Regulating the Velocities of Dark Pools. Thought of the Day 72.0

hft-robots630

On 22 September 2010 the SEC chair Mary Schapiro signaled US authorities were considering the introduction of regulations targeted at HFT:

…High frequency trading firms have a tremendous capacity to affect the stability and integrity of the equity markets. Currently, however, high frequency trading firms are subject to very little in the way of obligations either to protect that stability by promoting reasonable price continuity in tough times, or to refrain from exacerbating price volatility.

However regulating an industry working towards moving as fast as the speed of light is no ordinary administrative task: – Modern finance is undergoing a fundamental transformation. Artificial intelligence, mathematical models, and supercomputers have replaced human intelligence, human deliberation, and human execution…. Modern finance is becoming cyborg finance – an industry that is faster, larger, more complex, more global, more interconnected, and less human. C W Lin proposes a number of principles for regulating this cyber finance industry:

  1. Update antiquated paradigms of reasonable investors and compartmentalised institutions, and confront the emerging institutional realities, and realise the old paradigms of governance of markets may be ill-suited for the new finance industry;
  2. Enhance disclosure which recognises the complexity and technological capacities of the new finance industry;
  3. Adopt regulations to moderate the velocities of finance realising that as these approach the speed of light they may contain more risks than rewards for the new financial industry;
  4. Introduce smarter coordination harmonising financial regulation beyond traditional spaces of jurisdiction.

Electronic markets will require international coordination, surveillance and regulation. The high-frequency trading environment has the potential to generate errors and losses at a speed and magnitude far greater than that in a floor or screen-based trading environment… Moreover, issues related to risk management of these technology-dependent trading systems are numerous and complex and cannot be addressed in isolation within domestic financial markets. For example, placing limits on high-frequency algorithmic trading or restricting Un-filtered sponsored access and co-location within one jurisdiction might only drive trading firms to another jurisdiction where controls are less stringent.

In these regulatory endeavours it will be vital to remember that all innovation is not intrinsically good and might be inherently dangerous, and the objective is to make a more efficient and equitable financial system, not simply a faster system: Despite its fast computers and credit derivatives, the current financial system does not seem better at transferring funds from savers to borrowers than the financial system of 1910. Furthermore as Thomas Piketty‘s Capital in the Twenty-First Century amply demonstrates any thought of the democratisation of finance induced by the huge expansion of superannuation funds together with the increased access to finance afforded by credit cards and ATM machines, is something of a fantasy, since levels of structural inequality have endured through these technological transformations. The tragedy is that under the guise of technological advance and sophistication we could be destroying the capacity of financial markets to fulfil their essential purpose, as Haldane eloquently states:

An efficient capital market transfers savings today into investment tomorrow and growth the day after. In that way, it boosts welfare. Short-termism in capital markets could interrupt this transfer. If promised returns the day after tomorrow fail to induce saving today, there will be no investment tomorrow. If so, long-term growth and welfare would be the casualty.

Momentum of Accelerated Capital. Note Quote.

high-frequency-trading

Distinct types of high frequency trading firms include independent proprietary firms, which use private funds and specific strategies which remain secretive, and may act as market makers generating automatic buy and sell orders continuously throughout the day. Broker-dealer proprietary desks are part of traditional broker-dealer firms but are not related to their client business, and are operated by the largest investment banks. Thirdly hedge funds focus on complex statistical arbitrage, taking advantage of pricing inefficiencies between asset classes and securities.

Today strategies using algorithmic trading and High Frequency Trading play a central role on financial exchanges, alternative markets, and banks‘ internalized (over-the-counter) dealings:

High frequency traders typically act in a proprietary capacity, making use of a number of strategies and generating a very large number of trades every single day. They leverage technology and algorithms from end-to-end of the investment chain – from market data analysis and the operation of a specific trading strategy to the generation, routing, and execution of orders and trades. What differentiates HFT from algorithmic trading is the high frequency turnover of positions as well as its implicit reliance on ultra-low latency connection and speed of the system.

