up to homotopy, a map pn(f) : Pn(X) → Pn(Y) such that

Untitled

homotopy commutes. Let X = S22 e3 be a Moore space M(Z/2,2) and let Y = X ∨ S3. If X≤2 and Y≤2 denote stage-2 Moore approximations for X and Y, respectively, then X≤2 = X and Y≤2 = X. We claim that whatever maps i : X≤2 → X and j : Y≤2 → Y such that i : Hr(X≤2) → Hr(X) and j : Hr(Y≤2) → Hr(Y) are isomorphisms for r ≤ 2 one takes, there is always a map f : X → Y that cannot be compressed into the stage-2 Moore approximations, i.e. there is no map f≤2 : X≤2 → Y≤2 such that

Untitled

commutes up to homotopy. We shall employ the universal coefficient exact sequence for homotopy groups with coefficients. If G is an abelian group and M(G, n) a Moore space, then there is a short exact sequence

0 → Ext(G, πn+1Y) →ι [M(G, n), Y] →η Hom(G, πnY) → 0,

where Y is any space and [−,−] denotes pointed homotopy classes of maps. The map η is given by taking the induced homomorphism on πn and using the Hurewicz isomorphism. This universal coefficient sequence is natural in both variables. Hence, the following diagram commutes:

Untitled

Here we will briefly write E2(−) = Ext(Z/2,−) so that E2(G) = G/2G, and EY (−) = Ext(−, π3Y). By the Hurewicz theorem, π2(X) ∼= H2(X) ∼= Z/2, π2(Y) ∼= H2(Y) ∼= Z/2, and π2(i) : π2(X≤2) → π2(X), as well as π2(j) : π2(Y≤2) → π2(Y), are isomorphisms, hence the identity. If a homomorphism φ : A → B of abelian groups is onto, then E2(φ) : E2(A) = A/2A → B/2B = E2(B) remains onto. By the Hurewicz theorem, Hur : π3(Y) → H3(Y) = Z is onto. Consequently, the induced map E2(Hur) : E23Y) → E2(H3Y) = E2(Z) = Z/2 is onto. Let ξ ∈ E2(H3Y) be the generator. Choose a preimage x ∈ E23Y), E2(Hur)(x) = ξ and set [f] = ι(x) ∈ [X,Y]. Suppose there existed a homotopy class [f≤2] ∈ [X≤2, Y≤2] such that

j[f≤2] = i[f].

Then

η≤2[f≤2] = π2(j)η≤2[f≤2] = ηj[f≤2] = ηi[f] = π2(i)η[f] = π2(i)ηι(x) = 0.

Thus there is an element ε ∈ E23Y≤2) such that ι≤2(ε) = [f≤2]. From ιE2π3(j)(ε) = jι≤2(ε) = j[f≤2] = i[f] = iι(x) = ιEY π2(i)(x)

we conclude that E2π3(j)(ε) = x since ι is injective. By naturality of the Hurewicz map, the square

Untitled

commutes and induces a commutative diagram upon application of E2(−):

Untitled

It follows that

ξ = E2(Hur)(x) = E2(Hur)E2π3(j)(ε) = E2H3(j)E2(Hur)(ε) = 0,

a contradiction. Therefore, no compression [f≤2] of [f] exists.

Given a cellular map, it is not always possible to adjust the extra structure on the source and on the target of the map so that the map preserves the structures. Thus the category theoretic setup automatically, and in a natural way, singles out those continuous maps that can be compressed into homologically truncated spaces.

Advertisements

Disjointed Regularity in Open Classes of Elementary Topology

rosetta

Let x, y, … denote first-order structures in St𝜏, x ≈ y will denote isomorphism.

x ∼n,𝜏 y means that there is a sequence 0 ≠ I0 ⊆ …. ⊆ In of sets of 𝜏-partial isomorphism of finite domain so that, for i < j ≤ n, f ∈ Ii and a ∈ x (respectively, b ∈ y), there is g ∈ Ij such that g ⊇ f and a ∈ Dom(g) (respectively, b ∈ Im(g)). The later is called the extension property.

x ∼𝜏 y means the above holds for an infinite chain 0 ≠ I0 ⊆ …. ⊆ In ⊆ …

Fraïssé’s characterization of elementary equivalence says that for finite relational vocabularies: x ≡ y iff x ∼n,𝜏 y. To have it available for vocabularies containing function symbols add the complexity of terms in atomic formulas to the quantifier rank. It is well known that for countable x, y : x ∼𝜏 y implies x ≈ y.

