Optimal Hedging…..

hedging

Risk management is important in the practices of financial institutions and other corporations. Derivatives are popular instruments to hedge exposures due to currency, interest rate and other market risks. An important step of risk management is to use these derivatives in an optimal way. The most popular derivatives are forwards, options and swaps. They are basic blocks for all sorts of other more complicated derivatives, and should be used prudently. Several parameters need to be determined in the processes of risk management, and it is necessary to investigate the influence of these parameters on the aims of the hedging policies and the possibility of achieving these goals.

The problem of determining the optimal strike price and optimal hedging ratio is considered, where a put option is used to hedge market risk under a constraint of budget. The chosen option is supposed to finish in-the-money at maturity in the, such that the predicted loss of the hedged portfolio is different from the realized loss. The aim of hedging is to minimize the potential loss of investment under a specified level of confidence. In other words, the optimal hedging strategy is to minimize the Value-at-Risk (VaR) under a specified level of risk.

A stock is supposed to be bought at time zero with price S0, and to be sold at time T with uncertain price ST. In order to hedge the market risk of the stock, the company decides to choose one of the available put options written on the same stock with maturity at time τ, where τ is prior and close to T, and the n available put options are specified by their strike prices Ki (i = 1, 2,··· , n). As the prices of different put options are also different, the company needs to determine an optimal hedge ratio h (0 ≤ h ≤ 1) with respect to the chosen strike price. The cost of hedging should be less than or equal to the predetermined hedging budget C. In other words, the company needs to determine the optimal strike price and hedging ratio under the constraint of hedging budget.

Suppose the market price of the stock is S0 at time zero, the hedge ratio is h, the price of the put option is P0, and the riskless interest rate is r. At time T, the time value of the hedging portfolio is

S0erT + hP0erT —– (1)

and the market price of the portfolio is

ST + h(K − Sτ)+ er(T−τ) —– (2)

therefore the loss of the portfolio is

L = (S0erT + hP0erT) − (ST +h(K−Sτ)+ er(T−τ)) —– (3)

where x+ = max(x, 0), which is the payoff function of put option at maturity.

For a given threshold v, the probability that the amount of loss exceeds v is denoted as

α = Prob{L ≥ v} —– (4)

in other words, v is the Value-at-Risk (VaR) at α percentage level. There are several alternative measures of risk, such as CVaR (Conditional Value-at-Risk), ESF (Expected Shortfall), CTE (Conditional Tail Expectation), and other coherent risk measures. The criterion of optimality is to minimize the VaR of the hedging strategy.

The mathematical model of stock price is chosen to be a geometric Brownian motion, i.e.

dSt/St = μdt + σdBt —– (5)

where St is the stock price at time t (0 < t ≤ T), μ and σ are the drift and the volatility of stock price, and Bt is a standard Brownian motion. The solution of the stochastic differential equation is

St = S0 eσBt + (μ−1/2σ2)t —– (6)

where B0 = 0, and St is lognormally distributed.

Proposition:

For a given threshold of loss v, the probability that the loss exceeds v is

Prob {L ≥ v} = E [I{X ≤ c1} FY (g(X) − X)] + E [I{X ≥ c1} FY (c2 − X)] —– (7)

where E[X] is the expectation of random variable X. I{X < c} is the index function of X such that I{X < c} = 1 when {X < c} is true, otherwise I{X < c} = 0. FY (y) is the cumulative distribution function of random variable Y , and

c1 = 1/σ [ln(K/S0) − (μ−1/2σ2)τ] ,

g(X) = 1/σ [(ln (S0 + hP0)erT − h (K − f(X)) er(T−τ) −v)/S0 − (μ − 1/2σ2) T],

f(X) = S0 eσX + (μ−1/2σ2)τ,

c2 = 1/σ [(ln (S0 + hP0) erT − v)/S0 − (μ− 1/2σ2) T

X and Y are both normally distributed, where X ∼ N(0,√τ), Y ∼ N(0,√(T−τ).

For a specified hedging strategy, Q(v) = Prob {L ≥ v} is a decreasing function of v. The VaR under α level can be obtained from equation

Q(v) = α —– (8)

The expectations in Proposition can be calculated with Monte Carlo simulation methods, and the optimal hedging strategy which has the smallest VaR can be obtained from equation (8) by numerical searching methods….

High Frequency Traders: A Case in Point.

Events on 6th May 2010:

At 2:32 p.m., against [a] backdrop of unusually high volatility and thinning liquidity, a large fundamental trader (a mutual fund complex) initiated a sell program to sell a total of 75,000 E-Mini [S&P 500 futures] contracts (valued at approximately $4.1 billion) as a hedge to an existing equity position. […] This large fundamental trader chose to execute this sell program via an automated execution algorithm (“Sell Algorithm”) that was programmed to feed orders into the June 2010 E-Mini market to target an execution rate set to 9% of the trading volume calculated over the previous minute, but without regard to price or time. The execution of this sell program resulted in the largest net change in daily position of any trader in the E-Mini since the beginning of the year (from January 1, 2010 through May 6, 2010). [. . . ] This sell pressure was initially absorbed by: high frequency traders (“HFTs”) and other intermediaries in the futures market; fundamental buyers in the futures market; and cross-market arbitrageurs who transferred this sell pressure to the equities markets by opportunistically buying E-Mini contracts and simultaneously selling products like SPY [(S&P 500 exchange-traded fund (“ETF”))], or selling individual equities in the S&P 500 Index. […] Between 2:32 p.m. and 2:45 p.m., as prices of the E-Mini rapidly declined, the Sell Algorithm sold about 35,000 E-Mini contracts (valued at approximately $1.9 billion) of the 75,000 intended. [. . . ] By 2:45:28 there were less than 1,050 contracts of buy-side resting orders in the E-Mini, representing less than 1% of buy-side market depth observed at the beginning of the day. [. . . ] At 2:45:28 p.m., trading on the E-Mini was paused for five seconds when the Chicago Mercantile Exchange (“CME”) Stop Logic Functionality was triggered in order to prevent a cascade of further price declines. […] When trading resumed at 2:45:33 p.m., prices stabilized and shortly thereafter, the E-Mini began to recover, followed by the SPY. [. . . ] Even though after 2:45 p.m. prices in the E-Mini and SPY were recovering from their severe declines, sell orders placed for some individual securities and Exchange Traded Funds (ETFs) (including many retail stop-loss orders, triggered by declines in prices of those securities) found reduced buying interest, which led to further price declines in those securities. […] [B]etween 2:40 p.m. and 3:00 p.m., over 20,000 trades (many based on retail-customer orders) across more than 300 separate securities, including many ETFs, were executed at prices 60% or more away from their 2:40 p.m. prices. [. . . ] By 3:08 p.m., [. . . ] the E-Mini prices [were] back to nearly their pre-drop level [. . . and] most securities had reverted back to trading at prices reflecting true consensus values.