The use of algorithms in computerised exchange trading has experienced a long evolution with the increasing digitalisation of exchanges:

Over time, algorithms have continuously evolved: while initial first-generation algorithms – fairly simple in their goals and logic – were pure trade execution algos, second-generation algorithms – strategy implementation algos – have become much more sophisticated and are typically used to produce own trading signals which are then executed by trade execution algos. Third-generation algorithms include intelligent logic that learns from market activity and adjusts the trading strategy of the order based on what the algorithm perceives is happening in the market. HFT is not a strategy per se, but rather a technologically more advanced method of implementing particular trading strategies. The objective of HFT strategies is to seek to benefit from market liquidity imbalances or other short-term pricing inefficiencies.

While algorithms are employed by most traders in contemporary markets, the intense focus on speed and the momentary holding periods are the unique practices of the high frequency traders. As the defence of high frequency trading is built around the principles that it increases liquidity, narrows spreads, and improves market efficiency, the high number of trades made by HFT traders results in greater liquidity in the market. Algorithmic trading has resulted in the prices of securities being updated more quickly with more competitive bid-ask prices, and narrowing spreads. Finally HFT enables prices to reflect information more quickly and accurately, ensuring accurate pricing at smaller time intervals. But there are critical differences between high frequency traders and traditional market makers:

  1. HFT do not have an affirmative market making obligation, that is they are not obliged to provide liquidity by constantly displaying two sides quotes, which may translate into a lack of liquidity during volatile conditions.
  2. HFT contribute little market depth due to the marginal size of their quotes, which may result in larger orders having to transact with many small orders, and this may impact on overall transaction costs.
  3. HFT quotes are barely accessible due to the extremely short duration for which the liquidity is available when orders are cancelled within milliseconds.

Besides the shallowness of the HFT contribution to liquidity, are the real fears of how HFT can compound and magnify risk by the rapidity of its actions:

There is evidence that high-frequency algorithmic trading also has some positive benefits for investors by narrowing spreads – the difference between the price at which a buyer is willing to purchase a financial instrument and the price at which a seller is willing to sell it – and by increasing liquidity at each decimal point. However, a major issue for regulators and policymakers is the extent to which high-frequency trading, unfiltered sponsored access, and co-location amplify risks, including systemic risk, by increasing the speed at which trading errors or fraudulent trades can occur.

Although there have always been occasional trading errors and episodic volatility spikes in markets, the speed, automation and interconnectedness of today‘s markets create a different scale of risk. These risks demand that exchanges and market participants employ effective quality management systems and sophisticated risk mitigation controls adapted to these new dynamics in order to protect against potential threats to market stability arising from technology malfunctions or episodic illiquidity. However, there are more deliberate aspects of HFT strategies which may present serious problems for market structure and functioning, and where conduct may be illegal, for example in order anticipation seeks to ascertain the existence of large buyers or sellers in the marketplace and then to trade ahead of those buyers and sellers in anticipation that their large orders will move market prices. A momentum strategy involves initiating a series of orders and trades in an attempt to ignite a rapid price move. HFT strategies can resemble traditional forms of market manipulation that violate the Exchange Act:

  1. Spoofing and layering occurs when traders create a false appearance of market activity by entering multiple non-bona fide orders on one side of the market at increasing or decreasing prices in order to induce others to buy or sell the stock at a price altered by the bogus orders.
  2. Painting the tape involves placing successive small amount of buy orders at increasing prices in order to stimulate increased demand.

  3. Quote Stuffing and price fade are additional HFT dubious practices: quote stuffing is a practice that floods the market with huge numbers of orders and cancellations in rapid succession which may generate buying or selling interest, or compromise the trading position of other market participants. Order or price fade involves the rapid cancellation of orders in response to other trades.

The World Federation of Exchanges insists: ― Exchanges are committed to protecting market stability and promoting orderly markets, and understand that a robust and resilient risk control framework adapted to today‘s high speed markets, is a cornerstone of enhancing investor confidence. However this robust and resilient risk control framework‘ seems lacking, including in the dark pools now established for trading that were initially proposed as safer than the open market.