Given a vocabulary 𝜏 let 𝜏 be a disjoint renaming of 𝜏. If x, y ∈ St𝜏 have the same power, let y be an isomorphic copy of y sharing the universe with x and renamed to be of type 𝜏. In this context, (x, y) will denote the 𝜏 ∪ 𝜏-structure that results of expanding x with the relations of y.

Lemma: There is a vocabulary 𝜏+ ⊇ 𝜏 ∪ 𝜏 such that for each finite vocabulary 𝜏0 ⊆ 𝜏 there is a sequence of elementary classes 𝛥1 ⊇ 𝛥2 ⊇ 𝛥3 ⊇ …. in St𝜏+ such that if 𝜋 = 𝜋𝜏+,𝜏∪𝜏 then (1) 𝜋(𝛥𝑛) = {(x,y) : |x| = |y| ≥ 𝜔, x ≡n,𝜏0 y}, (2) 𝜋(⋂n 𝛥n) = {(x, y) : |x| = |y| ≥ 𝜔, x ∼𝜏0 y}. Moreover, ⋂n𝛥n is the reduct of an elementary class.

Proof. Let 𝛥 be the class of structures (x, y, <, a, I) where < is a discrete linear order with minimum but no maximum and I codes for each c ≤ a a family Ic = {I(c, i, −, −)}i∈x of partial 𝜏0-𝜏0–isomorphisms from x into y, such that for c < c’ ≤ a : Ic ⊆ Ic and the extension property holds. Describe this by a first-order sentence 𝜃𝛥 of type 𝜏+ ⊇ 𝜏0 ∪ 𝜏0 and set 𝛥𝑛 = ModL(𝜃𝛥 ∧ ∃≥n x(x ≤ a)}. Then condition (1) in the Lemma is granted by Fraïssé’s characterization and the fact that x being (2) is granted because (x, y, <, a, I) ∈ ⋂n𝛥n iff < contains an infinite increasing 𝜔-chain below a, a ∑11 condition.

A topology on St𝜏 is invariant if its open (closed) classes are closed under isomorphic structures. Of course, it is superfluous if we identify isomorphic structures.

Theorem: Let Γ be a regular compact topology finer than the elementary topology on each class St𝜏 such that the countable structures are dense in St𝜏 and reducts and renamings are continuous for these topologies. Then Γ𝜏 is the elementary topology ∀ 𝜏.

Proof: We show that any pair of disjoint closed classes C1, C2 of Γ𝜏 may be separated by an elementary class. Assume this is not the case since Ci are compact in the topology Γ𝜏 then they are compact for the elementary topology and, by regularity of the latter, ∃ xi ∈ Ci such that x1 ≡ x2 in L𝜔𝜔(𝜏). The xi must be infinite, otherwise they would be isomorphic contradicting the disjointedness of the Ci. By normality of Γ𝜏, there are towers Ui ⊆ Ci ⊆ Ui ⊆ Ci, i = 1,2, separating the Ci with Ui, Ui open and Ci, Ci closed in Γ𝜏 and disjoint. Let I be a first-order sentence of type 𝜏 ⊇ 𝜏 such that (z, ..) |= I ⇔ z is infinite, and let π be the corresponding reduct operation. For fixed n ∈ ω and the finite 𝜏0  ⊆ 𝜏, let t be a first-order sentence describing the common ≡n,𝜏0 – equivalence class of x1, x2. As,

(xi,..) ∈ Mod𝜏(I) ∩ π-1 Mod(t) ∩ π-1Ui, i = 1, 2,..

and this class is open in Γ𝜏‘ by continuity of π, then by the density hypothesis there are countable xi ∈ Ui , i = 1, 2, such that x1n,𝜏 x2. Thus for some expansion of (x1, x2),

(x, x,..) ∈ 𝛥n,𝜏0 ∩ 𝜋1−1(𝐶1) ∩ (𝜌𝜋2)−1(C2) —– (1)

where 𝛥𝑛,𝜏0 is the class of Lemma, 𝜋1, 𝜋2 are reducts, and 𝜌 is a renaming:

𝜋1(x1, x2, …) = x1 𝜋1 : St𝜏+ → St𝜏∪𝜏 → St𝜏

𝜋2(x1, x2, …) = x2 𝜋2 : St𝜏+ → St𝜏∪𝜏 → St𝜏

𝜌(x2) = x2 𝜌 : St𝜏 → St𝜏

Since the classes (1) are closed by continuity of the above functors then ⋂n𝛥n,𝜏0 ∩ 𝜋1−1(C1) ∩ (𝜌𝜋2)−1(C2) is non-emtpy by compactness of Γ𝜏+. But ⋂n𝛥n,𝜏0 = 𝜋(V) with V elementary of type 𝜏++ ⊇ 𝜏+. Then

