Metaphysical Continuity in Peirce. Thought of the Day 122.0

image12

Continuity has wide implications in the different parts of Peirce’s architectonics of theories. Time and time again, Peirce refers to his ‘principle of continuity’ which has not immediately anything to do with Poncelet’s famous such principle in geometry, but, is rather, a metaphysical implication taken to follow from fallibilism: if all more or less distinct phenomena swim in a vague sea of continuity then it is no wonder that fallibilism must be accepted. And if the world is basically continuous, we should not expect conceptual borders to be definitive but rather conceive of terminological distinctions as relative to an underlying, monist continuity. In this system, mathematics is first science. Thereafter follows philosophy which is distinguished form purely hypothetical mathematics by having an empirical basis. Philosophy, in turn, has three parts, phenomenology, the normative sciences, and metaphysics. The first investigates solely ‘the Phaneron’ which is all what could be imagined to appear as an object for experience: ‘ by the word phaneron I mean the collective total of all that is in any way or in any sense present to the mind, quite regardless whether it corresponds to any real thing or not.’ (Charles Sanders Peirce – Collected Papers of Charles Sanders Peirce) As is evident, this definition of Peirce’s ‘phenomenology’ is parallel to Husserl’s phenomenological reduction in bracketing the issue of the existence of the phenomenon in question. Even if it thus is built on introspection and general experience, it is – analogous to Husserl and other Brentano disciples at the same time – conceived in a completely antipsychological manner: ‘It religiously abstains from all speculation as to any relations between its categories and physiological facts, cerebral or other.’ and ‘ I abstain from psychology which has nothing to do with ideoscopy.’ (Letter to Lady Welby). The normative sciences fall in three: aesthetics, ethics, logic, in that order (and hence decreasing generality), among which Peirce does not spend very much time on the former two. Aesthetics is the investigation of which possible goals it is possible to aim at (Good, Truth, Beauty, etc.), and ethics how they may be reached. Logic is concerned with the grasping and conservation of Truth and takes up the larger part of Peirce’s interest among the normative sciences. As it deals with how truth can be obtained by means of signs, it is also called semiotics (‘logic is formal semiotics’) which is thus coextensive with theory of science – logic in this broad sense contains all parts of philosophy of science, including contexts of discovery as well as contexts of justification. Semiotics has, in turn, three branches: grammatica speculativa (or stekheiotics), critical logic, and methodeutic (inspired by mediaeval trivium: grammar, logic, and rhetoric). The middle one of these three lies closest to our days’ conception of logic; it is concerned with the formal conditions for truth in symbols – that is, propositions, arguments, their validity and how to calculate them, including Peirce’s many developments of the logic of his time: quantifiers, logic of relations, ab-, de-, and induction, logic notation systems, etc. All of these, however, presuppose the existence of simple signs which are investigated by what is often seen as semiotics proper, the grammatica speculativa; it may also be called formal grammar. It investigates the formal condition for symbols having meaning, and it is here we find Peirce’s definition of signs and his trichotomies of different types of sign aspects. Methodeutic or formal rhetorics, on the other hand, concerns the pragmatical use of the former two branches, that is, the study of how to use logic in a fertile way in research, the formal conditions for the ‘power’ of symbols, that is, their reference to their interpretants; here can be found, e.g., Peirce’s famous definitions of pragmati(ci)sm and his directions for scientific investigation. To phenomenology – again in analogy to Husserl – logic adds the interest in signs and their truth. After logic, metaphysics follows in Peirce’s system, concerning the inventarium of existing objects, conceived in general – and strongly influenced by logic in the Kantian tradition for seeing metaphysics mirroring logic. Also here, Peirce has several proposals for subtypologies, even if none of them seem stable, and under this headline classical metaphysical issues mix freely with generalizations of scientific results and cosmological speculations.

Peirce himself saw this classification in an almost sociological manner, so that the criteria of distinction do not stem directly from the implied objects’ natural kinds, but after which groups of persons study which objects: ‘the only natural lines of demarcation between nearly related sciences are the divisions between the social groups of devotees of those sciences’. Science collects scientists into bundles, because they are defined by their causa finalis, a teleologial intention demanding of them to solve a central problem.