In the ordinary course of business, HFTs use their technological advantage to profit from aggressively removing the last few contracts at the best bid and ask levels and then establishing new best bids and asks at adjacent price levels ahead of an immediacy-demanding customer. As an illustration of this “immediacy absorption” activity, consider the following stylized example, presented in Figure and described below.

Untitled 2

Suppose that we observe the central limit order book for a stock index futures contract. The notional value of one stock index futures contract is $50. The market is very liquid – on average there are hundreds of resting limit orders to buy or sell multiple contracts at either the best bid or the best offer. At some point during the day, due to temporary selling pressure, there is a total of just 100 contracts left at the best bid price of 1000.00. Recognizing that the queue at the best bid is about to be depleted, HFTs submit executable limit orders to aggressively sell a total of 100 contracts, thus completely depleting the queue at the best bid, and very quickly submit sequences of new limit orders to buy a total of 100 contracts at the new best bid price of 999.75, as well as to sell 100 contracts at the new best offer of 1000.00. If the selling pressure continues, then HFTs are able to buy 100 contracts at 999.75 and make a profit of $1,250 dollars among them. If, however, the selling pressure stops and the new best offer price of 1000.00 attracts buyers, then HFTs would very quickly sell 100 contracts (which are at the very front of the new best offer queue), “scratching” the trade at the same price as they bought, and getting rid of the risky inventory in a few milliseconds.

This type of trading activity reduces, albeit for only a few milliseconds, the latency of a price move. Under normal market conditions, this trading activity somewhat accelerates price changes and adds to the trading volume, but does not result in a significant directional price move. In effect, this activity imparts a small “immediacy absorption” cost on all traders, including the market makers, who are not fast enough to cancel the last remaining orders before an imminent price move.

This activity, however, makes it both costlier and riskier for the slower market makers to maintain continuous market presence. In response to the additional cost and risk, market makers lower their acceptable inventory bounds to levels that are too small to offset temporary liquidity imbalances of any significant size. When the diminished liquidity buffer of the market makers is pierced by a sudden order flow imbalance, they begin to demand a progressively greater compensation for maintaining continuous market presence, and prices start to move directionally. Just as the prices are moving directionally and volatility is elevated, immediacy absorption activity of HFTs can exacerbate a directional price move and amplify volatility. Higher volatility further increases the speed at which the best bid and offer queues are being depleted, inducing HFT algorithms to demand immediacy even more, fueling a spike in trading volume, and making it more costly for the market makers to maintain continuous market presence. This forces more risk averse market makers to withdraw from the market, which results in a full-blown market crash.

Empirically, immediacy absorption activity of the HFTs should manifest itself in the data very differently from the liquidity provision activity of the Market Makers. To establish the presence of these differences in the data, we test the following hypotheses:

Hypothesis H1: HFTs are more likely than Market Makers to aggressively execute the last 100 contracts before a price move in the direction of the trade. Market Makers are more likely than HFTs to have the last 100 resting contracts against which aggressive orders are executed.

Hypothesis H2: HFTs trade aggressively in the direction of the price move. Market Makers get run over by a price move.

Hypothesis H3: Both HFTs and Market Makers scratch trades, but HFTs scratch more.

To statistically test our “immediacy absorption” hypotheses against the “liquidity provision” hypotheses, we divide all of the trades during the 405 minute trading day into two subsets: Aggressive Buy trades and Aggressive Sell trades. Within each subset, we further aggregate multiple aggressive buy or sell transactions resulting from the execution of the same order into Aggressive Buy or Aggressive Sell sequences. The intuition is as follows. Often a specific trade is not a stand alone event, but a part of a sequence of transactions associated with the execution of the same order. For example, an order to aggressively sell 10 contracts may result in four Aggressive Sell transactions: for 2 contracts, 1 contract, 4 contracts, and 3 contracts, respectively, due to the specific sequence of resting bids against which this aggressive sell order was be executed. Using the order ID number, we are able to aggregate these four transactions into one Aggressive Sell sequence for 10 contracts.

Testing Hypothesis H1. Aggressive removal of the last 100 contracts by HFTs; passive provision of the last 100 resting contracts by the Market Makers. Using the Aggressive Buy sequences, we label as a “price increase event” all occurrences of trading sequences in which at least 100 contracts consecutively executed at the same price are followed by some number of contracts at a higher price. To examine indications of low latency, we focus on the the last 100 contracts traded before the price increase and the first 100 contracts at the next higher price (or fewer if the price changes again before 100 contracts are executed). Although we do not look directly at the limit order book data, price increase events are defined to capture occasions where traders use executable buy orders to lift the last remaining offers in the limit order book. Using Aggressive sell trades, we define “price decrease events” symmetrically as occurrences of sequences of trades in which 100 contracts executed at the same price are followed by executions at lower prices. These events are intended to capture occasions where traders use executable sell orders to hit the last few best bids in the limit order book. The results are presented in Table below

Untitled 2

For price increase and price decrease events, we calculate each of the six trader categories’ shares of Aggressive and Passive trading volume for the last 100 contracts traded at the “old” price level before the price increase or decrease and the first 100 contracts traded at the “new” price level (or fewer if the number of contracts is less than 100) after the price increase or decrease event.