V ∩ π-1π1-1(U1) ∩ π-1(ρπ2)-1 (U2) ≠ 0

is open for ΓL++ and the density condition it must contain a countable structure (x1, x*2, ..). Thus (x1, x*2, ..) ∈ ∩n 𝛥𝑛,𝜏0, with xi ∈ Ui ⊆ Ci. It follows that x1 ~𝜏0 x2 and thus x1 |𝜏0 ≈ x2 |𝜏0. Let δ𝜏0 be a first-order sentence of type 𝜏 ∪ 𝜏* ∪{h} such that (x, y*, h) |= δ𝜏0 ⇔ h : x |𝜏0 ≈ y|𝜏0. By compactness,

(∩𝜏0fin𝜏 Mod𝜏∪𝜏*∪{f}𝜏0)) ∩ π1-1(C1) ∩ (ρπ2)-1(C2) ≠ 0

and we have h : x1 ≈ x2, xi ∈ Ci, contradicting the disjointedness of Ci. Finally, if C is a closed class of Γ𝜏 and x ∉ C, clΓ𝜏{x} is disjoint from C by regularity of Γ𝜏. Then clΓ𝜏{x} and C may be separated by open classes of elementary topology, which implies C is closed in this topology.

How are Topological Equivalences of Structures Homeomorphic?

dxabC

Given a first-order vocabulary 𝜏, 𝐿𝜔𝜔(𝜏) is the set of first-order sentences of type 𝜏. The elementary topology on the class 𝑆𝑡𝜏 of first-order structures type 𝜏 is obtained by taking the family of elementary classes

𝑀𝑜𝑑(𝜑) = {𝑀:𝑀 |= 𝜑}, 𝜑 ∈ 𝐿𝜔𝜔(𝜏)

as an open basis. Due to the presence of classical negation, this family is also a closed basis and thus the closed classes of 𝑆𝑡𝜏 are the first-order axiomatizable classes 𝑀𝑜𝑑(𝑇), 𝑇 ⊆ 𝐿𝜔𝜔(𝜏). Possible foundational problems due to the fact that the topology is a class of classes may be settled observing that it is indexed by a set, namely the set of theories of type 𝜏.

The main facts of model theory are reflected by the topological properties of these spaces. Thus, the downward Löwenheim-Skolem theorem for sentences amounts to topological density of the subclass of countable structures. Łoś theorem on ultraproducts grants that U-limits exist for any ultrafilter 𝑈, condition well known to be equivalent to topological compactness, and to model theoretic compactness in this case.

These spaces are not Hausdorff or T1, but having a clopen basis they are regular; that is, closed classes and exterior points may be separated by disjoint open classes. All properties or regular compact spaces are then available: normality, complete regularity, uniformizability, the Baire property, etc.

Many model theoretic properties are related to the continuity of natural operations between classes of structures, where operations are seen to be continuous and play an important role in abstract model theory.

A topological space is regular if closed sets and exterior points may be separated by open sets. It is normal if disjoint closed sets may be separated by disjoint open sets. Thus, normality does not imply regularity here. However, a regular compact space is normal. Actually, a regular Lindelöf space is already normal

Consider the following equivalence relation in a space 𝑋: 𝑥 ≡ 𝑦 ⇔ 𝑐𝑙{𝑥} = 𝑐𝑙{𝑦}

where 𝑐𝑙 denotes topological adherence. Clearly, 𝑥 ≡ 𝑦 iff 𝑥 and 𝑦 belong to the same closed (open) subsets (of a given basis). Let 𝑋/≡ be the quotient space and 𝜂 : 𝑋 → 𝑋/≡ the natural projection. Then 𝑋/≡ is T0 by construction but not necessarily Hausdorff. The following claims thus follow:

a) 𝜂 : 𝑋 → 𝑋/≡ induces an isomorphism between the respective lattices of Borel subsets of 𝑋 and 𝑋/≡. In particular, it is open and closed, preserves disjointedness, preserves and reflects compactness and normality.

b) The assignment 𝑋 → 𝑋/≡ is functorial, because ≡ is preserved by continuous functions and thus any continuous map 𝑓 : 𝑋 → 𝑌 induces a continuous assignment 𝑓/≡ : 𝑋/≡ → 𝑌/≡ which commutes with composition.