Measured on this definition, one has to say that Peirce himself was not modest, not only does he continuously transgress such boundaries in his production, he frequently does so even within the scope of single papers. There is always, in his writings, a brief distance only from mathematics to metaphysics – or between any other two issues in mathematics and philosophy, and this implies, first, that the investigation of continuity and generality in Peirce’s system is more systematic than any actually existing exposition of these issues in Peirce’s texts, second, that the discussion must constantly rely on cross-references. This has the structural motivation that as soon as you are below the level of mathematics in Peirce’s system, inspired by the Comtean system, the single science receives determinations from three different directions, each science consisting of material and formal aspects alike. First, it receives formal directives ‘from above’, from those more general sciences which stand above it, providing the general frameworks in which it must unfold. Second, it receives material determinations from its own object, requiring it to make certain choices in its use of formal insights from the higher sciences. The cosmological issue of the character of empirical space, for instance, can take from mathematics the different (non-)Euclidean geometries and investigate which of these are fit to describe spatial aspects of our universe, but it does not, in itself, provide the formal tools. Finally, the single sciences receive in practice determinations ‘from below’, from more specific sciences, when their results by means of abstraction, prescission, induction, and other procedures provide insights on its more general, material level. Even if cosmology is, for instance, part of metaphysics, it receives influences from the empirical results of physics (or biology, from where Peirce takes the generalized principle of evolution). The distinction between formal and material is thus level specific: what is material on one level is a formal bundle of possibilities for the level below; what is formal on one level is material on the level above.

For these reasons, the single step on the ladder of sciences is only partially independent in Peirce, hence also the tendency of his own investigations to zigzag between the levels. His architecture of theories thus forms a sort of phenomenological theory of aspects: the hierarchy of sciences is an architecture of more and less general aspects of the phenomena, not completely independent domains. Finally, Peirce’s realism has as a result a somewhat disturbing style of thinking: many of his central concepts receive many, often highly different determinations which has often led interpreters to assume inconsistencies or theoretical developments in Peirce where none necessarily exist. When Peirce, for instance, determines the icon as the sign possessing a similarity to its object, and elsewhere determines it as the sign by the contemplation of which it is possible to learn more about its object, then they are not conflicting definitions. Peirce’s determinations of concepts are rarely definitions at all in the sense that they provide necessary and sufficient conditions exhausting the phenomenon in question. His determinations should rather be seen as descriptions from different perspectives of a real (and maybe ideal) object – without these descriptions necessarily conflicting. This style of thinking can, however, be seen as motivated by metaphysical continuity. When continuous grading between concepts is the rule, definitions in terms of necessary and sufficient conditions should not be expected to be exhaustive.

Advertisements

Underlying the Non-Perturbative Quantum Geometry of the Quartic Gauge Couplings in 8D.

A lot can be learned by simply focussing on the leading singularities in the moduli space of the effective theory. However, for the sake of performing really non-trivial quantitative tests of the heterotic/F-theory duality, we should try harder in order to reproduce the exact functional form of the couplings ∆eff(T) from K3 geometry. The hope is, of course, to learn something new about how to do exact non-perturbative computations in D-brane physics.

More specifically, the issue is to eventually determine the extra contributions to the geometric Green’s functions. Having a priori no good clue from first principles how to do this, the results of the previous section, together with experience with four dimensional compactifications with N = 2 supersymmetry, suggest that somehow mirror symmetry should be a useful tool.

The starting point is the observation that threshold couplings of similar structure appear also in four dimensional, N = 2 supersymmetric compactifications of type II strings on Calabi-Yau threefolds. More precisely, these coupling functions multiply operators of the form TrFG2 (in contrast to quartic operators in d = 8), and can be written in the form

(4d)eff ∼ ln[λα1(1-λ)α2(λ’)3] + γ(λ) —– (1)

which is similar to Green’s function

eff (λ) = ∆N-1prime form (λ) + δ(λ)

It is to be noted that a Green’s function is in general ambiguous up to the addition of a finite piece, and it is this ambiguous piece to which we can formally attribute those extra non-singular, non-perturbative corrections.

The term δ(λ) contributes to dilation flat coordinate. The dilation S is a period associated with the CY threefold moduli space, and like all period integrals, it satisfies a system of linear differential equations. This differential equation may then be translated back into geometry, and this then would hopefully give us a clue about what the relevant quantum geometry is that underlies those quartic gauge couplings in eight dimensions.

The starting point is the families of singular K3 surfaces associated with which are the period integrals that evaluate to the hypergeometric functions. Generally, period integrals satisfy the Picard-Fuchs linear differential equations.