Table above presents, for the six trader categories, volume shares for the last 100 contracts at the old price and the first 100 contracts at the new price. For comparison, the unconditional shares of aggressive and passive trading volume of each trader category are also reported. Table has four panels covering (A) price increase events on May 3-5, (B) price decrease events on May 3-5, (C) price increase events on May 6, and (D) price decrease events on May 6. In each panel there are six rows of data, one row for each trader category. Relative to panels A and C, the rows for Fundamental Buyers (BUYER) and Fundamental Sellers (SELLER) are reversed in panels B and D to emphasize the symmetry between buying during price increase events and selling during price decrease events. The first two columns report the shares of Aggressive and Passive contract volume for the last 100 contracts before the price change; the next two columns report the shares of Aggressive and Passive volume for up to the next 100 contracts after the price change; and the last two columns report the “unconditional” market shares of Aggressive and Passive sides of all Aggressive buy volume or sell volume. For May 3-5, the data are based on volume pooled across the three days.

Consider panel A, which describes price increase events associated with Aggressive buy trades on May 3-5, 2010. High Frequency Traders participated on the Aggressive side of 34.04% of all aggressive buy volume. Strongly consistent with immediacy absorption hypothesis, the participation rate rises to 57.70% of the Aggressive side of trades on the last 100 contracts of Aggressive buy volume before price increase events and falls to 14.84% of the Aggressive side of trades on the first 100 contracts of Aggressive buy volume after price increase events.

High Frequency Traders participated on the Passive side of 34.33% of all aggressive buy volume. Consistent with hypothesis, the participation rate on the Passive side of Aggressive buy volume falls to 28.72% of the last 100 contracts before a price increase event. It rises to 37.93% of the first 100 contracts after a price increase event.

These results are inconsistent with the idea that high frequency traders behave like textbook market makers, suffering adverse selection losses associated with being picked off by informed traders. Instead, when the price is about to move to a new level, high frequency traders tend to avoid being run over and take the price to the new level with Aggressive trades of their own.

Market Makers follow a noticeably more passive trading strategy than High Frequency Traders. According to panel A, Market Makers are 13.48% of the Passive side of all Aggressive trades, but they are only 7.27% of the Aggressive side of all Aggressive trades. On the last 100 contracts at the old price, Market Makers’ share of volume increases only modestly, from 7.27% to 8.78% of trades. Their share of Passive volume at the old price increases, from 13.48% to 15.80%. These facts are consistent with the interpretation that Market Makers, unlike High Frequency Traders, do engage in a strategy similar to traditional passive market making, buying at the bid price, selling at the offer price, and suffering losses when the price moves against them. These facts are also consistent with the hypothesis that High Frequency Traders have lower latency than Market Makers.

Intuition might suggest that Fundamental Buyers would tend to place the Aggressive trades which move prices up from one tick level to the next. This intuition does not seem to be corroborated by the data. According to panel A, Fundamental Buyers are 21.53% of all Aggressive trades but only 11.61% of the last 100 Aggressive contracts traded at the old price. Instead, Fundamental Buyers increase their share of Aggressive buy volume to 26.17% of the first 100 contracts at the new price.

Taking into account symmetry between buying and selling, panel B shows the results for Aggressive sell trades during May 3-5, 2010, are almost the same as the results for Aggressive buy trades. High Frequency Traders are 34.17% of all Aggressive sell volume, increase their share to 55.20% of the last 100 Aggressive sell contracts at the old price, and decrease their share to 15.04% of the last 100 Aggressive sell contracts at the new price. Market Makers are 7.45% of all Aggressive sell contracts, increase their share to only 8.57% of the last 100 Aggressive sell trades at the old price, and decrease their share to 6.58% of the last 100 Aggressive sell contracts at the new price. Fundamental Sellers’ shares of Aggressive sell trades behave similarly to Fundamental Buyers’ shares of Aggressive Buy trades. Fundamental Sellers are 20.91% of all Aggressive sell contracts, decrease their share to 11.96% of the last 100 Aggressive sell contracts at the old price, and increase their share to 24.87% of the first 100 Aggressive sell contracts at the new price.

Panels C and D report results for Aggressive Buy trades and Aggressive Sell trades for May 6, 2010. Taking into account symmetry between buying and selling, the results for Aggressive buy trades in panel C are very similar to the results for Aggressive sell trades in panel D. For example, Aggressive sell trades by Fundamental Sellers were 17.55% of Aggressive sell volume on May 6, while Aggressive buy trades by Fundamental Buyers were 20.12% of Aggressive buy volume on May 6. In comparison with the share of Fundamental Buyers and in comparison with May 3-5, the Flash Crash of May 6 is associated with a slightly lower – not higher – share of Aggressive sell trades by Fundamental Sellers.

The number of price increase and price decrease events increased dramatically on May 6, consistent with the increased volatility of the market on that day. On May 3-5, there were 4100 price increase events and 4062 price decrease events. On May 6 alone, there were 4101 price increase events and 4377 price decrease events. There were therefore approximately three times as many price increase events per day on May 6 as on the three preceding days.

A comparison of May 6 with May 3-5 reveals significant changes in the trading patterns of High Frequency Traders. Compared with May 3-5 in panels A and B, the share of Aggressive trades by High Frequency Traders drops from 34.04% of Aggressive buys and 34.17% of Aggressive sells on May 3-5 to 26.98% of Aggressive buy trades and 26.29% of Aggressive sell trades on May 6. The share of Aggressive trades for the last 100 contracts at the old price declines by even more. High Frequency Traders’ participation rate on the Aggressive side of Aggressive buy trades drops from 57.70% on May 3-5 to only 38.86% on May 6. Similarly, the participation rate on the Aggressive side of Aggressive sell trades drops from and 55.20% to 38.67%. These declines are largely offset by increases in the participation rate by Opportunistic Traders on the Aggressive side of trades. For example, Opportunistic Traders’ share of the Aggressive side of the last 100 contracts traded at the old price rises from 19.21% to 34.26% for Aggressive buys and from 20.99% to 33.86% for Aggressive sells. These results suggest that some Opportunistic Traders follow trading strategies for which low latency is important, such as index arbitrage, cross-market arbitrage, or opportunistic strategies mimicking market making.