c) 𝑋 → 𝑋/≡ preserves products; that is, (𝛱𝑖𝑋𝑖)/≡ is canonically homeomorphic to 𝛱𝑖(𝑋𝑖/≡) with the product topology (monomorphisms are not preserved).

d) If 𝑋 is regular, the equivalence class of 𝑥 is 𝑐𝑙{𝑥} (this may fail in the non-regular case).

e) If 𝑋 is regular, 𝑋/≡ is Hausdorff : if 𝑥 ≢ 𝑦 then 𝑥 ∉ 𝑐𝑙{𝑦} by (d); thus there are disjoint open sets 𝑈, 𝑉 in 𝑋 such that 𝑥 ∈ 𝑈, 𝑐𝑙{𝑦} ⊆ 𝑉, and their images under 𝜂 provide an open separation of 𝜂𝑥 and 𝜂𝑦 in 𝑋/≡ by (a).

f) If 𝐾1 and 𝐾2 are disjoint compact subsets of a regular topological space 𝑋 that cannot be separated by open sets there exist 𝑥𝑖 ∈ 𝐾𝑖, 𝑖 = 1, 2, such that 𝑥1 ≡ 𝑥2. Indeed, 𝜂𝐾1 and 𝜂𝐾2 are compact in 𝑋/≡ by continuity and thus closed because 𝑋/≡ is Hausdorff by (e). They can not be disjoint; otherwise, they would be separated by open sets whose inverse images would separate 𝐾1 and 𝐾2. Pick 𝜂𝑥 = 𝜂𝑦 ∈ 𝜂𝐾1 ∩ 𝜂𝐾2 with 𝑥 ∈ 𝐾1, 𝑦 ∈ 𝐾2.

Clearly then, for the elementary topology on 𝑆𝑡𝜏, the relation ≡ coincides with elementary equivalence of structures and 𝑆𝑡𝜏/≡ is homeomorphic to the Stone space of complete theories.

Grothendieck’s Universes and Wiles Proof (Fermat’s Last Theorem). Thought of the Day 77.0

math-equations-16133692

In formulating the general theory of cohomology Grothendieck developed the concept of a universe – a collection of sets large enough to be closed under any operation that arose. Grothendieck proved that the existence of a single universe is equivalent over ZFC to the existence of a strongly inaccessible cardinal. More precisely, 𝑈 is the set 𝑉𝛼 of all sets with rank below 𝛼 for some uncountable strongly inaccessible cardinal.

Colin McLarty summarised the general situation:

Large cardinals as such were neither interesting nor problematic to Grothendieck and this paper shares his view. For him they were merely legitimate means to something else. He wanted to organize explicit calculational arithmetic into a geometric conceptual order. He found ways to do this in cohomology and used them to produce calculations which had eluded a decade of top mathematicians pursuing the Weil conjectures. He thereby produced the basis of most current algebraic geometry and not only the parts bearing on arithmetic. His cohomology rests on universes but weaker foundations also suffice at the loss of some of the desired conceptual order.

The applications of cohomology theory implicitly rely on universes. Most number theorists regard the applications as requiring much less than their ‘on their face’ strength and in particular believe the large cardinal appeals are ‘easily eliminable’. There are in fact two issues. McLarty writes:

Wiles’s proof uses hard arithmetic some of which is on its face one or two orders above PA, and it uses functorial organizing tools some of which are on their face stronger than ZFC.

There are two current programs for verifying in detail the intuition that the formal requirements for Wiles proof of Fermat’s last theorem can be substantially reduced. On the one hand, McLarty’s current work aims to reduce the ‘on their face’ strength of the results in cohomology from large cardinal hypotheses to finite order Peano. On the other hand Macintyre aims to reduce the ‘on their face’ strength of results in hard arithmetic to Peano. These programs may be complementary or a full implementation of Macintyre’s might avoid the first.

McLarty reduces

  1. ‘ all of SGA (Revêtements Étales et Groupe Fondamental)’ to Bounded Zermelo plus a Universe.
  2. “‘the currently existing applications” to Bounded Zermelo itself, thus the con-sistency strength of simple type theory.’ The Grothendieck duality theorem and others like it become theorem schema.