The four-dimensional theories are obtained by compactifying the type II strings on CY threefolds of special type, namely they are fibrations of the K3 surfaces over Pl. The size of the P1 yields then an additional modulus, whose associated fiat coordinate is precisely the dilaton S (in the dual, heterotic language; from the type II point of view, it is simply another geometric modulus). The K3-fibered threefolds are then associated with enlarged PF systems of the form:

LN(z, y) = θzz – 2θy) – z(θz + 1/2N)(θz + 1/2 – 1/2N)

L2(y) = θy2 – 2y(2θy +1)θy —– (2)

For perturbative, one-loop contributions on the heterotic side (which capture the full story in d = 8, in contrast to d = 4), we need to consider only the weak coupling limit, which corresponds to the limit of large base space: y ∼ e-S → 0. Though we might now be tempted to drop all the θ≡ y∂y terms in the PF system, we better note that the θy term in LN(z, y) can a non-vanishing contribution, namely in particular when it hits the logarithmic piece of the dilaton period, S = -In[y] + γ. As a result one finds that the piece , that we want to compute satisfies in the limit y → 0 the following inhomogenous differential equation

LN . (γϖ0)(z) = ϖ0(z) —– (3)

We now apply the inverse of this strategy to our eight dimensional problem. Since we know from the perturbative heterotic calculation what the exact answer for δ must be, we can work backwards and see what inhomogenous differential equation the extra contribution δ(λ) obeys. It satisfies

LN⊗2 . (δϖ0)(z) = ϖ02(z) —– (4)

whose homogenous operator

LN⊗2(z) = θz3 – z(θz + 1 – 1/N)(θz + 1/2)(θz + 1/N) —– (5)

is the symmetric square of the K3 Picard-Fuchs operator. This means that its solution space is given by the symmetric square of the solution space of LN(z), i.e.,

LN⊗2 . (ϖ02, ϖ0ϖ1, ϖ12) = 0 —– (6)

Even though the inhomogenous PF equation (4) concisely captures the extra corrections in the eight-dimensional threshold terms, the considerations leading to this equation have been rather formal and it would be clearly desirable to get a better understanding of what it mathematically and physically means.

Note that in the four dimensional situation, the PF operator LN(z), which figures as homogenous piece in (3), is by construction associated with the K3 fiber of the threefold. By analogy, the homogenous piece of equation (4) should then tell us something about the geometry that is relevant in the eight dimensional situation. Observing that the solution space (6) is given by products of the K3 periods, it is clear what the natural geometrical object is: it must be the symmetric square Sym2(K3) = (K3 x K3)/Ζ2. Being a hyperkähler manifold, its periods (not subject to world-sheet instanton corrections) indeed enjoy the factorization property exhibited by (6).

Untitled

Formal similarity of the four and eight-dimensional string compactifications: the underlying quantum geometry that underlies the quadratic or quartic gauge couplings appears to be given by three- or five-folds, which are fibrations of K3 or its symmetric square, respectively. The perturbative computations on the heterotic side are supposdly reproduced by the mirror maps on these manifolds in the limit where the base Pl‘s are large.

The occurrence of such symmetric products is familiar in D-brane physics. The geometrical structure that is relevant to us is however not just the symmetric square of K3, but rather a fibration of it, in the limit of large base space – this is precisely what the content of the inhomogenous PF equation (4) is. It is however not at all obvious to us why this particular structure of a hyperkähler-fibered five-fold would underlie the non-perturbative quantum geometry of the quartic gauge couplings in eight dimensions.

Weakness of Gravity and Transverse Spreading of Gravitational Flux. Drunken Risibility.

I15-15-stringtheories

Dirichlet branes, or their dual heterotic fivebranes and Horava-Witten walls – can trap non-abelian gauge interactions in their worldvolumes. This has placed on a firmer basis an old idea, according to which we might be living on a brane embedded in a higher-dimensional world. The idea arises naturally in compactifications of type I theory, which typically involve collections of orientifold planes and D-branes. The ‘brane-world’ scenario admits a fully perturbative string description.

