Geometry and Localization: An Unholy Alliance? Thought of the Day 95.0

SYM5

There are many misleading metaphors obtained from naively identifying geometry with localization. One which is very close to that of String Theory is the idea that one can embed a lower dimensional Quantum Field Theory (QFT) into a higher dimensional one. This is not possible, but what one can do is restrict a QFT on a spacetime manifold to a submanifold. However if the submanifold contains the time axis (a ”brane”), the restricted theory has too many degrees of freedom in order to merit the name ”physical”, namely it contains as many as the unrestricted; the naive idea that by using a subspace one only gets a fraction of phase space degrees of freedom is a delusion, this can only happen if the subspace does not contain a timelike line as for a null-surface (holographic projection onto a horizon).

The geometric picture of a string in terms of a multi-component conformal field theory is that of an embedding of an n-component chiral theory into its n-dimensional component space (referred to as a target space), which is certainly a string. But this is not what modular localization reveals, rather those oscillatory degrees of freedom of the multicomponent chiral current go into an infinite dimensional Hilbert space over one localization point and do not arrange themselves according according to the geometric source-target idea. A theory of this kind is of course consistent but String Theory is certainly a very misleading terminology for this state of affairs. Any attempt to imitate Feynman rules by replacing word lines by word sheets (of strings) may produce prescriptions for cooking up some mathematically interesting functions, but those results can not be brought into the only form which counts in a quantum theory, namely a perturbative approach in terms of operators and states.

String Theory is by no means the only area in particle theory where geometry and modular localization are at loggerheads. Closely related is the interpretation of the Riemann surfaces, which result from the analytic continuation of chiral theories on the lightray/circle, as the ”living space” in the sense of localization. The mathematical theory of Riemann surfaces does not specify how it should be realized; if its refers to surfaces in an ambient space, a distinguished subgroup of Fuchsian group or any other of the many possible realizations is of no concern for a mathematician. But in the context of chiral models it is important not to confuse the living space of a QFT with its analytic continuation.

Whereas geometry as a mathematical discipline does not care about how it is concretely realized the geometrical aspects of modular localization in spacetime has a very specific geometric content namely that which can be encoded in subspaces (Reeh-Schlieder spaces) generated by operator subalgebras acting onto the vacuum reference state. In other words the physically relevant spacetime geometry and the symmetry group of the vacuum is contained in the abstract positioning of certain subalgebras in a common Hilbert space and not that which comes with classical theories.

Advertisements

Kant and Non-Euclidean Geometries. Thought of the Day 94.0

ei5yC

The argument that non-Euclidean geometries contradict Kant’s doctrine on the nature of space apparently goes back to Hermann Helmholtz and was retaken by several philosophers of science such as Hans Reichenbach (The Philosophy of Space and Time) who devoted much work to this subject. In a essay written in 1870, Helmholtz argued that the axioms of geometry are not a priori synthetic judgments (in the sense given by Kant), since they can be subjected to experiments. Given that Euclidian geometry is not the only possible geometry, as was believed in Kant’s time, it should be possible to determine by means of measurements whether, for instance, the sum of the three angles of a triangle is 180 degrees or whether two straight parallel lines always keep the same distance among them. If it were not the case, then it would have been demonstrated experimentally that space is not Euclidean. Thus the possibility of verifying the axioms of geometry would prove that they are empirical and not given a priori.

Helmholtz developed his own version of a non-Euclidean geometry on the basis of what he believed to be the fundamental condition for all geometries: “the possibility of figures moving without change of form or size”; without this possibility, it would be impossible to define what a measurement is. According to Helmholtz:

the axioms of geometry are not concerned with space-relations only but also at the same time with the mechanical deportment of solidest bodies in motion.

Nevertheless, he was aware that a strict Kantian might argue that the rigidity of bodies is an a priori property, but

then we should have to maintain that the axioms of geometry are not synthetic propositions… they would merely define what qualities and deportment a body must have to be recognized as rigid.