Testing Hypothesis H2. HFTs trade aggressively in the direction of the price move; Market Makers get run over by a price move. To examine this hypothesis, we analyze whether High Frequency Traders use Aggressive trades to trade in the direction of contemporaneous price changes, while Market Makers use Passive trades to trade in the opposite direction from price changes. To this end, we estimate the regression equation

Δyt = α + Φ . Δyt-1 + δ . yt-1 + Σi=120i . Δpt-1 /0.25] + εt

(where yt and Δyt denote inventories and change in inventories of High Frequency Traders for each second of a trading day; t = 0 corresponds to the opening of stock trading on the NYSE at 8:30:00 a.m. CT (9:30:00 ET) and t = 24, 300 denotes the close of Globex at 15:15:00 CT (4:15 p.m. ET); Δpt denotes the price change in index point units between the high-low midpoint of second t-1 and the high-low midpoint of second t. Regressing second-by-second changes in inventory levels of High Frequency Traders on the level of their inventories the previous second, the change in their inventory levels the previous second, the change in prices during the current second, and lagged price changes for each of the previous 20 previous seconds.)

for Passive and Aggressive inventory changes separately.

Untitled

Table above presents the regression results of the two components of change in holdings on lagged inventory, lagged change in holdings and lagged price changes over one second intervals. Panel A and Panel B report the results for May 3-5 and May 6, respectively. Each panel has four columns, reporting estimated coefficients where the dependent variables are net Aggressive volume (Aggressive buys minus Aggressive sells) by High Frequency Traders (∆AHFT), net Passive volume by High Frequency Traders (∆PHFT), net Aggressive volume by Market Makers (∆AMM), and net Passive volume by Market Makers (∆PMM).

We observe that for lagged inventories (NPHFTt−1), the estimated coefficients for Aggressive and Passive trades by High Frequency Traders are δAHFT = −0.005 (t = −9.55) and δPHFT = −0.001 (t = −3.13), respectively. These coefficient estimates have the interpretation that High Frequency Traders use Aggressive trades to liquidate inventories more intensively than passive trades. In contrast, the results for Market Makers are very different. For lagged inventories (NPMMt−1), the estimated coefficients for Aggressive and Passive volume by Market Makers are δAMM = −0.002 (t = −6.73) and δPMM = −0.002 (t = −5.26), respectively. The similarity of these coefficients estimates has the interpretation that Market Makers favor neither Aggressive trades nor Passive trades when liquidating inventories.

For contemporaneous price changes (in the current second) (∆Pt−1), the estimated coefficient Aggressive and Passive volume by High Frequency Traders are β0 = 57.78 (t = 31.94) and β0 = −25.69 (t = −28.61), respectively. For Market Makers, the estimated coefficients for Aggressive and Passive trades are β0 = 6.38 (t = 18.51) and β0 = −19.92 (t = −37.68). These estimated coefficients have the interpretation that in seconds in which prices move up one tick, High Frequency traders are net buyers of about 58 contracts with Aggressive trades and net sellers of about 26 contracts with Passive trades in that same second, while Market Makers are net buyers of about 6 contracts with Aggressive trades and net sellers of about 20 contracts with Passive trades. High Frequency Traders and Market Makers are similar in that they both use Aggressive trades to trade in the direction of price changes, and both use Passive trades to trade against the direction of price changes. High Frequency Traders and Market Makers are different in that Aggressive net purchases by High Frequency Traders are greater in magnitude than the Passive net purchases, while the reverse is true for Market Makers.

For lagged price changes, coefficient estimates for Aggressive trades by High Frequency Traders and Market Makers are positive and statistically significant at lags 1-4 and lags 1-10, respectively. These results have the interpretation that both High Frequency Traders’ and Market Makers’ trade on recent price momentum, but the trading is compressed into a shorter time frame for High Frequency Traders than for Market Makers.

For lagged price changes, coefficient estimates for Passive volume by High Frequency Traders and Market Makers are negative and statistically significant at lags 1 and lags 1-3, respectively. Panel B of Table presents results for May 6. Similar to May 3-5, High Frequency Traders tend to use Aggressive trades more intensely than Passive trades to liquidate inventories, while Market Makers do not show this pattern. Also similar to May 3-5, High Frequency Trades and Market makers use Aggressive trades to trade in the contemporaneous direction of price changes and use Passive trades to trade in the direction opposite price changes, with Aggressive trading greater than Passive trading for High Frequency Traders and the reverse for Market Makers. In comparison with May 3-5, the coefficients are smaller in magnitude on May 6, indicating reduced liquidity at each tick. For lagged price changes, the coefficients associated with Aggressive trading by High Frequency Traders change from positive to negative at lags 1-4, and the positive coefficients associated with Aggressive trading by Market Makers change from being positive and statistically significant at lags lags 1-10 to being positive and statistically significant only at lags 1-3. These results illustrate accelerated trading velocity in the volatile market conditions of May 6.

We further examine how high frequency trading activity is related to market prices. Figure below illustrates how prices change after HFT trading activity in a given second. The upper-left panel presents results for buy trades for May 3-5, the upper right panel presents results for buy trades on May 6, and the lower-left and lower-right present corresponding results for sell trades. For an “event” second in which High Frequency Traders are net buyers, net Aggressive Buyers, and net Passive Buyers value-weighted average prices paid by the High Frequency Traders in that second are subtracted from the value-weighted average prices for all trades in the same second and each of the following 20 seconds. The results are averaged across event seconds, weighted by the magnitude of High Frequency Traders’ net position change in the event second. The upper-left panel presents results for May 3-5, the upper-right panel presents results for May 6, and the lower two panels present results for sell trades calculated analogously. Price differences on the vertical axis are scaled so that one unit equals one tick ($12.50 per contract).