The essential insight of the McLarty’s papers on cohomology is the role of replacement in giving strength to the universe hypothesis. A 𝑍𝐶-universe is defined to be a transitive set U modeling 𝑍𝐶 such that every subset of an element of 𝑈 is itself an element of 𝑈. He remarks that any 𝑉𝛼 for 𝛼 a limit ordinal is provable in 𝑍𝐹𝐶 to be a 𝑍𝐶-universe. McLarty then asserts the essential use of replacement in the original Grothendieck formulation is to prove: For an arbitrary ring 𝑅 every module over 𝑅 embeds in an injective 𝑅-module and thus injective resolutions exist for all 𝑅-modules. But he gives a proof in a system with the proof theoretic strength of finite order arithmetic that every sheaf of modules on any small site has an infinite resolution.

Angus Macintyre dismisses with little comment the worries about the use of ‘large-structure’ tools in Wiles proof. He begins his appendix,

At present, all roads to a proof of Fermat’s Last Theorem pass through some version of a Modularity Theorem (generically MT) about elliptic curves defined over Q . . . A casual look at the literature may suggest that in the formulation of MT (or in some of the arguments proving whatever version of MT is required) there is essential appeal to higher-order quantification, over one of the following.

He then lists such objects as C, modular forms, Galois representations …and summarises that a superficial formulation of MT would be 𝛱1m for some small 𝑚. But he continues,

I hope nevertheless that the present account will convince all except professional sceptics that MT is really 𝛱01.

There then follows a 13 page highly technical sketch of an argument for the proposition that MT can be expressed by a sentence in 𝛱01 along with a less-detailed strategy for proving MT in PA.

Macintyre’s complexity analysis is in traditional proof theoretic terms. But his remark that ‘genus’ is more a useful geometric classification of curves than the syntactic notion of degree suggests that other criteria may be relevant. McLarty’s approach is not really a meta-theorem, but a statement that there was only one essential use of replacement and it can be eliminated. In contrast, Macintyre argues that ‘apparent second order quantification’ can be replaced by first order quantification. But the argument requires deep understanding of the number theory for each replacement in a large number of situations. Again, there is no general theorem that this type of result is provable in PA.

Intuition

intuition-psychology

During his attempt to axiomatize the category of all categories, Lawvere says

Our intuition tells us that whenever two categories exist in our world, then so does the corresponding category of all natural transformations between the functors from the first category to the second (The Category of Categories as a Foundation).

However, if one tries to reduce categorial constructions to set theory, one faces some serious problems in the case of a category of functors. Lawvere (who, according to his aim of axiomatization, is not concerned by such a reduction) relies here on “intuition” to stress that those working with categorial concepts despite these problems have the feeling that the envisaged construction is clear, meaningful and legitimate. Not the reducibility to set theory, but an “intuition” to be specified answers for clarity, meaningfulness and legitimacy of a construction emerging in a mathematical working situation. In particular, Lawvere relies on a collective intuition, a common sense – for he explicitly says “our intuition”. Further, one obviously has to deal here with common sense on a technical level, for the “we” can only extend to a community used to the work with the concepts concerned.

In the tradition of philosophy, “intuition” means immediate, i.e., not conceptually mediated cognition. The use of the term in the context of validity (immediate insight in the truth of a proposition) is to be thoroughly distinguished from its use in the sensual context (the German Anschauung). Now, language is a manner of representation, too, but contrary to language, in the context of images the concept of validity is meaningless.

Obviously, the aspect of cognition guiding is touched on here. Especially the sensual intuition can take the guiding (or heuristic) function. There have been many working situations in history of mathematics in which making the objects of investigation accessible to a sensual intuition (by providing a Veranschaulichung) yielded considerable progress in the development of the knowledge concerning these objects. As an example, take the following account by Emil Artin of Emmy Noether’s contribution to the theory of algebras:

Emmy Noether introduced the concept of representation space – a vector space upon which the elements of the algebra operate as linear transformations, the composition of the linear transformation reflecting the multiplication in the algebra. By doing so she enables us to use our geometric intuition.

Similarly, Fréchet thinks to have really “powered” research in the theory of functions and functionals by the introduction of a “geometrical” terminology:

One can [ …] consider the numbers of the sequence [of coefficients of a Taylor series] as coordinates of a point in a space [ …] of infinitely many dimensions. There are several advantages to proceeding thus, for instance the advantage which is always present when geometrical language is employed, since this language is so appropriate to intuition due to the analogies it gives birth to.

Mathematical terminology often stems from a current language usage whose (intuitive, sensual) connotation is welcomed and serves to give the user an “intuition” of what is intended. While Category Theory is often classified as a highly abstract matter quite remote from intuition, in reality it yields, together with its applications, a multitude of examples for the role of current language in mathematical conceptualization.