Belief Networks “Acyclicity”. Thought of the Day 69.0

Belief networks are used to model uncertainty in a domain. The term “belief networks” encompasses a whole range of different but related techniques which deal with reasoning under uncertainty. Both quantitative (mainly using Bayesian probabilistic methods) and qualitative techniques are used. Influence diagrams are an extension to belief networks; they are used when working with decision making. Belief networks are used to develop knowledge based applications in domains which are characterised by inherent uncertainty. Increasingly, belief network techniques are being employed to deliver advanced knowledge based systems to solve real world problems. Belief networks are particularly useful for diagnostic applications and have been used in many deployed systems. The free-text help facility in the Microsoft Office product employs Bayesian belief network technology. Within a belief network the belief of each node (the node’s conditional probability) is calculated based on observed evidence. Various methods have been developed for evaluating node beliefs and for performing probabilistic inference. Influence diagrams, which are an extension of belief networks, provide facilities for structuring the goals of the diagnosis and for ascertaining the value (the influence) that given information will have when determining a diagnosis. In influence diagrams, there are three types of node: chance nodes, which correspond to the nodes in Bayesian belief networks; utility nodes, which represent the utilities of decisions; and decision nodes, which represent decisions which can be taken to influence the state of the world. Influence diagrams are useful in real world applications where there is often a cost, both in terms of time and money, in obtaining information.

The basic idea in belief networks is that the problem domain is modelled as a set of nodes interconnected with arcs to form a directed acyclic graph. Each node represents a random variable, or uncertain quantity, which can take two or more possible values. The arcs signify the existence of direct influences between the linked variables, and the strength of each influence is quantified by a forward conditional probability.

The Belief Network, which is also called the Bayesian Network, is a directed acyclic graph for probabilistic reasoning. It defines the conditional dependencies of the model by associating each node X with a conditional probability P(X|Pa(X)), where Pa(X) denotes the parents of X. Here are two of its conditional independence properties:

1. Each node is conditionally independent of its non-descendants given its parents.

2. Each node is conditionally independent of all other nodes given its Markov blanket, which consists of its parents, children, and children’s parents.

The inference of Belief Network is to compute the posterior probability distribution

P(H|V) = P(H,V)/ ∑HP(H,V)

where H is the set of the query variables, and V is the set of the evidence variables. Approximate inference involves sampling to compute posteriors. The Sigmoid Belief Network is a type of the Belief Network such that

P(Xi = 1|Pa(Xi)) = σ( ∑Xj ∈ Pa(Xi) WjiXj + bi)

where Wji is the weight assigned to the edge from Xj to Xi, and σ is the sigmoid function.

Untitled

Vedic Mathematics: Sixteen Sutras and their Corollaries

Untitled

The divergence embraces everything other than the fact of intuition itself – the object and field of intuitive vision, the method of working out experience and rendering it to the intellect. The modern method is to get the intuition by suggestion from an appearance in life or nature or from a mental idea and even if the source of the intuition ie the soul, the method at once relates it to a support external to the soul. The ancient Indian method of knowledge had for its business to disclose something of the Self, the Infinite or the Divine to the regard of the soul – the Self through its expressions, the infinite through its finite symbols and the Divine through his powers. The process was one of Integral knowledge and in its subordinate ranges was instrumental in revealing the truths of cosmic phenomena and these truths mere utilised for worldly ends.

Tirthaji_S.B.K. Vedic mathematics or sixteen simple mathematical formulae from the Vedas

Rants of the Undead God: Instrumentalism. Thought of the Day 68.1

math-mathematics-monochrome-hd-wallpaper-71796

Hilbert’s program has often been interpreted as an instrumentalist account of mathematics. This reading relies on the distinction Hilbert makes between the finitary part of mathematics and the non-finitary rest which is in need of grounding (via finitary meta-mathematics). The finitary part Hilbert calls “contentual,” i.e., its propositions and proofs have content. The infinitary part, on the other hand, is “not meaningful from a finitary point of view.” This distinction corresponds to a distinction between formulas of the axiomatic systems of mathematics for which consistency proofs are being sought. Some of the formulas correspond to contentual, finitary propositions: they are the “real” formulas. The rest are called “ideal.” They are added to the real part of our mathematical theories in order to preserve classical inferences such as the principle of the excluded middle for infinite totalities, i.e., the principle that either all numbers have a given property or there is a number which does not have it.