In type I string theory the graviton (a closed-string state) lives in the ten-dimensional bulk, while open-string vector bosons are in general localized on lower-dimensional D-branes. Furthermore while closed strings interact to leading order via the sphere diagram, open strings interact via the disk diagram which is of higher order in the genus expansion. The four-dimensional Planck mass and Yang-Mills couplings therefore take the form

αU ∼ gI/(r˜MI)6-n

M2Planck ∼ rn6-nM8I/g2

where r is the typical radius of the n compact dimensions transverse to the brane, f the typical radius of the remaining (6-n) compact longitudinal dimensions, MI the type-I string scale and gI the string coupling constant. By appropriate T-dualities we can again ensure that both r and r˜ are greater than or equal to the fundamental string scale. T- dualities change n and may take us either to Ia or to Ib theory (also called I or I’, respectively).

It follows from these formulae that (a) there is no universal relation between MPlanck, αand MI anymore, and (b) tree-level gauge couplings corresponding to different sets of D-branes have radius-dependent ratios and need not unify at all. Thus type-I string theory is much more flexible (and less predictive) than its heterotic counterpart. The fundamental string scale, MI, in particular is a free parameter, even if one insists that αU be kept fixed and of order one, and that the string theory be weakly coupled. This added flexibility can be used to ‘remove’ the order-of magnitude discrepancy between the apparent unification and string scales of the heterotic theory, to lower MI to an intemediate scale or even all the way down to its experimentally-allowed limit of order the TeV. Keeping for instance gI, α and r˜MI fixed and of order one, leads to the condition

rn ∼ M2Planck/M2+nI

A TeV string scale would then require from n = 2 millimetric to n = 6 fermi-size dimensions transverse to our brane world. The relative weakness of gravity is in this picture attributed to the large transverse spreading of the gravitational flux.

Husserl’s Flip-Flop on Arithmetic Axiomatics. Thought of the Day 118.0

g5198

Husserl’s position in his Philosophy of Arithmetic (Psychological and Logical Investigations with Supplementary Texts) was resolutely anti-axiomatic. He attacked those who fell into remote, artificial constructions which, with the intent of building the elementary arithmetic concepts out of their ultimate definitional properties, interpret and change their meaning so much that totally strange, practically and scientifically useless conceptual formations finally result. Especially targeted was Frege’s ideal of the

founding of arithmetic on a sequence of formal definitions, out of which all the theorems of that science could be deduced purely syllogistically.

As soon as one comes to the ultimate, elemental concepts, Husserl reasoned, all defining has to come to an end. All one can then do is to point to the concrete phenomena from or through which the concepts are abstracted and show the nature of the abstractive process. A verbal explanation should place us in the proper state of mind for picking out, in inner or outer intuition, the abstract moments intended and for reproducing in ourselves the mental processes required for the formation of the concept. He said that his analyses had shown with incontestable clarity that the concepts of multiplicity and unity rest directly upon ultimate, elemental psychical data, and so belong among the indefinable concepts. Since the concept of number was so closely joined to them, one could scarcely speak of defining it either. All these points are made on the only pages of Philosophy of Arithmetic that Husserl ever explicitly retracted.

In On the Concept of Number, Husserl had set out to anchor arithmetical concepts in direct experience by analyzing the actual psychological processes to which he thought the concept of number owed its genesis. To obtain the concept of number of a concrete set of objects, say A, A, and A, he explained, one abstracts from the particular characteristics of the individual contents collected, only considering and retaining each one insofar as it is a something or a one. Regarding their collective combination, one thus obtains the general form of the set belonging to the set in question: one and one, etc. and. . . and one, to which a number name is assigned.

The enthusiastic espousal of psychologism of On the Concept of Number is not found in Philosophy of Arithmetic. Husserl later confessed that doubts about basic differences between the concept of number and the concept of collecting, which was all that could be obtained from reflection on acts, had troubled and tormented him from the very beginning and had eventually extended to all categorial concepts and to concepts of objectivities of any sort whatsoever, ultimately to include modern analysis and the theory of manifolds, and simultaneously to mathematical logic and the entire field of logic in general. He did not see how one could reconcile the objectivity of mathematics with psychological foundations for logic.

In sharp contrast to Brouwer who denounced logic as a source of truth, from the mid-1890s on, Husserl defended the view, which he attributed to Frege’s teacher Hermann Lotze, that pure arithmetic was basically no more than a branch of logic that had undergone independent development. He bid students not to be “scared” by that thought and to grow used to Lotze’s initially strange idea that arithmetic was only a particularly highly developed piece of logic.