This notwithstanding, there is naturally also a tendency in contemporary mathematics to eliminate as much as possible commitments to (sensual) intuition in the erection of a theory. It seems that algebraic geometry fulfills only in the language of schemes that essential requirement of all contemporary mathematics: to state its definitions and theorems in their natural abstract and formal setting in which they can be considered independent of geometric intuition (Mumford D., Fogarty J. Geometric Invariant Theory).

In the pragmatist approach, intuition is seen as a relation. This means: one uses a piece of language in an intuitive manner (or not); intuitive use depends on the situation of utterance, and it can be learned and transformed. The reason for this relational point of view, consists in the pragmatist conviction that each cognition of an object depends on the means of cognition employed – this means that for pragmatism there is no intuitive (in the sense of “immediate”) cognition; the term “intuitive” has to be given a new meaning.

What does it mean to use something intuitively? Heinzmann makes the following proposal: one uses language intuitively if one does not even have the idea to question validity. Hence, the term intuition in the Heinzmannian reading of pragmatism takes a different meaning, no longer signifies an immediate grasp. However, it is yet to be explained what it means for objects in general (and not only for propositions) to “question the validity of a use”. One uses an object intuitively, if one is not concerned with how the rules of constitution of the object have been arrived at, if one does not focus the materialization of these rules but only the benefits of an application of the object in the present context. “In principle”, the cognition of an object is determined by another cognition, and this determination finds its expression in the “rules of constitution”; one uses it intuitively (one does not bother about the being determined of its cognition), if one does not question the rules of constitution (does not focus the cognition which determines it). This is precisely what one does when using an object as a tool – because in doing so, one does not (yet) ask which cognition determines the object. When something is used as a tool, this constitutes an intuitive use, whereas the use of something as an object does not (this defines tool and object). Here, each concept in principle can play both roles; among two concepts, one may happen to be used intuitively before and the other after the progress of insight. Note that with respect to a given cognition, Peirce when saying “the cognition which determines it” always thinks of a previous cognition because he thinks of a determination of a cognition in our thought by previous thoughts. In conceptual history of mathematics, however, one most often introduced an object first as a tool and only after having done so did it come to one’s mind to ask for “the cognition which determines the cognition of this object” (that means, to ask how the use of this object can be legitimized).

The idea that it could depend on the situation whether validity is questioned or not has formerly been overlooked, perhaps because one always looked for a reductionist epistemology where the capacity called intuition is used exclusively at the last level of regression; in a pragmatist epistemology, to the contrary, intuition is used at every level in form of the not thematized tools. In classical systems, intuition was not simply conceived as a capacity; it was actually conceived as a capacity common to all human beings. “But the power of intuitively distinguishing intuitions from other cognitions has not prevented men from disputing very warmly as to which cognitions are intuitive”. Moreover, Peirce criticises strongly cartesian individualism (which has it that the individual has the capacity to find the truth). We could sum up this philosophy thus: we cannot reach definite truth, only provisional; significant progress is not made individually but only collectively; one cannot pretend that the history of thought did not take place and start from scratch, but every cognition is determined by a previous cognition (maybe by other individuals); one cannot uncover the ultimate foundation of our cognitions; rather, the fact that we sometimes reach a new level of insight, “deeper” than those thought of as fundamental before, merely indicates that there is no “deepest” level. The feeling that something is “intuitive” indicates a prejudice which can be philosophically criticised (even if this does not occur to us at the beginning).

In our approach, intuitive use is collectively determined: it depends on the particular usage of the community of users whether validity criteria are or are not questioned in a given situation of language use. However, it is acknowledged that for example scientific communities develop usages making them communities of language users on their own. Hence, situations of language use are not only partitioned into those where it comes to the users’ mind to question validity criteria and those where it does not, but moreover this partition is specific to a particular community (actually, the community of language users is established partly through a peculiar partition; this is a definition of the term “community of language users”). The existence of different communities with different common senses can lead to the following situation: something is used intuitively by one group, not intuitively by another. In this case, discussions inside the discipline occur; one has to cope with competing common senses (which are therefore not really “common”). This constitutes a task for the historian.