It is the extension of the real part of the theory by the ideal, infinitary part that is in need of justification by a consistency proof – for there is a condition, a single but absolutely necessary one, to which the use of the method of ideal elements is subject, and that is the proof of consistency; for, extension by the addition of ideals is legitimate only if no contradiction is thereby brought about in the old, narrower domain, that is, if the relations that result for the old objects whenever the ideal objects are eliminated are valid in the old domain. Weyl described Hilbert’s project as replacing meaningful mathematics by a meaningless game of formulas. He noted that Hilbert wanted to “secure not truth, but the consistency of analysis” and suggested a criticism that echoes an earlier one by Frege – why should we take consistency of a formal system of mathematics as a reason to believe in the truth of the pre-formal mathematics it codifies? Is Hilbert’s meaningless inventory of formulas not just “the bloodless ghost of analysis? Weyl suggested that if mathematics is to remain a serious cultural concern, then some sense must be attached to Hilbert’s game of formulae. In theoretical physics we have before us the great example of a [kind of] knowledge of completely different character than the common or phenomenal knowledge that expresses purely what is given in intuition. While in this case every judgment has its own sense that is completely realizable within intuition, this is by no means the case for the statements of theoretical physics. Hilbert suggested that consistency is not the only virtue ideal mathematics has –  transfinite inference simplifies and abbreviates proofs, brevity and economy of thought are the raison d’être of existence proofs.

Hilbert’s treatment of philosophical questions is not meant as a kind of instrumentalist agnosticism about existence and truth and so forth. On the contrary, it is meant to provide a non-skeptical and positive solution to such problems, a solution couched in cognitively accessible terms. And, it appears, the same solution holds for both mathematical and physical theories. Once new concepts or “ideal elements” or new theoretical terms have been accepted, then they exist in the sense in which any theoretical entities exist. When Weyl eventually turned away from intuitionism, he emphasized the purpose of Hilbert’s proof theory, not to turn mathematics into a meaningless game of symbols, but to turn it into a theoretical science which codifies scientific (mathematical) practice. The reading of Hilbert as an instrumentalist goes hand in hand with a reading of the proof-theoretic program as a reductionist project. The instrumentalist reading interprets ideal mathematics as a meaningless formalism, which simplifies and “rounds out” mathematical reasoning. But a consistency proof of ideal mathematics by itself does not explain what ideal mathematics is an instrument for.

On this picture, classical mathematics is to be formalized in a system which includes formalizations of all the directly verifiable (by calculation) propositions of contentual finite number theory. The consistency proof should show that all real propositions which can be proved by ideal methods are true, i.e., can be directly verified by finite calculation. Actual proofs such as the ε-substitution procedure are of such a kind: they provide finitary procedures which eliminate transfinite elements from proofs of real statements. In particular, they turn putative ideal derivations of 0 = 1 into derivations in the real part of the theory; the impossibility of such a derivation establishes consistency of the theory. Indeed, Hilbert saw that something stronger is true: not only does a consistency proof establish truth of real formulas provable by ideal methods, but it yields finitary proofs of finitary general propositions if the corresponding free-variable formula is derivable by ideal methods.

Epistemological Constraints to Finitism. Thought of the Day 68.0

8a915d7f-3c45-4475-ae9f-60e1ce4759c0_560_420

Hilbert’s substantial philosophical claims about the finitary standpoint are difficult to flesh out. For instance, Hilbert appeals to the role of Kantian intuition for our apprehension of finitary objects (they are given in the faculty of representation). Supposing one accepts this line of epistemic justification in principle, it is plausible that the simplest examples of finitary objects and propositions, and perhaps even simple cases of finitary operations such as concatenations of numerals can be given a satisfactory account.

Of crucial importance to both an understanding of finitism and of Hilbert’s proof theory is the question of what operations and what principles of proof should be allowed from the finitist standpoint. That a general answer is necessary is clear from the demands of Hilbert’s proof theory, i.e., it is not to be expected that given a formal system of mathematics (or even a single sequence of formulas) one can “see” that it is consistent (or that it cannot be a genuine derivation of an inconsistency) the way we can see, e.g., that || + ||| = ||| + ||. What is required for a consistency proof is an operation which, given a formal derivation, transforms such a derivation into one of a special form, plus proofs that the operation in fact succeeds in every case and that proofs of the special kind cannot be proofs of an inconsistency.