Untitled 2

When High Frequency Traders are net buyers on May 3-5, prices rise by 17% of a tick in the next second. When HFTs execute Aggressively or Passively, prices rise by 20% and 2% of a tick in the next second, respectively. In subsequent seconds, prices in all cases trend downward by about 5% of a tick over the subsequent 19 seconds. For May 3-5, the results are almost symmetric for selling.

When High Frequency Traders are buying on May 6, prices increase by 7% of a tick in the next second. When they are aggressive buyers or passive buyers, prices increase by increase 25% of a tick or decrease by 5% of a tick in the next second, respectively. In subsequent seconds, prices generally tend to drift downwards. The downward drift is especially pronounced after Passive buying, consistent with the interpretation that High Frequency Traders were “run over” when their resting limit buy orders were “run over” in the down phase of the Flash Crash. When High Frequency Traders are net sellers, the results after one second are analogous to buying. After aggressive selling, prices continue to drift down for 20 seconds, consistent with the interpretation that High Frequency Traders made profits from Aggressive sales during the down phase of the Flash Crash.

Testing Hypothesis H3. Both HFTs and Market Makers scratch trades; HFTs scratch more. A textbook market maker will try to buy at the bid price, sell at the offer price, and capture the bid-ask spread as a profit. Sometimes, after buying at the bid price, market prices begin to fall before the market maker can make a one tick profit by selling his inventory at the best offer price. To avoid taking losses in this situation, one component of a traditional market making strategy is to “scratch trades in the presence of changing market conditions by quickly liquidating a position at the same price at which it was acquired. These scratched trades represent inventory management trades designed to lower the cost of adverse selection. Since many competing market makers may try to scratch trades at the same time, traders with the lowest latency will tend to be more successful in their attempts to scratch trades and thus more successful in their ability to avoid losses when market conditions change.

To examine whether and to what extent traders engage in trade scratching, we sequence each trader’s trades for the day using audit trail sequence numbers which not only sort trades by second but also sort trades chronologically within each second. We define an “immediately scratched trade” as a trade with the properties that the next trade in the sorted sequence (1) occurred in the same second, (2) was executed at the same price, (3) was in the opposite direction, i.e., buy followed by sell or sell followed by buy. For each of the trading accounts in our sample, we calculate the number of immediately scratched trades, then compare the number of scratched trades across the six trader categories.

The results of this analysis are presented in the table below. Panel A provides results for May 3-5 and panel B for May 6. In each panel, there are five rows of data, one for each trader category. The first three columns report the total number of trades, the total number of immediately scratched trades, and the percentage of trades that are immediately scratched by traders in five categories. For May 3-6, the reported numbers are from the pooled data.

Untitled 2

This table presents statistics for immediate trade scratching which measures how many times a trader changes his/her direction of trading in a second aggregated over a day. We define a trade direction change as a buy trade right after a sell trade or vice versa at the same price level in the same second.

This table shows that High Frequency Traders scratched 2.84 % of trades on May 3-5 and 4.26 % on May 6; Market Makers scratched 2.49 % of trades on May 3-5 and 5.53 % of trades on May 6. While the percentages of immediately scratched trades by Market Makers is slightly higher than that for High Frequency Traders on May 6, the percentages for both groups are very similar. The fourth, fifth, and sixth columns of the Table report the mean, standard deviation, and median of the number of scratched trades for the traders in each category.

Although the percentages of scratched trades are similar, the mean number of immediately scratched trades by High Frequency Traders is much greater than for Market Makers: 540.56 per day on May 3-5 and 1610.75 on May 6 for High Frequency Traders versus 13.35 and 72.92 for Market Makers. The differences between High Frequency Traders and Market Makers reflect differences in volume traded. The Table shows that High Frequency Traders and Market Makers scratch a significantly larger percentage of their trades than other trader categories.

Sustainability of Debt

death scythe

For economies with fractional reserve-generated fiat money, balancing the budget is characterized by an exponential growth D(t) ≈ D0(1 + r)t of any initial debt D0 subjected to interest r as a function of time t due to the compound interest; a fact known since antiquity. At the same time, besides default, this increasing debt can only be reduced by the following five mostly linear, measures:

(i) more income or revenue I (in the case of sovereign debt: higher taxation or higher tax base);

(ii) less spending S;

(iii) increase of borrowing L;

(iv) acquisition of external resources, and

(v) inflation; that is, devaluation of money.

Whereas (i), (ii) and (iv) without inflation are essentially measures contributing linearly (or polynomially) to the acquisition or compensation of debt, inflation also grows exponentially with time t at some (supposedly constant) rate f ≥ 1; that is, the value of an initial debt D0, without interest (r = 0), in terms of the initial values, gets reduced to F(t) = D0/ft. Conversely, the capacity of an economy to compensate debt will increase with compound inflation: for instance, the initial income or revenue I will, through adaptions, usually increase exponentially with time in an inflationary regime by Ift.

Because these are the only possibilities, we can consider such economies as closed systems (with respect to money flows), characterized by the (continuity) equation

Ift + S + L ≈ D0(1+r)t, or

L ≈ D0(1 + r)t − Ift − S.

Let us concentrate on sovereign debt and briefly discuss the fiscal, social and political options. With regards to the five ways to compensate debt the following assumptions will be made: First, in non-despotic forms of governments (e.g., representative democracies and constitutional monarchies), increases of taxation, related to (i), as well as spending cuts, related to (ii), are very unpopular, and can thus be enforced only in very limited, that is polynomial, forms.

Second, the acquisition of external resources, related to (iv), are often blocked for various obvious reasons; including military strategy limitations, and lack of opportunities. We shall therefore disregard the acquisition of external resources entirely and set A = 0.

As a consequence, without inflation (i.e., for f = 1), the increase of debt

L ≈ D0(1 + r)t − I − S

grows exponentially. This is only “felt” after trespassing a quasi-linear region for which, due to a Taylor expansion around t = 0, D(t) = D0(1 + r)t ≈ D0 + D0rt.