Mathematical Reductionism: As Case Via C. S. Peirce’s Hypothetical Realism.

mathematical-beauty

During the 20th century, the following epistemology of mathematics was predominant: a sufficient condition for the possibility of the cognition of objects is that these objects can be reduced to set theory. The conditions for the possibility of the cognition of the objects of set theory (the sets), in turn, can be given in various manners; in any event, the objects reduced to sets do not need an additional epistemological discussion – they “are” sets. Hence, such an epistemology relies ultimately on ontology. Frege conceived the axioms as descriptions of how we actually manipulate extensions of concepts in our thinking (and in this sense as inevitable and intuitive “laws of thought”). Hilbert admitted the use of intuition exclusively in metamathematics where the consistency proof is to be done (by which the appropriateness of the axioms would be established); Bourbaki takes the axioms as mere hypotheses. Hence, Bourbaki’s concept of justification is the weakest of the three: “it works as long as we encounter no contradiction”; nevertheless, it is still epistemology, because from this hypothetical-deductive point of view, one insists that at least a proof of relative consistency (i.e., a proof that the hypotheses are consistent with the frequently tested and approved framework of set theory) should be available.

Doing mathematics, one tries to give proofs for propositions, i.e., to deduce the propositions logically from other propositions (premisses). Now, in the reductionist perspective, a proof of a mathematical proposition yields an insight into the truth of the proposition, if the premisses are already established (if one has already an insight into their truth); this can be done by giving in turn proofs for them (in which new premisses will occur which ask again for an insight into their truth), or by agreeing to put them at the beginning (to consider them as axioms or postulates). The philosopher tries to understand how the decision about what propositions to take as axioms is arrived at, because he or she is dissatisfied with the reductionist claim that it is on these axioms that the insight into the truth of the deduced propositions rests. Actually, this epistemology might contain a short-coming since Poincaré (and Wittgenstein) stressed that to have a proof of a proposition is by no means the same as to have an insight into its truth.

Attempts to disclose the ontology of mathematical objects reveal the following tendency in epistemology of mathematics: Mathematics is seen as suffering from a lack of ontological “determinateness”, namely that this science (contrarily to many others) does not concern material data such that the concept of material truth is not available (especially in the case of the infinite). This tendency is embarrassing since on the other hand mathematical cognition is very often presented as cognition of the “greatest possible certainty” just because it seems not to be bound to material evidence, let alone experimental check.

The technical apparatus developed by the reductionist and set-theoretical approach nowadays serves other purposes, partly for the reason that tacit beliefs about sets were challenged; the explanations of the science which it provides are considered as irrelevant by the practitioners of this science. There is doubt that the above mentioned sufficient condition is also necessary; it is not even accepted throughout as a sufficient one. But what happens if some objects, as in the case of category theory, do not fulfill the condition? It seems that the reductionist approach, so to say, has been undocked from the historical development of the discipline in several respects; an alternative is required.

Anterior to Peirce, epistemology was dominated by the idea of a grasp of objects; since Descartes, intuition was considered throughout as a particular, innate capacity of cognition (even if idealists thought that it concerns the general, and empiricists that it concerns the particular). The task of this particular capacity was the foundation of epistemology; already from Aristotle’s first premisses of syllogism, what was aimed at was to go back to something first. In this traditional approach, it is by the ontology of the objects that one hopes to answer the fundamental question concerning the conditions for the possibility of the cognition of these objects. One hopes that there are simple “basic objects” to which the more complex objects can be reduced and whose cognition is possible by common sense – be this an innate or otherwise distinguished capacity of cognition common to all human beings. Here, epistemology is “wrapped up” in (or rests on) ontology; to do epistemology one has to do ontology first.

Peirce shares Kant’s opinion according to which the object depends on the subject; however, he does not agree that reason is the crucial means of cognition to be criticised. In his paper “Questions concerning certain faculties claimed for man”, he points out the basic assumption of pragmatist philosophy: every cognition is semiotically mediated. He says that there is no immediate cognition (a cognition which “refers immediately to its object”), but that every cognition “has been determined by a previous cognition” of the same object. Correspondingly, Peirce replaces critique of reason by critique of signs. He thinks that Kant’s distinction between the world of things per se (Dinge an sich) and the world of apparition (Erscheinungswelt) is not fruitful; he rather distinguishes the world of the subject and the world of the object, connected by signs; his position consequently is a “hypothetical realism” in which all cognitions are only valid with reservations. This position does not negate (nor assert) that the object per se (with the semiotical mediation stripped off) exists, since such assertions of “pure” existence are seen as necessarily hypothetical (that means, not withstanding philosophical criticism).

