Homological Algebra – Does A∞ Algebra Compensate for any Loss of Information in the Study of Chain Complexes? 1.0

maxresdefault

In an abelian category, homological algebra is the homotopy theory of chain complexes up to quasi-isomorphism of chain complexes.  When considering nonnegatively graded chain complexes, homological algebra may be viewed as a linearized version of the homotopy theory of homotopy types or infinite groupoids. When considering unbounded chain complexes, it may be viewed as a linearized and stabilized version. Conversely, we may view homotopical algebra as a nonabelian generalization of homological algebra.

Suppose we have a topological space X and a “multiplication map” m2 : X × X → X. This map may or may not be associative; imposing associativity is an extra condition. An A space imposes a weaker structure, which requires m2 to be associative up to homotopy, along with “higher order” versions of this. Indeed, there are very standard situations where one has natural multiplication maps which are not associative, but obey certain weaker conditions.

The standard example is when X is the loop space of another space M, i.e., if m0 ∈ M is a chosen base point,

X = {x : [0,1] → M |x continuous, x(0) = x(1) = m0}.

Composition of loops is then defined, with

x2x1(t) = x2(2t), when 0 ≤ t ≤ 1/2

= x1(2t−1), when  1/2 ≤ t ≤ 1

However, this composition is not associative, but x3(x2x1) and (x1x2)x3 are homotopic loops.

Screen Shot 2019-06-06 at 5.45.25 AM

On the left, we first traverse x3 from time 0 to time 1/2, then traverse x2 from time 1/2 to time 3/4, and then x1 from time 3/4 to time 1. On the right, we first traverse x3 from time 0 to time 1/4, x2 from time 1/4 to time 1/2, and then x1 from time 1/2 to time 1. By continuously deforming these times, we can homotop one of the loops to the other. This homotopy can be represented by a map

m3 : [0, 1] × X × X × X → X such that

{0} × X × X × X → X is given by (x3, x2, x1) 􏰀→ m2(x3, m2(x2, x1)) and

{1} × X × X × X → X is given by (x3, x2, x1) 􏰀→ m2(m2(x3, x2), x1)

What, if we have four elements x1, . . . , x4 of X? Then there are a number of different ways of putting brackets in their product, and these are related by the homotopies defined by m3. Indeed, we can relate

((x4x3)x2)x1 and x4(x3(x2x1))

in two different ways:

((x4x3)x2)x1 ∼ (x4x3)(x2x1) ∼ x4(x3(x2x1))

and

((x4x3)x2)x1 ∼ (x4(x3x2))x1 ∼ x4((x3x2)x1) ∼ x4(x3(x2x1)).

Here each ∼ represents a homotopy given by m3.

Schematically, this is represented by a polygon, S4, with each vertex labelled by one of the ways of associating x4x3x2x1, and the edges represent homotopies between them

Screen Shot 2019-06-06 at 6.02.33 AM

The homotopies myield a map ∂S4 × X4 → X which is defined using appropriate combinations of m2 and m3 on each edge of the boundary of S4. For example, restricting to the edge with vertices ((x4x3)x2)x1 and (x4(x3x2))x1, this map is given by (s, x4, . . . , x1) 􏰀→ m2(m3(s, x4, x3, x2), x1).

Thus the conditionality on the structure becomes: this map extend across S4, giving a map

m4 : S4 × X4 → X.

As homological algebra seeks to study complexes by taking quotient modules to obtain the homology, the question arises as to whether any information is lost in this process. This is equivalent to asking whether it is possible to reconstruct the original complex (up to quasi-isomorphism) given its homology or whether some additional structure is needed in order to be able to do this. The additional structure that is needed is an A-structure constructed on the homology of the complex…

 

Why Can’t There Be Infinite Descending Chain Of Quotient Representations? – Part 3

 

8cmbD

For a quiver Q, the category Rep(Q) of finite-dimensional representations of Q is abelian. A morphism f : V → W in the category Rep(Q) defined by a collection of morphisms fi : Vi → Wi is injective (respectively surjective, an isomorphism) precisely if each of the linear maps fi is.

There is a collection of simple objects in Rep(Q). Indeed, each vertex i ∈ Q0 determines a simple object Si of Rep(Q), the unique representation of Q up to isomorphism for which dim(Vj) = δij. If Q has no directed cycles, then these so-called vertex simples are the only simple objects of Rep(Q), but this is not the case in general.