Years later, Husserl would explain in Formal and Transcendental Logic that his

war against logical psychologism was meant to serve no other end than the supremely important one of making the specific province of analytic logic visible in its purity and ideal particularity, freeing it from the psychologizing confusions and misinterpretations in which it had remained enmeshed from the beginning.

He had come to see arithmetic truths as being analytic, as grounded in meanings independently of matters of fact. He had come to believe that the entire overthrowing of psychologism through phenomenology showed that his analyses in On the Concept of Number and Philosophy of Arithmetic had to be considered a pure a priori analysis of essence. For him, pure arithmetic, pure mathematics, and pure logic were a priori disciplines entirely grounded in conceptual essentialities, where truth was nothing other than the analysis of essences or concepts. Pure mathematics as pure arithmetic investigated what is grounded in the essence of number. Pure mathematical laws were laws of essence.

He is said to have told his students that it was to be stressed repeatedly and emphatically that the ideal entities so unpleasant for empiricistic logic, and so consistently disregarded by it, had not been artificially devised either by himself, or by Bolzano, but were given beforehand by the meaning of the universal talk of propositions and truths indispensable in all the sciences. This, he said, was an indubitable fact that had to be the starting point of all logic. All purely mathematical propositions, he taught, express something about the essence of what is mathematical. Their denial is consequently an absurdity. Denying a proposition of the natural sciences, a proposition about real matters of fact, never means an absurdity, a contradiction in terms. In denying the law of gravity, I cast experience to the wind. I violate the evident, extremely valuable probability that experience has established for the laws. But, I do not say anything “unthinkable,” absurd, something that nullifies the meaning of the word as I do when I say that 2 × 2 is not 4, but 5.

Husserl taught that every judgment either is a truth or cannot be a truth, that every presentation either accorded with a possible experience adequately redeeming it, or was in conflict with the experience, and that grounded in the essence of agreement was the fact that it was incompatible with the conflict, and grounded in the essence of conflict that it was incompatible with agreement. For him, that meant that truth ruled out falsehood and falsehood ruled out truth. And, likewise, existence and non-existence, correctness and incorrectness cancelled one another out in every sense. He believed that that became immediately apparent as soon as one had clarified the essence of existence and truth, of correctness and incorrectness, of Evidenz as consciousness of givenness, of being and not-being in fully redeeming intuition.

At the same time, Husserl contended, one grasps the “ultimate meaning” of the basic logical law of contradiction and of the excluded middle. When we state the law of validity that of any two contradictory propositions one holds and the other does not hold, when we say that for every proposition there is a contradictory one, Husserl explained, then we are continually speaking of the proposition in its ideal unity and not at all about mental experiences of individuals, not even in the most general way. With talk of truth it is always a matter of propositions in their ideal unity, of the meaning of statements, a matter of something identical and atemporal. What lies in the identically-ideal meaning of one’s words, what one cannot deny without invalidating the fixed meaning of one’s words has nothing at all to do with experience and induction. It has only to do with concepts. In sharp contrast to this, Brouwer saw intuitionistic mathematics as deviating from classical mathematics because the latter uses logic to generate theorems and in particular applies the principle of the excluded middle. He believed that Intuitionism had proven that no mathematical reality corresponds to the affirmation of the principle of the excluded middle and to conclusions derived by means of it. He reasoned that “since logic is based on mathematics – and not vice versa – the use of the Principle of the Excluded Middle is not permissible as part of a mathematical proof.”

Econophysics: Financial White Noise Switch. Thought of the Day 115.0

circle24

What is the cause of large market fluctuation? Some economists blame irrationality behind the fat-tail distribution. Some economists observed that social psychology might create market fad and panic, which can be modeled by collective behavior in statistical mechanics. For example, the bi-modular distribution was discovered from empirical data in option prices. One possible mechanism of polarized behavior is collective action studied in physics and social psychology. Sudden regime switch or phase transition may occur between uni-modular and bi-modular distribution when field parameter changes across some threshold. The Ising model in equilibrium statistical mechanics was borrowed to study social psychology. Its phase transition from uni-modular to bi-modular distribution describes statistical features when a stable society turns into a divided society. The problem of the Ising model is that its key parameter, the social temperature, has no operational definition in social system. A better alternative parameter is the intensity of social interaction in collective action.