At this point, it is worth noticing that Helmholtz’s formulation of geometry is a rudimentary version of what was later developed as the theory of Lie groups. As for the transport of rigid bodies, it is well known that rigid motion cannot be defined in the framework of the theory of relativity: since there is no absolute simultaneity of events, it is impossible to move all parts of a material body in a coordinated and simultaneous way. What is defined as the length of a body depends on the reference frame from where it is observed. Thus, it is meaningless to invoke the rigidity of bodies as the basis of a geometry that pretend to describe the real world; it is only in the mathematical realm that the rigid displacement of a figure can be defined in terms of what mathematicians call a congruence.

Arguments similar to those of Helmholtz were given by Reichenbach in his intent to refute Kant’s doctrine on the nature of space and time. Essentially, the argument boils down to the following: Kant assumed that the axioms of geometry are given a priori and he only had classical geometry in mind, Einstein demonstrated that space is not Euclidean and that this could be verified empirically, ergo Kant was wrong. However, Kant did not state that space must be Euclidean; instead, he argued that it is a pure form of intuition. As such, space has no physical reality of its own, and therefore it is meaningless to ascribe physical properties to it. Actually, Kant never mentioned Euclid directly in his work, but he did refer many times to the physics of Newton, which is based on classical geometry. Kant had in mind the axioms of this geometry which is a most powerful tool of Newtonian mechanics. Actually, he did not even exclude the possibility of other geometries, as can be seen in his early speculations on the dimensionality of space.

The important point missed by Reichenbach is that Riemannian geometry is necessarily based on Euclidean geometry. More precisely, a Riemannian space must be considered as locally Euclidean in order to be able to define basic concepts such as distance and parallel transport; this is achieved by defining a flat tangent space at every point, and then extending all properties of this flat space to the globally curved space (Luther Pfahler Eisenhart Riemannian Geometry). To begin with, the structure of a Riemannian space is given by its metric tensor gμν from which the (differential) length is defined as ds2 = gμν dxμ dxν; but this is nothing less than a generalization of the usual Pythagoras theorem in Euclidean space. As for the fundamental concept of parallel transport, it is taken directly from its analogue in Euclidean space: it refers to the transport of abstract (not material, as Helmholtz believed) figures in such a space. Thus Riemann’s geometry cannot be free of synthetic a priori propositions because it is entirely based upon concepts such as length and congruence taken form Euclid. We may conclude that Euclids geometry is the condition of possibility for a more general geometry, such as Riemann’s, simply because it is the natural geometry adapted to our understanding; Kant would say that it is our form of grasping space intuitively. The possibility of constructing abstract spaces does not refute Kant’s thesis; on the contrary, it reinforces it.

Constructivism. Note Quote.

f110f2532724a581461f7024fdde344c

Constructivism, as portrayed by its adherents, “is the idea that we construct our own world rather than it being determined by an outside reality”. Indeed, a common ground among constructivists of different persuasion lies in a commitment to the idea that knowledge is actively built up by the cognizing subject. But, whereas individualistic constructivism (which is most clearly enunciated by radical constructivism) focuses on the biological/psychological mechanisms that lead to knowledge construction, sociological constructivism focuses on the social factors that influence learning.

Let us briefly consider certain fundamental assumptions of individualistic constructivism. The first issue a constructivist theory of cognition ought to elucidate concerns of course the raw materials on which knowledge is constructed. On this issue, von Glaserfeld, an eminent representative of radical constructivism, gives a categorical answer: “from the constructivist point of view, the subject cannot transcend the limits of individual experience” (Michael R. Matthews Constructivism in Science Education_ A Philosophical Examination). This statement presents the keystone of constructivist epistemology, which conclusively asserts that “the only tools available to a ‘knower’ are the senses … [through which] the individual builds a picture of the world”. What is more, the so formed mental pictures do not shape an ‘external’ to the subject world, but the distinct personal reality of each individual. And this of course entails, in its turn, that the responsibility for the gained knowledge lies with the constructor; it cannot be shifted to a pre-existing world. As Ranulph Glanville confesses, “reality is what I sense, as I sense it, when I’m being honest about it” .