If Q is a quiver, then the category Rep(Q) has finite length.

Given a representation E of a quiver Q, then either E is simple, or there is a nontrivial short exact sequence

0 → A → E → B → 0

Now if B is not simple, then we can break it up into pieces. This process must halt, as every representation of Q consists of finite-dimensional vector spaces. In the end, we will have found a simple object S and a surjection f : E → S. Take E1 ⊂ E to be the kernel of f and repeat the argument with E1. In this way we get a filtration

… ⊂ E3 ⊂ E2 ⊂ E1 ⊂ E

with each quotient object Ei−1/Ei simple. Once again, this filtration cannot continue indefinitely, so after a finite number of steps we get En = 0. Renumbering by setting Ei := En−i for 1 ≤ i ≤ n gives a Jordan-Hölder filtration for E. The basic reason for finiteness is the assumption that all representations of Q are finite-dimensional. This means that there can be no infinite descending chains of subrepresentations or quotient representations, since a proper subrepresentation or quotient representation has strictly smaller dimension.

In many geometric and algebraic contexts, what is of interest in representations of a quiver Q are morphisms associated to the arrows that satisfy certain relations. Formally, a quiver with relations (Q, R) is a quiver Q together with a set R = {ri} of elements of its path algebra, where each ri is contained in the subspace A(Q)aibi of A(Q) spanned by all paths p starting at vertex aiand finishing at vertex bi. Elements of R are called relations. A representation of (Q, R) is a representation of Q, where additionally each relation ri is satisfied in the sense that the corresponding linear combination of homomorphisms from Vai to Vbi is zero. Representations of (Q, R) form an abelian category Rep(Q, R).

A special class of relations on quivers comes from the following construction, inspired by the physics of supersymmetric gauge theories. Given a quiver Q, the path algebra A(Q) is non-commutative in all but the simplest examples, and hence the sub-vector space [A(Q), A(Q)] generated by all commutators is non-trivial. The vector space quotientA(Q)/[A(Q), A(Q)] is seen to have a basis consisting of the cyclic paths anan−1 · · · a1 of Q, formed by composable arrows ai of Q with h(an) = t(a1), up to cyclic permutation of such paths. By definition, a superpotential for the quiver Q is an element W ∈ A(Q)/[A(Q), A(Q)] of this vector space, a linear combination of cyclic paths up to cyclic permutation.

Morphism of Complexes Induces Corresponding Morphisms on Cohomology Objects – Thought of the Day 146.0

Let A = Mod(R) be an abelian category. A complex in A is a sequence of objects and morphisms in A

… → Mi-1 →di-1 Mi →di → Mi+1 → …

such that di ◦ di-1 = 0 ∀ i. We denote such a complex by M.

A morphism of complexes f : M → N is a sequence of morphisms fi : Mi → Ni in A, making the following diagram commute, where diM, diN denote the respective differentials:

Untitled

We let C(A) denote the category whose objects are complexes in A and whose morphisms are morphisms of complexes.

Given a complex M of objects of A, the ith cohomology object is the quotient

Hi(M) = ker(di)/im(di−1)

This operation of taking cohomology at the ith place defines a functor

Hi(−) : C(A) → A,

since a morphism of complexes induces corresponding morphisms on cohomology objects.

Put another way, an object of C(A) is a Z-graded object

M = ⊕i Mi

of A, equipped with a differential, in other words an endomorphism d: M → M satisfying d2 = 0. The occurrence of differential graded objects in physics is well-known. In mathematics they are also extremely common. In topology one associates to a space X a complex of free abelian groups whose cohomology objects are the cohomology groups of X. In algebra it is often convenient to replace a module over a ring by resolutions of various kinds.

A topological space X may have many triangulations and these lead to different chain complexes. Associating to X a unique equivalence class of complexes, resolutions of a fixed module of a given type will not usually be unique and one would like to consider all these resolutions on an equal footing.

A morphism of complexes f: M → N is a quasi-isomorphism if the induced morphisms on cohomology

Hi(f): Hi(M) → Hi(N) are isomorphisms ∀ i.