A difficult issue in business cycle theory is how to explain the recurrent feature of business cycles that is widely observed from macro and financial indexes. The problem is: business cycles are not strictly periodic and not truly random. Their correlations are not short like random walk and have multiple frequencies that changing over time. Therefore, all kinds of math models are tried in business cycle theory, including deterministic, stochastic, linear and nonlinear models. We outline economic models in terms of their base function, including white noise with short correlations, persistent cycles with long correlations, and color chaos model with erratic amplitude and narrow frequency band like biological clock.

 

Untitled

The steady state of probability distribution function in the Ising Model of Collective Behavior with h = 0 (without central propaganda field). a. Uni-modular distribution with low social stress (k = 0). Moderate stable behavior with weak interaction and high social temperature. b. Marginal distribution at the phase transition with medium social stress (k = 2). Behavioral phase transition occurs between stable and unstable society induced by collective behavior. c. Bi-modular distribution with high social stress (k = 2.5). The society splits into two opposing groups under low social temperature and strong social interactions in unstable society. 

Deterministic models are used by Keynesian economists for endogenous mechanism of business cycles, such as the case of the accelerator-multiplier model. The stochastic models are used by the Frisch model of noise-driven cycles that attributes external shocks as the driving force of business fluctuations. Since 1980s, the discovery of economic chaos and the application of statistical mechanics provide more advanced models for describing business cycles. Graphically,

Untitled

The steady state of probability distribution function in socio-psychological model of collective choice. Here, “a” is the independent parameter; “b” is the interaction parameter. a Centered distribution with b < a (denoted by short dashed curve). It happens when independent decision rooted in individualistic orientation overcomes social pressure through mutual communication. b Horizontal flat distribution with b = a (denoted by long dashed line). Marginal case when individualistic orientation balances the social pressure. c Polarized distribution with b > a (denoted by solid line). It occurs when social pressure through mutual communication is stronger than independent judgment. 

Untitled

Numerical 1 autocorrelations from time series generated by random noise and harmonic wave. The solid line is white noise. The broken line is a sine wave with period P = 1. 

Linear harmonic cycles with unique frequency are introduced in business cycle theory. The auto-correlations from harmonic cycle and white noise are shown in the above figure. Auto-correlation function from harmonic cycles is a cosine wave. The amplitude of cosine wave is slightly decayed because of limited data points in numerical experiment. Auto-correlations from a random series are an erratic series with rapid decade from one to residual fluctuations in numerical calculation. The auto-regressive (AR) model in discrete time is a combination of white noise term for simulating short-term auto-correlations from empirical data.

The deterministic model of chaos can be classified into white chaos and color chaos. White chaos is generated by nonlinear difference equation in discrete-time, such as one-dimensional logistic map and two-dimensional Henon map. Its autocorrelations and power spectra look like white noise. Its correlation dimension can be less than one. White noise model is simple in mathematical analysis but rarely used in empirical analysis, since it needs intrinsic time unit.

Color chaos is generated by nonlinear differential equations in continuous-time, such as three-dimensional Lorenz model and one-dimensional model with delay-differential model in biology and economics. Its autocorrelations looks like a decayed cosine wave, and its power spectra seem a combination of harmonic cycles and white noise. The correlation dimension is between one and two for 3D differential equations, and varying for delay-differential equation.

Untitled

History shows the remarkable resilience of a market that experienced a series of wars and crises. The related issue is why the economy can recover from severe damage and out of equilibrium? Mathematically speaking, we may exam the regime stability under parameter change. One major weakness of the linear oscillator model is that the regime of periodic cycle is fragile or marginally stable under changing parameter. Only nonlinear oscillator model is capable of generating resilient cycles within a finite area under changing parameters. The typical example of linear models is the Samuelson model of multiplier-accelerator. Linear stochastic models have similar problem like linear deterministic models. For example, the so-called unit root solution occurs only at the borderline of the unit root. If a small parameter change leads to cross the unit circle, the stochastic solution will fall into damped (inside the unit circle) or explosive (outside the unit circle) solution.

Canonical Actions on Bundles – Philosophizing Identity Over Gauge Transformations.

Untitled

In physical applications, fiber bundles often come with a preferred group of transformations (usually the symmetry group of the system). The modem attitude of physicists is to regard this group as a fundamental structure which should be implemented from the very beginning enriching bundles with a further structure and defining a new category.