In this way, individualistic constructivism estranges the cognizing subject from the external world. Cognition is not considered as aiming at the discovery and investigation of an ‘independent’ world; it is viewed as a ‘tool’ that exclusively serves the adaptation of the subject to the world as it is experienced. From this perspective, ‘knowledge’ acquires an entirely new meaning. In the expression of von Glaserfeld,

the word ‘knowledge’ refers to conceptual structures that epistemic agents, given the range of present experience, within their tradition of thought and language, consider viable….[Furthermore] concepts have to be individually built up by reflective abstraction; and reflective abstraction is not a matter of looking closer but at operating mentally in a way that happens to be compatible with the perceptual material at hand.

To say it briefly, ‘knowledge’ signifies nothing more than an adequate organization of the experiential world, which makes the cognizing subject capable to effectively manipulate its perceptual experience.

It is evident that such insights, precluding any external point of reference, have impacts on knowledge evaluation. Indeed, the ascertainment that “for constructivists there are no structures other than those which the knower forms by its own activity” (Michael R. MatthewsConstructivism in Science Education A Philosophical Examination) yields unavoidably the conclusion drawn by Gerard De Zeeuw that “there is no mind-independent yardstick against which to measure the quality of any solution”. Hence, knowledge claims should not be evaluated by reference to a supposed ‘external’ world, but only by reference to their internal consistency and personal utility. This is precisely the reason that leads von Glaserfeld to suggest the substitution of the notion of “truth” by the notion of “viability” or “functional fit”: knowledge claims are appraised as “true”, if they “functionally fit” into the subject’s experiential world; and to find a “fit” simply means not to notice any discrepancies. This functional adaptation of ‘knowledge’ to experience is what finally secures the intended “viability”.

In accordance with the constructivist view, the notion of ‘object’, far from indicating any kind of ‘existence’, it explicitly refers to a strictly personal construction of the cognizing subject. Specifically, “any item of the furniture of someone’s experiential world can be called an ‘object’” (von Glaserfeld). From this point of view, the supposition that “the objects one has isolated in his experience are identical with those others have formed … is an illusion”. This of course deprives language of any rigorous criterion of objectivity; its physical-object statements, being dependent upon elements that are derived from personal experience, cannot be considered to reveal attributes of the objects as they factually are. Incorporating concepts whose meaning is highly associated with the individual experience of the cognizing subject, these statements form at the end a personal-specific description of the world. Conclusively, for constructivists the term ‘objectivity’ “shows no more than a relative compatibility of concepts” in situations where individuals have had occasion to compare their “individual uses of the particular words”.

From the viewpoint of radical constructivism, science, being a human enterprise, is amenable, by its very nature, to human limitations. It is then naturally inferred on constructivist grounds that “science cannot transcend [just as individuals cannot] the domain of experience” (von Glaserfeld). This statement, indicating that there is no essential differentiation between personal and scientific knowledge, permits, for instance, John Staver to assert that “for constructivists, observations, objects, events, data, laws and theory do not exist independent of observers. The lawful and certain nature of natural phenomena is a property of us, those who describe, not of nature, what is described”. Accordingly, by virtue of the preceding premise, one may argue that “scientific theories are derived from human experience and formulated in terms of human concepts” (von Glaserfeld).

In the framework now of social constructivism, if one accepts that the term ‘knowledge’ means no more than “what is collectively endorsed” (David Bloor Knowledge and Social Imagery), he will probably come to the conclusion that “the natural world has a small or non-existent role in the construction of scientific knowledge” (Collins). Or, in a weaker form, one can postulate that “scientific knowledge is symbolic in nature and socially negotiated. The objects of science are not the phenomena of nature but constructs advanced by the scientific community to interpret nature” (Rosalind Driver et al.). It is worth remarking that both views of constructivism eliminate, or at least downplay, the role of the natural world in the construction of scientific knowledge.