Two complexes M and N are said to be quasi-isomorphic if they are related by a chain of quasi-isomorphisms. In fact, it is sufficient to consider chains of length one, so that two complexes M and N are quasi-isomorphic iff there are quasi-isomorphisms

M ← P → N

For example, the chain complex of a topological space is well-defined up to quasi-isomorphism because any two triangulations have a common resolution. Similarly, all possible resolutions of a given module are quasi-isomorphic. Indeed, if

0 → S →f M0 →d0 M1 →d1 M2 → …

is a resolution of a module S, then by definition the morphism of complexes

Untitled

is a quasi-isomorphism.

The objects of the derived category D(A) of our abelian category A will just be complexes of objects of A, but morphisms will be such that quasi-isomorphic complexes become isomorphic in D(A). In fact we can formally invert the quasi-isomorphisms in C(A) as follows:

There is a category D(A) and a functor Q: C(A) → D(A)

with the following two properties:

(a) Q inverts quasi-isomorphisms: if s: a → b is a quasi-isomorphism, then Q(s): Q(a) → Q(b) is an isomorphism.

(b) Q is universal with this property: if Q′ : C(A) → D′ is another functor which inverts quasi-isomorphisms, then there is a functor F : D(A) → D′ and an isomorphism of functors Q′ ≅ F ◦ Q.

First, consider the category C(A) as an oriented graph Γ, with the objects lying at the vertices and the morphisms being directed edges. Let Γ∗ be the graph obtained from Γ by adding in one extra edge s−1: b → a for each quasi-isomorphism s: a → b. Thus a finite path in Γ∗ is a sequence of the form f1 · f2 ·· · ·· fr−1 · fr where each fi is either a morphism of C(A), or is of the form s−1 for some quasi-isomorphism s of C(A). There is a unique minimal equivalence relation ∼ on the set of finite paths in Γ∗ generated by the following relations:

(a) s · s−1 ∼ idb and s−1 · s ∼ ida for each quasi-isomorphism s: a → b in C(A).

(b) g · f ∼ g ◦ f for composable morphisms f: a → b and g: b → c of C(A).

Define D(A) to be the category whose objects are the vertices of Γ∗ (these are the same as the objects of C(A)) and whose morphisms are given by equivalence classes of finite paths in Γ∗. Define a functor Q: C(A) → D(A) by using the identity morphism on objects, and by sending a morphism f of C(A) to the length one path in Γ∗ defined by f. The resulting functor Q satisfies the conditions of the above lemma.

The second property ensures that the category D(A) of the Lemma is unique up to equivalence of categories. We define the derived category of A to be any of these equivalent categories. The functor Q: C(A) → D(A) is called the localisation functor. Observe that there is a fully faithful functor

J: A → C(A)

which sends an object M to the trivial complex with M in the zeroth position, and a morphism F: M → N to the morphism of complexes

Untitled

Composing with Q we obtain a functor A → D(A) which we denote by J. This functor J is fully faithful, and so defines an embedding A → D(A). By definition the functor Hi(−): C(A) → A inverts quasi-isomorphisms and so descends to a functor

Hi(−): D(A) → A

establishing that composite functor H0(−) ◦ J is isomorphic to the identity functor on A.

Derived Tensor Product via Resolutions by Complexes of Flat Modules (Part 1)

mappingcone

Let U be a topological space, O a sheaf of commutative rings, and A the abelian category of (sheaves of) O-modules. The standard theory of the derived tensor product, via resolutions by complexes of flat modules, applies to complexes in D(A).

A complex P ∈ K(A) is q-flat if for every quasi-isomorphism Q1 → Q2 in K(A), the resulting map P ⊗ Q1 → P ⊗ Q2 is also a quasi-isomorphism; or equivalently, if for every exact complex Q ∈ K(A), the complex P ⊗ Q is also exact.

P ∈ K(A) is q-flat iff for each point x ∈ U, the stalk Px is q-flat in K(Ax), where Ax is the category of modules over the ring Ox. (In verifying this statement, note that an exact Ox-complex Qx is the stalk at x of the exact O-complex Q which associates Qx to those open subsets of U which contain x, and 0 to those which don’t.)

For instance, a complex P which vanishes in all degrees but one (say n) is q-flat iff tensoring with the degree n component Pn is an exact functor in the category of O-modules, i.e., Pn is a flat O-module, i.e., for each x ∈ U, Pxn is a flat Ox-module.

A q-flat resolution of an A-complex C is a quasi-isomorphism P → C where P is q-flat. The totality of such resolutions (with variable P and C) is the class of objects of a category, whose morphisms are the obvious ones.