A similar feature appears on manifolds as well: for example, on ℜ2 one can restrict to Cartesian coordinates when we regard it just as a vector space endowed with a differentiable structure, but one can allow also translations if the “bigger” affine structure is considered. Moreover, coordinates can be chosen in much bigger sets: for instance one can fix the symplectic form w = dx ∧ dy on ℜ2 so that ℜ2 is covered by an atlas of canonical coordinates (which include all Cartesian ones). But ℜ2 also happens to be identifiable with the cotangent bundle T*ℜ so that we can restrict the previous symplectic atlas to allow only natural fibered coordinates. Finally, ℜ2 can be considered as a bare manifold so that general curvilinear coordinates should be allowed accordingly; only if the full (i.e., unrestricted) manifold structure is considered one can use a full maximal atlas. Other choices define instead maximal atlases in suitably restricted sub-classes of allowed charts. As any manifold structure is associated with a maximal atlas, geometric bundles are associated to “maximal trivializations”. However, it may happen that one can restrict (or enlarge) the allowed local trivializations, so that the same geometrical bundle can be trivialized just using the appropriate smaller class of local trivializations. In geometrical terms this corresponds, of course, to impose a further structure on the bare bundle. Of course, this newly structured bundle is defined by the same basic ingredients, i.e. the same base manifold M, the same total space B, the same projection π and the same standard fiber F, but it is characterized by a new maximal trivialization where, however, maximal refers now to a smaller set of local trivializations.

Examples are: vector bundles are characterized by linear local trivializations, affine bundles are characterized by affine local trivializations, principal bundles are characterized by left translations on the fiber group. Further examples come from Physics: gauge transformations are used as transition functions for the configuration bundles of any gauge theory. For these reasons we give the following definition of a fiber bundle with structure group.

A fiber bundle with structure group G is given by a sextuple B = (E, M, π; F ;>.., G) such that:

  • (E, M, π; F) is a fiber bundle. The structure group G is a Lie group (possibly a discrete one) and λ : G —–> Diff(F) defines a left action of G on the standard fiber F .
  • There is a family of preferred trivializations {(Uα, t(α)}α∈I of B such that the following holds: let the transition functions be gˆ(αβ) : Uαβ —–> Diff(F) and let eG be the neutral element of G. ∃ a family of maps g(αβ) : Uαβ —–> G such

    that, for each x ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ

    g(αα)(x) = eG

    g(αβ)(x) = [g(βα)(x)]-1

    g(αβ)(x) . g(βγ)(x) . g(γα)(x) = eG

    and

    (αβ)(x) = λ(g(αβ)(x)) ∈ Diff(F)

The maps g(αβ) : Uαβ —–> G, which depend on the trivialization, are said to form a cocycle with values in G. They are called the transition functions with values in G (or also shortly the transition functions). The preferred trivializations will be said to be compatible with the structure. Whenever dealing with fiber bundles with structure group the choice of a compatible trivialization will be implicitly assumed.

Fiber bundles with structure group provide the suitable framework to deal with bundles with a preferred group of transformations. To see this, let us begin by introducing the notion of structure bundle of a fiber bundle with structure group B = (B, M, π; F; x, G).

Let B = (B, M, π; F; x, G) be a bundle with a structure group; let us fix a trivialization {(Uα, t(α)}α∈I and denote by g(αβ) : Uαβ —–> G its transition functions. By using the canonical left action L : G —–> Diff(G) of G onto itself, let us define gˆ(αβ) : Uαβ —–> Diff(G) given by gˆ(αβ)(x) = L (g(αβ)(x)); they obviously satisfy the cocycle properties. Now by constructing a (unique modulo isomorphisms) principal bundle PB = P(B) having G as structure group and g(αβ) as transition functions acting on G by left translation Lg : G —> G.

The principal bundle P(B) = (P, M, p; G) constructed above is called the structure bundle of B = (B, M, π; F; λ, G).

Notice that there is no similar canonical way of associating a structure bundle to a geometric bundle B = (B, M, π; F), since in that case the structure group G is at least partially undetermined.

Each automorphism of P(B) naturally acts over B.

Let, in fact, {σ(α)}α∈I be a trivialization of PB together with its transition functions g(αβ) : Uαβ —–> G defined by σ(β) = σ(α) . g(αβ). Then any principal morphism Φ = (Φ, φ) over PB is locally represented by local maps ψ(α) : Uα —> G such that

Φ : [x, h]α ↦ [φ(α)(x), ψ(α)(x).h](α)

Since Φ is a global automorphism of PB for the above local expression, the following property holds true in Uαβ.