So, under the political and social assumptions made, compound debt without inflation is unsustainable. Furthermore, inflation, with all its inconvenient consequences and re-appropriation, seems inevitable for the continuous existence of economies based on fractional reserve generated fiat money; at least in the long run.

High Frequency Markets and Leverage

0*o9wpWk6YyXYGxntK

Leverage effect is a well-known stylized fact of financial data. It refers to the negative correlation between price returns and volatility increments: when the price of an asset is increasing, its volatility drops, while when it decreases, the volatility tends to become larger. The name “leverage” comes from the following interpretation of this phenomenon: When an asset price declines, the associated company becomes automatically more leveraged since the ratio of its debt with respect to the equity value becomes larger. Hence the risk of the asset, namely its volatility, should become more important. Another economic interpretation of the leverage effect, inverting causality, is that the forecast of an increase of the volatility should be compensated by a higher rate of return, which can only be obtained through a decrease in the asset value.

Some statistical methods enabling us to use high frequency data have been built to measure volatility. In financial engineering, it has become clear in the late eighties that it is necessary to introduce leverage effect in derivatives pricing frameworks in order to accurately reproduce the behavior of the implied volatility surface. This led to the rise of famous stochastic volatility models, where the Brownian motion driving the volatility is (negatively) correlated with that driving the price for stochastic volatility models.

Traditional explanations for leverage effect are based on “macroscopic” arguments from financial economics. Could microscopic interactions between agents naturally lead to leverage effect at larger time scales? We would like to know whether part of the foundations for leverage effect could be microstructural. To do so, our idea is to consider a very simple agent-based model, encoding well-documented and understood behaviors of market participants at the microscopic scale. Then we aim at showing that in the long run, this model leads to a price dynamic exhibiting leverage effect. This would demonstrate that typical strategies of market participants at the high frequency level naturally induce leverage effect.

One could argue that transactions take place at the finest frequencies and prices are revealed through order book type mechanisms. Therefore, it is an obvious fact that leverage effect arises from high frequency properties. However, under certain market conditions, typical high frequency behaviors, having probably no connection with the financial economics concepts, may give rise to some leverage effect at the low frequency scales. It is important to emphasize that leverage effect should be fully explained by high frequency features.

Another important stylized fact of financial data is the rough nature of the volatility process. Indeed, for a very wide range of assets, historical volatility time-series exhibit a behavior which is much rougher than that of a Brownian motion. More precisely, the dynamics of the log-volatility are typically very well modeled by a fractional Brownian motion with Hurst parameter around 0.1, that is a process with Hölder regularity of order 0.1. Furthermore, using a fractional Brownian motion with small Hurst index also enables to reproduce very accurately the features of the volatility surface.

hurst_fbm

The fact that for basically all reasonably liquid assets, volatility is rough, with the same order of magnitude for the roughness parameter, is of course very intriguing. Tick-by-tick price model is based on a bi-dimensional Hawkes process, which is a bivariate point process (Nt+, Nt)t≥0 taking values in (R+)2 and with intensity (λ+t, λt) of the form

Untitled

Here μ+ and μ are positive constants and the functions (φi)i=1,…4 are non-negative with associated matrix called kernel matrix. Hawkes processes are said to be self-exciting, in the sense that the instantaneous jump probability depends on the location of the past events. Hawkes processes are nowadays of standard use in finance, not only in the field of microstructure but also in risk management or contagion modeling. The Hawkes process generates behavior that mimics financial data in a pretty impressive way. And back-fitting, yields coorespndingly good results.  Some key problems remain the same whether you use a simple Brownian motion model or this marvelous technical apparatus.

In short, back-fitting only goes so far.

  • The essentially random nature of living systems can lead to entirely different outcomes if said randomness had occurred at some other point in time or magnitude. Due to randomness, entirely different groups would likely succeed and fail every time the “clock” was turned back to time zero, and the system allowed to unfold all over again. Goldman Sachs would not be the “vampire squid”. The London whale would never have been. This will boggle the mind if you let it.

  • Extraction of unvarying physical laws governing a living system from data is in many cases is NP-hard. There are far many varieties of actors and variety of interactions for the exercise to be tractable.

  • Given the possibility of their extraction, the nature of the components of a living system are not fixed and subject to unvarying physical laws – not even probability laws.

  • The conscious behavior of some actors in a financial market can change the rules of the game, some of those rules some of the time, or complete rewire the system form the bottom-up. This is really just an extension of the former point.

  • Natural mutations over time lead to markets reworking their laws over time through an evolutionary process, with never a thought of doing so.

ee2bb4_8eaf3fa3c14d4960aceae022db54340c

Thus, in this approach, Nt+ corresponds to the number of upward jumps of the asset in the time interval [0,t] and Nt to the number of downward jumps. Hence, the instantaneous probability to get an upward (downward) jump depends on the arrival times of the past upward and downward jumps. Furthermore, by construction, the price process lives on a discrete grid, which is obviously a crucial feature of high frequency prices in practice.

This simple tick-by-tick price model enables to encode very easily the following important stylized facts of modern electronic markets in the context of high frequency trading:

  1. Markets are highly endogenous, meaning that most of the orders have no real economic motivation but are rather sent by algorithms in reaction to other orders.
  2. Mechanisms preventing statistical arbitrages take place on high frequency markets. Indeed, at the high frequency scale, building strategies which are on average profitable is hardly possible.
  3. There is some asymmetry in the liquidity on the bid and ask sides of the order book. This simply means that buying and selling are not symmetric actions. Indeed, consider for example a market maker, with an inventory which is typically positive. She is likely to raise the price by less following a buy order than to lower the price following the same size sell order. This is because its inventory becomes smaller after a buy order, which is a good thing for her, whereas it increases after a sell order.
  4. A significant proportion of transactions is due to large orders, called metaorders, which are not executed at once but split in time by trading algorithms.