By his basic assumption, Peirce was led to reveal a problem concerning the subject matter of epistemology, since this assumption means in particular that there is no intuitive cognition in the classical sense (which is synonymous to “immediate”). Hence, one could no longer consider cognitions as objects; there is no intuitive cognition of an intuitive cognition. Intuition can be no more than a relation. “All the cognitive faculties we know of are relative, and consequently their products are relations”. According to this new point of view, intuition cannot any longer serve to found epistemology, in departure from the former reductionist attitude. A central argument of Peirce against reductionism or, as he puts it,

the reply to the argument that there must be a first is as follows: In retracing our way from our conclusions to premisses, or from determined cognitions to those which determine them, we finally reach, in all cases, a point beyond which the consciousness in the determined cognition is more lively than in the cognition which determines it.

Peirce gives some examples derived from physiological observations about perception, like the fact that the third dimension of space is inferred, and the blind spot of the retina. In this situation, the process of reduction loses its legitimacy since it no longer fulfills the function of cognition justification. At such a place, something happens which I would like to call an “exchange of levels”: the process of reduction is interrupted in that the things exchange the roles performed in the determination of a cognition: what was originally considered as determining is now determined by what was originally considered as asking for determination.

The idea that contents of cognition are necessarily provisional has an effect on the very concept of conditions for the possibility of cognitions. It seems that one can infer from Peirce’s words that what vouches for a cognition is not necessarily the cognition which determines it but the livelyness of our consciousness in the cognition. Here, “to vouch for a cognition” means no longer what it meant before (which was much the same as “to determine a cognition”), but it still means that the cognition is (provisionally) reliable. This conception of the livelyness of our consciousness roughly might be seen as a substitute for the capacity of intuition in Peirce’s epistemology – but only roughly, since it has a different coverage.

Metaphysics of the Semantics of HoTT. Thought of the Day 73.0

PMquw

Types and tokens are interpreted as concepts (rather than spaces, as in the homotopy interpretation). In particular, a type is interpreted as a general mathematical concept, while a token of a given type is interpreted as a more specific mathematical concept qua instance of the general concept. This accords with the fact that each token belongs to exactly one type. Since ‘concept’ is a pre-mathematical notion, this interpretation is admissible as part of an autonomous foundation for mathematics.

Expressions in the language are the names of types and tokens. Those naming types correspond to propositions. A proposition is ‘true’ just if the corresponding type is inhabited (i.e. there is a token of that type, which we call a ‘certificate’ to the proposition). There is no way in the language of HoTT to express the absence or non-existence of a token. The negation of a proposition P is represented by the type P → 0, where P is the type corresponding to proposition P and 0 is a type that by definition has no token constructors (corresponding to a contradiction). The logic of HoTT is not bivalent, since the inability to construct a token of P does not guarantee that a token of P → 0 can be constructed, and vice versa.

The rules governing the formation of types are understood as ways of composing concepts to form more complex concepts, or as ways of combining propositions to form more complex propositions. They follow from the Curry-Howard correspondence between logical operations and operations on types. However, we depart slightly from the standard presentation of the Curry-Howard correspondence, in that the tokens of types are not to be thought of as ‘proofs’ of the corresponding propositions but rather as certificates to their truth. A proof of a proposition is the construction of a certificate to that proposition by a sequence of applications of the token construction rules. Two different such processes can result in construction of the same token, and so proofs and tokens are not in one-to-one correspondence.

When we work formally in HoTT we construct expressions in the language according to the formal rules. These expressions are taken to be the names of tokens and types of the theory. The rules are chosen such that if a construction process begins with non-contradictory expressions that all name tokens (i.e. none of the expressions are ‘empty names’) then the result will also name a token (i.e. the rules preserve non-emptiness of names).

Since we interpret tokens and types as concepts, the only metaphysical commitment required is to the existence of concepts. That human thought involves concepts is an uncontroversial position, and our interpretation does not require that concepts have any greater metaphysical status than is commonly attributed to them. Just as the existence of a concept such as ‘unicorn’ does not require the existence of actual unicorns, likewise our interpretation of tokens and types as mathematical concepts does not require the existence of mathematical objects. However, it is compatible with such beliefs. Thus a Platonist can take the concept, say, ‘equilateral triangle’ to be the concept corresponding to the abstract equilateral triangle (after filling in some account of how we come to know about these abstract objects in a way that lets us form the corresponding concepts). Even without invoking mathematical objects to be the ‘targets’ of mathematical concepts, one could still maintain that concepts have a mind-independent status, i.e. that the concept ‘triangle’ continues to exist even while no-one is thinking about triangles, and that the concept ‘elliptic curve’ did not come into existence at the moment someone first gave the definition. However, this is not a necessary part of the interpretation, and we could instead take concepts to be mind-dependent, with corresponding implications for the status of mathematics itself.