It is evident that the foregoing considerations lead most versions of constructivism to ultimately conclude that the very word ‘existence’ has no meaning in itself. It does acquire meaning only by referring to individuals or human communities. The acknowledgement of this fact renders subsequently the notion of ‘external’ physical reality useless and therefore redundant. As Riegler puts it, within the constructivist framework, “an external reality is neither rejected nor confirmed, it must be irrelevant”.

Mailvox: The Origins of the Alt-Retard

Alt-Left-perspectives3

The reaction to degeneracy can sometimes happen within the spirit of degeneracy. Genocide is not the morally wholesome solution to whoredom. The Marxist-Lenninsts regard Fascism as form of bourgeois reaction. That is their frame, it is how they like to position their argument as it emphasises the difference between the two, but I think it is far better to think of Socialism as Left Modernism and Fascism as being Right Modernism. With Left and Right being dispositional/temperamental distinctions. They might be different teams but they’re both playing the same game.

A Generation X reader sent me this analysis of the Fake Right Clown Posse, which somehow manages to be both sympathetic of the plight being faced by the young men of today and contemptuous of what some of them have become in response. I think he is largely correct, and explains why their attempts to defend their race and their nations so often go awry.

We have no choice but to help them. The challenge is that the only answer to ignorance is information, and as we know, as we have witnessed, there are some who cannot be instructed by information.

Mailvox: The Origins of the Alt-Retard

Open Market Operations. Thought of the Day 93.0

fig

It can be argued that it would be much more democratic if the Treasuries were allowed to borrow directly from their central bank. By electing a government on a program, we would know what deficit it intends to run and thus how much it will be willing to print, which in the long run is a debate about the possible level of inflation. Instead, it has been argued that decisions made on democratic grounds might be unstable as they are affected by elections. However, the independence of central banks is also serving the interest of commercial bankers as we argue now.

In practice, the central bank buys and sells bonds in open market operations. At least it is always doing so with short term T-bonds as part of the conventional monetary policy, and it might decide sometimes to do it as well with longer maturity T-bonds as part of the unconventional monetary policy. This blurs the lines between a model where the central bank directly finances the Treasury, and a model where this is done by commercial banks since they result in the same final situation. Indeed, before an open market operation the Treasury owes central bank money to a commercial bank, and in the final situation it owes it to the central bank itself, and the central bank money held by the commercial bank has been increased accordingly.

The commercial bank has accepted to get rid of an IOU which bears interest, in exchange of a central bank IOU which bears no interest. However the Treasury will never default on its debt, because the state also runs the central bank which can buy an infinite amount of T-bonds. Said differently, if the interest rates for short term T-bonds start to increase as the commercial banks become more and more reluctant to buy these, the central bank needs to buy as many short-term bonds as necessary to ensure the short term interest rates on T-bonds remain at the targeted level. By using these open market operations a sovereign state running a sovereign currency has the means to ensure that the banks are always willing to buy T-bonds, whatever the deficit is.

However, this system has a drawback. First when the commercial bank bought the T-bond, it had to pretend that it was worried the state might never reimburse, so as to ask for interests rates which are at least slightly higher than the interest rate at which they can borrow from the central bank, and make a profit on the difference. Of course the banks knew they would always be reimbursed, because the central bank always stands ready to buy bonds. As the interest rates departed from the target chosen by the central bank, the latter bought short term bonds to prevent the short term rate from increasing. In order to convince a commercial bank to get rid of a financial instrument which is not risky and which bears interest, the only solution is to pay more than the current value of the bond, which amounts to a decrease of the interest rate on those bonds. The bank thus makes an immediate profit instead of a larger profit later. This difference goes directly into the net worth of the banker and amounts to money creation.