    In a Hawkes process framework, the first of these properties corresponds to the case of so-called nearly unstable Hawkes processes, that is Hawkes processes for which the stability condition is almost saturated. This means the spectral radius of the kernel matrix integral is smaller than but close to unity. The second and third ones impose a specific structure on the kernel matrix and the fourth one leads to functions φi with heavy tails.

The Political: NRx, Neoreactionism Archived.

This one is eclectic and for the record.

dark-enlightenment-map-1-5

The techno-commercialists appear to have largely arrived at neoreaction via right-wing libertarianism. They are defiant free marketeers, sharing with other ultra-capitalists such as Randian Objectivists a preoccupation with “efficiency,” a blind trust in the power of the free market, private property, globalism and the onward march of technology. However, they are also believers in the ideal of small states, free movement and absolute or feudal monarchies with no form of democracy. The idea of “exit,” predominantly a techno-commercialist viewpoint but found among other neoreactionaries too, essentially comes down to the idea that people should be able to freely exit their native country if they are unsatisfied with its governance-essentially an application of market economics and consumer action to statehood. Indeed, countries are often described in corporate terms, with the King being the CEO and the aristocracy shareholders.

The “theonomists” place more emphasis on the religious dimension of neoreaction. They emphasise tradition, divine law, religion rather than race as the defining characteristic of “tribes” of peoples and traditional, patriarchal families. They are the closest group in terms of ideology to “classical” or, if you will, “palaeo-reactionaries” such as the High Tories, the Carlists and French Ultra-royalists. Often Catholic and often ultramontanist. Finally, there’s the “ethnicist” lot, who believe in racial segregation and have developed a new form of racial ideology called “Human Biodiversity” (HBD) which says people of African heritage are naturally less intelligent than people of Caucasian and east Asian heritage. Of course, the scientific community considers the idea that there are any genetic differences between human races beyond melanin levels in the skin and other cosmetic factors to be utterly false, but presumably this is because they are controlled by “The Cathedral.” They like “tribal solidarity,” tribes being defined by shared ethnicity, and distrust outsiders.

dark-enlightenment

Overlap between these groups is considerable, but there are also vast differences not just between them but within them. What binds them together is common opposition to “The Cathedral” and to “progressive” ideology. Some of their criticisms of democracy and modern society are well-founded, and some of them make good points in defence of the monarchical system. However, I don’t much like them, and I doubt they’d much like me.

Whereas neoreactionaries are keen on the free market and praise capitalism, unregulated capitalism is something I am wary of. Capitalism saw the collapse of traditional monarchies in Europe in the 19th century, and the first revolutions were by capitalists seeking to establish democratic, capitalist republics where the bourgeoisie replaced the aristocratic elite as the ruling class; setting an example revolutionary socialists would later follow. Capitalism, when unregulated, leads to monopolies, exploitation of the working class, unsustainable practices in pursuit of increased short-term profits, globalisation and materialism. Personally, I prefer distributist economics, which embrace private property rights but emphasise widespread ownership of wealth, small partnerships and cooperatives replacing private corporations as the basic units of the nation’s economy. And although critical of democracy, the idea that any form of elected representation for the lower classes is anathaema is not consistent with my viewpoint; my ideal government would not be absolute or feudal monarchy, but executive constitutional monarchy with a strong monarch exercising executive powers and the legislative role being at least partially controlled by an elected parliament-more like the Bourbon Restoration than the Ancien Régime, though I occasionally say “Vive l’Ancien Régime!” on forums or in comments to annoy progressive types. Finally, I don’t believe in racialism in any form. I tend to attribute preoccupations with racial superiority to deep insecurity which people find the need to suppress by convincing themselves that they are “racially superior” to others, in absence of any actual talent or especial ability to take pride in. The 20th century has shown us where dividing people up based on their genetics leads us, and it is not somewhere I care to return to.

I do think it is important to go into why Reactionaries think Cthulhu always swims left, because without that they’re vulnerable to the charge that they have no a priori reason to expect our society to have the biases it does, and then the whole meta-suspicion of the modern Inquisition doesn’t work or at least doesn’t work in that particular direction. Unfortunately (for this theory) I don’t think their explanation is all that great (though this deserves substantive treatment) and we should revert to a strong materialist prior, but of course I would say that, wouldn’t I.

And of course you could get locked up for wanting fifty Stalins! Just try saying how great Enver Hoxha was at certain places and times. Of course saying you want fifty Stalins is not actually advocating that Stalinism become more like itself – as Leibniz pointed out, a neat way of telling whether something is something is checking whether it is exactly like that thing, and nothing could possibly be more like Stalinism than Stalinism. Of course fifty Stalins is further in the direction that one Stalin is from our implied default of zero Stalins. But then from an implied default of 1.3 kSt it’s a plea for moderation among hypostalinist extremists. As Mayberry Mobmuck himself says, “sovereign is he who determines the null hypothesis.”

Speaking of Stalinism, I think it does provide plenty of evidence that policy can do wonderful things for life expectancy and so on, and I mean that in a totally unironic “hail glorious comrade Stalin!” way, not in a “ha ha Stalin sure did kill a lot people way.” But this is a super-unintuitive claim to most people today, so ill try to get around to summarizing the evidence at some point.

‘Neath an eyeless sky, the inkblack sea
Moves softly, utters not save a quiet sound
A lapping-sound, not saying what may be
The reach of its voice a furthest bound;
And beyond it, nothing, nothing known
Though the wind the boat has gently blown
Unsteady on shifting and traceless ground
And quickly away from it has flown.

Allow us a map, and a lamp electric
That by instrument we may probe the dark
Unheard sounds and an unseen metric
Keep alive in us that unknown spark
To burn bright and not consume or mar
Has the unbounded one come yet so far
For night over night the days to mark
His journey — adrift, without a star?

Chaos is the substrate, and the unseen action (or non-action) against disorder, the interloper. Disorder is a mere ‘messing up order’.  Chaos is substantial where disorder is insubstantial. Chaos is the ‘quintessence’ of things, chaotic itself and yet always-begetting order. Breaking down disorder, since disorder is maladaptive. Exit is a way to induce bifurcation, to quickly reduce entropy through separation from the highly entropic system. If no immediate exit is available, Chaos will create one.