Hilbert said that intuitive thought “includes recursion and intuitive induction for finite existing totalities.” All of this in its application in the domain of numbers, can be formalized in a system known as primitive recursive arithmetic (PRA), which allows definitions of functions by primitive recursion and induction on quantifier-free formulas. However, Hilbert never claimed that only primitive recursive operations count as finitary. Although Hilbert and his collaborators used methods which go beyond the primitive recursive and accepted them as finitary, it is still unclear whether they (a) realized that these methods were not primitive recursive and (b) whether they would still have accepted them as finitary if they had. The conceptual issue is which operations should be considered as finitary. Since Hilbert was less than completely clear on what the finitary standpoint consists in, there is some leeway in setting up the constraints, epistemological and otherwise, an analysis of finitist operation and proof must fulfill. Hilbert characterized the objects of finitary number theory as “intuitively given,” as “surveyable in all their parts,” and said that their having basic properties must “exist intuitively” for us. This characterization of finitism as primarily to do with intuition and intuitive knowledge has been emphasized in that what can count as finitary on this understanding is not more than those arithmetical operations that can be defined from addition and multiplication using bounded recursion.

Rejecting the aspect of representability in intuition as the hallmark of the finitary; one could take finitary reasoning to be “a minimal kind of reasoning supposed by all non-trivial mathematical reasoning about numbers” and analyze finitary operations and methods of proof as those that are implicit in the very notion of number as the form of a finite sequence. This analysis of finitism is supported by Hilbert’s contention that finitary reasoning is a precondition for logical and mathematical, indeed, any scientific thinking.

|, ||, |||, ||||| . The Non-Metaphysics of Unprediction. Thought of the day 67.1

1*pYpVJs_n4yh_3fnGaCbwKA

The cornerstone of Hilbert’s philosophy of mathematics was the so-called finitary standpoint. This methodological standpoint consists in a restriction of mathematical thought to objects which are “intuitively present as immediate experience prior to all thought,” and to those operations on and methods of reasoning about such objects which do not require the introduction of abstract concepts, in particular, require no appeal to completed infinite totalities.

Hilbert characterized the domain of finitary reasoning in a well-known paragraph:

[A]s a condition for the use of logical inferences and the performance of logical operations, something must already be given to our faculty of representation, certain extra-logical concrete objects that are intuitively present as immediate experience prior to all thought. If logical inference is to be reliable, it must be possible to survey these objects completely in all their parts, and the fact that they occur, that they differ from one another, and that they follow each other, or are concatenated, is immediately given intuitively, together with the objects, as something that can neither be reduced to anything else nor requires reduction. This is the basic philosophical position that I consider requisite for mathematics and, in general, for all scientific thinking, understanding, and communication. [Hilbert in German + DJVU link here in English]

These objects are, for Hilbert, the signs. For the domain of contentual number theory, the signs in question are sequences of strokes (“numerals”) such as

|, ||, |||, ||||| .

The question of how exactly Hilbert understood the numerals is difficult to answer. What is clear in any case is that they are logically primitive, i.e., they are neither concepts (as Frege’s numbers are) nor sets. For Hilbert, the important issue is not primarily their metaphysical status (abstract versus concrete in the current sense of these terms), but that they do not enter into logical relations, e.g., they cannot be predicated of anything.

Sometimes Hilbert’s view is presented as if Hilbert claimed that the numbers are signs on paper. It is important to stress that this is a misrepresentation, that the numerals are not physical objects in the sense that truths of elementary number theory are dependent only on external physical facts or even physical possibilities. Hilbert made too much of the fact that for all we know, neither the infinitely small nor the infinitely large are actualized in physical space and time, yet he certainly held that the number of strokes in a numeral is at least potentially infinite. It is also essential to the conception that the numerals are sequences of one kind of sign, and that they are somehow dependent on being grasped as such a sequence, that they do not exist independently of our intuition of them. Only our seeing or using “||||” as a sequence of 4 strokes as opposed to a sequence of 2 symbols of the form “||” makes “||||” into the numeral that it is. This raises the question of individuation of stroke symbols. An alternative account would have numerals be mental constructions. According to Hilber, the numerals are given in our representation, but they are not merely subjective “mental cartoons”.

One version of this view would be to hold that the numerals are types of stroke-symbols as represented in intuition. At first glance, this seems to be a viable reading of Hilbert. It takes care of the difficulties that the reading of numerals-as-tokens (both physical and mental) faces, and it gives an account of how numerals can be dependent on their intuitive construction while at the same time not being created by thought.