To conclude, we reach the same stage as if the Treasury had sold directly its bond to the central bank, except that now we have increased by a small amount the net worth of the bankers. By first selling the bonds to the commercial banks, instead of selling directly to the central bank, the bankers were able to realize a small profit. But this profit is an immediate and easy one. So they have on one side to pretend they do not like when the Treasury goes into debt, so as to be able to ask for the highest possible interest rate, and secretly enjoy it since either they make a profit when it falls due, or even better immediately if the central bank buys the bonds to control the interest rates.

The commercial banks will always end up with a part of their assets denominated directly in central bank money, which bears no interest, and T-bonds, which bear interest. If we adopt a consolidated state point of view, where we merge the Treasury and the central bank, then the commercial banks have two types of accounts. Deposits which bear no interests, and saving accounts which generate interests, just like everybody. In order to control the interest rate, the consolidated state shifts the amounts from the interest-less to the interest-bearing account and vice-versa.

Individuation. Thought of the Day 91.0

Figure-6-Concepts-of-extensionality

The first distinction is between two senses of the word “individuation” – one semantic, the other metaphysical. In the semantic sense of the word, to individuate an object is to single it out for reference in language or in thought. By contrast, in the metaphysical sense of the word, the individuation of objects has to do with “what grounds their identity and distinctness.” Sets are often used to illustrate the intended notion of “grounding.” The identity or distinctness of sets is said to be “grounded” in accordance with the principle of extensionality, which says that two sets are identical iff they have precisely the same elements:

SET(x) ∧ SET(y) → [x = y ↔ ∀u(u ∈ x ↔ u ∈ y)]

The metaphysical and semantic senses of individuation are quite different notions, neither of which appears to be reducible to or fully explicable in terms of the other. Since sufficient sense cannot be made of the notion of “grounding of identity” on which the metaphysical notion of individuation is based, focusing on the semantic notion of individuation is an easy way out. This choice of focus means that our investigation is a broadly empirical one drawn on empirical linguistics and psychology.

What is the relation between the semantic notion of individuation and the notion of a criterion of identity? It is by means of criteria of identity that semantic individuation is effected. Singling out an object for reference involves being able to distinguish this object from other possible referents with which one is directly presented. The final distinction is between two types of criteria of identity. A one-level criterion of identity says that two objects of some sort F are identical iff they stand in some relation RF:

Fx ∧ Fy → [x = y ↔ RF(x,y)]

Criteria of this form operate at just one level in the sense that the condition for two objects to be identical is given by a relation on these objects themselves. An example is the set-theoretic principle of extensionality.

A two-level criterion of identity relates the identity of objects of one sort to some condition on entities of another sort. The former sort of objects are typically given as functions of items of the latter sort, in which case the criterion takes the following form:

f(α) = f(β) ↔ α ≈ β

where the variables α and β range over the latter sort of item and ≈ is an equivalence relation on such items. An example is Frege’s famous criterion of identity for directions:

d(l1) = d(l2) ↔ l1 || l2

where the variables l1 and l2 range over lines or other directed items. An analogous two-level criterion relates the identity of geometrical shapes to the congruence of things or figures having the shapes in question. The decision to focus on the semantic notion of individuation makes it natural to focus on two-level criteria. For two-level criteria of identity are much more useful than one-level criteria when we are studying how objects are singled out for reference. A one-level criterion provides little assistance in the task of singling out objects for reference. In order to apply a one-level criterion, one must already be capable of referring to objects of the sort in question. By contrast, a two-level criterion promises a way of singling out an object of one sort in terms of an item of another and less problematic sort. For instance, when Frege investigated how directions and other abstract objects “are given to us”, although “we cannot have any ideas or intuitions of them”, he proposed that we relate the identity of two directions to the parallelism of the two lines in terms of which these directions are presented. This would be explanatory progress since reference to lines is less puzzling than reference to directions.