Market Liquidity

market-liquidity-graphic-1_0

The notion of market liquidity is nowadays almost ubiquitous. It quantifies the ability of a financial market to match buyers and sellers in an efficient way, without causing a significant movement in the price, thus delivering low transaction costs. It is the lifeblood of financial markets without which market dislocations can show as in the recent well documented crisis: 2007 Yen carry trade unwind, 2008 Credit Crunch, May 6th 2010 Flash Crash or the numerous Mini Flash Crashes occurring in US equity markets, but also in many others cases that go unnoticed but are potent candidates to become more important. While omnipresent, liquidity is an elusive concept. Several reasons may account for this ambiguity; some markets, such as the foreign exchange (FX) market with the daily turnover of $5.3 trillion (let’s say), are mistakenly assumed to be extremely liquid, whereas the generated volume is equated with liquidity. Secondly, the structure of modern markets with its high degree of decentralization generates fragmentation and low transparency of transactions which complicates the way to define market liquidity as a whole. Aggregating liquidity from all trading sources can be quite daunting and even with all of the market fragmentation, as new venues with different market structure continue to be launched. Furthermore, the landscape is continuously changing as new players emerge, such as high frequency traders that have taken over the role of liquidity intermediation in many markets, accounting between 50% and 70%  (and ever rising) of all trading. Last, but not least, important participants influencing the markets are the central banks with their myriad of market interventions, whereas it is indirectly through monetization of substantial amount of sovereign and mortgage debt with various quantitative easing programs, or in a direct manner as with Swiss National Bank setting the floor on EUR/CHF exchange rate, providing plenty of arguments they have overstepped their role of last resort liquidity providers and at this stage they hamper market liquidity, potentially exposing themselves to massive losses in the near future.

Despite the obvious importance of liquidity there is little agreement on the best way to measure and define market liquidity. Liquidity measures can be classified into different categories. Volume-based measures: liquidity ratio, Martin index, Hui and Heubel ratio, turnover ratio, market adjusted liquidity index, where, over a fixed period of time, the exchanged volume is compared to price changes. This class implies that non-trivial assumptions are made about the relation between volume and price movements. Other classes of measures include price based measures: Marsh and Rock ratio, variance ratio, vector autoregressive models; transaction costs based measures: spread, implied spread, absolute spread or relative spread see; or time based measures: number of transactions or orders per time unit. The aforementioned approaches suffer from many drawbacks. They provide a top-down approach of analysing a complex system, where the impact of the variation of liquidity is analysed rather than providing a bottom-up approach where liquidity lacking times are identified and quantified. These approaches also suffer from a specific choice of physical time, that does not reflect the correct and multi-scale nature of any financial market. Liquidity is defined as an information theoretic measurement that characterises the unlikeliness of price trajectories and argue that this new metric has the ability to detect and predict stress in financial markets and show examples within the FX market, so that the optimal choice of scales is derived using the Maximum Entropy Principle.

Unconditional Accelerationists: Park Chung-Hee and Napoleon

Land’s Teleoplexy,

Some instance of intermediate individuation—most obviously the state—could be strategically invested by a Left Accelerationism. precisely in order to submit the virtual-teleoplexic lineage of Terrestrial Capitalism (or Techonomic Singularity) to effacement and disruption.

For the unconditional accelerationist as much as for the social historian, of course, the voluntarist quality of this image is a lie. Napoleon’s supposed flight from history can amply be recuperated within the process of history itself, if only we revise our image of what this is: not a flat space or a series of smooth curves, but rather a tangled, homeorhetic, deep-subversive spiral-complex. Far from shaping history like putty, Napoleon like all catastrophic agents of time-anomaly unleashed forces that ran far ahead of his very intentions: pushing Europe’s engagement with Africa and the Middle East onto a new plane, promulgating the Code Napoleon that would shape and selectively boost the economic development of continental Europe. In this respect, the image of him offered later by Marinetti is altogether more interesting. In his 1941 ‘Qualitative Imaginative Futurist Mathematics’, Marinetti claimed that Futurist military ‘calculations are as precise as those of Napoleon who in some battles had all of his couriers killed and hence his generals autonomous‘. Far from the prideful image of a singular genius strutting as he pleases across the stage of world history, here Napoleon becomes something altogether more monstrous. Foreshadowing Bataille’s argument a few years later that the apex of sovereignty is precisely an absolute moment of unknowing, he becomes a head that has severed itself from its limbs, falling from its body as it gives way to the sharp and militant positive feedback it has unleashed.

To understand its significance, we must begin by recognising that far from being a story of the triumph of a free capitalism over communism, the reality of Park Chung-hee’s rule and the overtaking of the North by the South is more than a little uncomfortable for a right-libertarian (though not, perhaps, for someone like Peter Thiel). Park was not just a sovereign dictator but an inveterate interventionist, who constructed an entire sequence of bureaucracies to oversee the expansion of the economy according to determinate Five-Year Plans. In private notes, he emphasised the ideology of the February 26 incident in Japan, the militarised attempt to effect a ‘Shōwa Restoration’ that would have united the Japanese race politically and economically behind a totalitarian emperor. In Japan this had failed: in Korea, Park himself could be the president-emperor, declaiming on his ‘sacred military revolution’ of 1961 that had brought together the ‘Korean race’. At the same time, he explicitly imitated the communist North, proclaiming the need for spiritual mobilisation and a ‘path of the leader’ 지도자의길 around which the nation would cohere. The carefully-coordinated mass histrionics after his death in 1979 echoed closely the spectacle with which we are still familiar in North Korea.

Park Chung-hee and Napoleon demonstrate at its extreme the tangled structure of the history of capital. Capitalism’s intensities are geographically and temporally uneven; they spread through loops and spectacular digressions. Human agencies and the mechanisms of the state have their important place within this capitalist megamachine. But things never quite work out the way they plan.