φ(α)(x) = φ(β)(x) ≡ x’

ψ(α)(x) = g(αβ)(x’) . ψ(β)(x) . g(βα)(x)

By using the family of maps {(φ(α), ψ(α))} one can thence define a family of global automorphisms of B. In fact, using the trivialization {(Uα, t(α)}α∈I, one can define local automorphisms of B given by

Φ(α)B : (x, y) ↦ (φ(α)(x), [λ(ψ(α)(x))](y))

These local maps glue together to give a global automorphism ΦB of the bundle B, due to the fact that g(αβ) are also transition functions of B with respect to its trivialization {(Uα, t(α)}α∈I.

In this way B is endowed with a preferred group of transformations, namely the group Aut(PB) of automorphisms of the structure bundle PB, represented on B by means of the canonical action. These transformations are called (generalized) gauge transformations. Vertical gauge transformations, i.e. gauge transformations projecting over the identity, are also called pure gauge transformations.

Principal Bundles Preserve Structures…

Untitled

A bundle P = (P, M ,π; G) is a principal bundle if the standard fiber is a Lie group G and ∃ (at least) one trivialization the transition functions of which act on G by left translations Lg : G → G : h ↦ f  g . h (where . denotes here the group multiplication).

The principal bundles are slightly different from affine bundles and vector bundles. In fact, while in affine bundles the fibers π-1(x) have a canonical structure of affine spaces and in vector bundles the fibers π-1(x) have a canonical structure of vector spaces, in principal bundles the fibers have no canonical Lie group structure. This is due to the fact that, while in affine bundles transition functions act by means of affine transformations and in vector bundles transition functions act by means of linear transformations, in principal bundles transition functions act by means of left translations which are not group automorphisms. Thus the fibers of a principal bundle do not carry a canonical group structure, but rather many non-canonical (trivialization-depending) group structures. In the fibers of a vector bundle there exists a preferred element (the “zero”) the definition of which does not depend on the local trivialization. On the contrary, in the fibers of a principal bundle there is no preferred point which is fixed by transition functions to be selected as an identity. Thus, while in affine bundles affine morphisms are those which preserve the affine structure of the fibers and in vector bundles linear morphisms are the ones which preserve the linear structure of the fibers, in a principal bundle P = (P, M, π; G) principal morphisms preserve instead a structure, the right action of G on P.

Let P = (P, M, π; G) be a principal bundle and {(Uα, t(α)}α∈I a trivialization. We can locally consider the maps

R(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, h . g](α) —– (1)

∃ a (global) right action Rg of G on P which is free, vertical and transitive on fibers; the local expression in the given trivialization of this action is given by R(α)g .

Using the local trivialization, we set p = [x, h](α) = [x, g(βα)(x) . h]β following diagram commutes:

Untitled

which clearly shows that the local expressions agree on the overlaps Uαβ, to define a right action. This is obviously a vertical action; it is free because of the following:

Rgp = p => [x, h . g](α) = [x, h](α) => h · g = h => g = e —– (2)

Finally, if p = [x, h1](α) and q = [x, h2](α) are two points in the same fiber of p, one can choose g = h2-1 . h1 (where · denotes the group multiplication) so that p = Rgq. This shows that the right action is also transitive on the fibers.

On the contrary, that a global left action cannot be defined by using the local maps

L(α)g : π-1(Uα) → π-1(Uα) : [x, h](α) ↦ [x, g . h](α) —– (3)

since these local maps do not satisfy a compatibility condition analogous to the condition of the commuting diagram.

let P = (P, M, π; G) and P’ = (P’, M’, π’ ; G’ ) be two principal bundles and θ : G → G’ be a homomorphism of Lie groups. A bundle morphism Φ = (Φ, φ) : P → P’ is a principal morphism with respect to θ if the following diagram is commutative:

Untitled

When G = G’ and θ = idG we just say that Φ is a principal morphism.

A trivial principal bundle (M x G, M, π; G) naturally admits the global unity section I ∈ Γ(M x G), defined with respect to a global trivialization, I : x ↦ (x, e), e being the unit element of G. Also, principal bundles allow global sections iff they are trivial. In fact, on principal bundles there is a canonical correspondence between local sections and local trivializations, due to the presence of the global right action.