Types are ordinarily considered to be abstract objects and not located in space or time. Taking the numerals as intuitive representations of sign types might commit us to taking these abstract objects as existing independently of their intuitive representation. That numerals are “space- and timeless” is a consequence that already thought could be drawn from Hilbert’s statements. The reason is that a view on which numerals are space- and timeless objects existing independently of us would be committed to them existing simultaneously as a completed totality, and this is exactly what Hilbert is objecting to.

It is by no means compatible, however, with Hilbert’s basic thoughts to introduce the numbers as ideal objects “with quite different determinations from those of sensible objects,” “which exist entirely independent of us.” By this we would go beyond the domain of the immediately certain. In particular, this would be evident in the fact that we would consequently have to assume the numbers as all existing simultaneously. But this would mean to assume at the outset that which Hilbert considers to be problematic.  Another open question in this regard is exactly what Hilbert meant by “concrete.” He very likely did not use it in the same sense as it is used today, i.e., as characteristic of spatio-temporal physical objects in contrast to “abstract” objects. However, sign types certainly are different from full-fledged abstracta like pure sets in that all their tokens are concrete.

Now what is the epistemological status of the finitary objects? In order to carry out the task of providing a secure foundation for infinitary mathematics, access to finitary objects must be immediate and certain. Hilbert’s philosophical background was broadly Kantian. Hilbert’s characterization of finitism often refers to Kantian intuition, and the objects of finitism as objects given intuitively. Indeed, in Kant’s epistemology, immediacy is a defining characteristic of intuitive knowledge. The question is, what kind of intuition is at play? Whereas the intuition involved in Hilbert’s early papers was a kind of perceptual intuition, in later writings it is identified as a form of pure intuition in the Kantian sense. Hilbert later sees the finite mode of thought as a separate source of a priori knowledge in addition to pure intuition (e.g., of space) and reason, claiming that he has “recognized and characterized the third source of knowledge that accompanies experience and logic.” Hilbert justifies finitary knowledge in broadly Kantian terms (without however going so far as to provide a transcendental deduction), characterizing finitary reasoning as the kind of reasoning that underlies all mathematical, and indeed, scientific, thinking, and without which such thought would be impossible.

The simplest finitary propositions are those about equality and inequality of numerals. The finite standpoint moreover allows operations on finitary objects. Here the most basic is that of concatenation. The concatenation of the numerals || and ||| is communicated as “2 + 3,” and the statement that || concatenated with ||| results in the same numeral as ||| concatenated with || by “2 + 3 = 3 + 2.” In actual proof-theoretic practice, as well as explicitly, these basic operations are generalized to operations defined by recursion, paradigmatically, primitive recursion, e.g., multiplication and exponentiation. Roughly, a primitive recursive definition of a numerical operation is one in which the function to be defined, f , is given by two equations

f(0, m) = g(m)

f(n′, m) = h(n, m, f(n, m)),

where g and h are functions already defined, and n′ is the successor numeral to n. For instance, if we accept the function g(m) = m (the constant function) and h(n, m, k) = m + k as finitary, then the equations above define a finitary function, in this case, multiplication f (n, m) = n × m. Similarly, finitary judgments may involve not just equality or inequality but also basic decidable properties, such as “is a prime.” This is finitarily acceptable as long as the characteristic function of such a property is itself finitary: For instance, the operation which transforms a numeral to | if it is prime and to || otherwise can be defined by primitive recursion and is hence finitary. Such finitary propositions may be combined by the usual logical operations of conjunction, disjunction, negation, but also bounded quantification. The problematic finitary propositions are those that express general facts about numerals such as that 1 + n = n + 1 for any given numeral n. It is problematic because, for Hilbert it is from the finitist point of view incapable of being negated. By this he means that the contradictory proposition that there is a numeral n for which 1 + n ≠ n + 1 is not finitarily meaningful. A finitary general proposition is not to be understood as an infinite conjunction but only as a hypothetical judgment that comes to assert something when a numeral is given. Even though they are problematic in this sense, general finitary statements are of particular importance to Hilbert’s proof theory, since the statement of consistency of a formal system T is of such a general form: for any given sequence p of formulas, p is not a derivation of a contradiction in T. Even though in general existential statements are not finitarily meaningful, they may be given finitary meaning if the witness is given by a finitary function. For instance, the finitary content of Euclid’s theorem that for every prime p there is a prime > p, is that given a specific prime p one can produce, by a finitary operation, another prime > p (viz., by testing all numbers between p and p! + 1.).