Every A-complex C is the target of a quasi-isomorphism ψC from a q-flat complex PC, which can be constructed to depend functorially on C, and so that PC[1] = PC[1] and ψC[1] = ψC[1].

Every O-module is a quotient of a flat one; in fact there exists a functor P0 from A to its full subcategory of flat O-modules, together with a functorial epimorphism P0(F) ։ F (F ∈ A). Indeed, for any open V ⊂ U let OV be the extension of O|V by zero, (i.e., the sheaf associated to the presheaf taking an open W to O(W) if W ⊂ V and to 0 otherwise), so that OV is flat,its stalk at x ∈ U being Ox if x ∈ V and 0 otherwise. There is a canonical isomorphism

ψ : F (V) → Hom (OV, F) (F ∈ A)

such that ψ(λ) takes 1 ∈ OV(V) to λ. With Oλ := OV for each λ ∈ F(V),

the maps ψ(λ) define an epimorphism, with flat source,

P0(F) := (⊕V openλ∈F(V) Oλ) → F,

and this epimorphism depends functorially on F.

We deduce then, for each F, a functorial flat resolution ··· → P2(F) → P1(F) → P0(F) → F

with P1(F) := P0 (ker(P0(F) → F), etc. Set Pn(F) = 0 if n < 0. Then to a complex C we associate the flat complex P = PC such that Pr := ⊕m−n=r Pn(Cm) and the restriction of the differential Pr → Pr+1 to Pn(Cm) is Pn(Cm → Cm+1) ⊕ (−1)m Pn(Cm) → Pn−1(Cm), together with the natural map of complexes P → C induced by the epimorphisms P0(Cm) → Cm (m ∈ Z). Elementary arguments, with or without spectral sequences, show that for the truncations τ≤mC, the maps Pτ≤m C → τ≤m C are quasi-isomorphisms. Since homology commutes with direct limits, the resulting map

ψC : PC = limm Pτ≤m C → limτ≤m C = C

is a quasi-isomorphism….

Right-(Left-)derived Functors

vZZBx

Fix an abelian category A, let J be a Δ-subcategory of K(A), let DJ be the corresponding derived category, and let

Q = QJ : J → DJ

be the canonical Δ-functor. For any Δ-functors F and G from J to another Δ-category E, or from DJ to E, Hom(F, G) will denote the abelian group of Δ-functor morphisms from F to G.

A Δ-functor F : J → E is right-derivable if there exists a Δ-functor

RF : DJ → E

and a morphism of Δ-functors

ζ : F → RF ◦ Q

such that for every Δ-functor G : DJ → E the composed map

Hom(RF, G) →natural Hom(RF ◦ Q, G ◦ Q) →via ζ Hom(F, G ◦ Q)

is an isomorphism, (the map “via ζ” is an isomorphism). The Δ-functor F is left-derivable if there exists a Δ-functor

LF : DJ → E

and a morphism of Δ-functors

ζ : LF ◦ Q → F

such that for every Δ-functor G : DJ → E the composed map

Hom(G, LF) →natural Hom(G ◦ Q, LF ◦ Q) →via ζ Hom(G ◦ Q, F)

is an isomorphism (the map “via ζ” is an isomorphism).

Such a pair (RF, ζ) and (LF, ζ) are called the right-derived and left-derived functors of F respectively. Composition with Q gives an embedding of Δ-functor categories

Truncation Functors

Let A be an abelian category, and let D = D(A) be the derived category. For any complex A• in A, and n ∈ Z, we let τ≤nA• be the truncated complex

··· → An−2 → An−1 → ker(An → An+1)→ 0 → 0 → ··· , and dually we let τ≥nA be the complex

··· → 0 → 0 → coker(An−1 → An) → An+1 → An+2 → ···

Note that

Hm≤nA•) = Hm(A•) if m ≤ n

= 0 if m > n

and that

Hm≥nA•) = Hm(A•)  if m ≥ n

= 0 if m < n

One checks that τ≥n (respectively τ≤n) extends naturally to an additive functor of complexes which preserves homotopy and takes quasi-isomorphisms to quasi-isomorphisms, and hence induces an additive functor D → D. In fact if D≤n (respectively D≥n) is the full subcategory of D whose objects are the complexes A• such that Hm(A•) = 0 for m > n (respectively m < n) then we have additive functors

τ≤n : D → D≤n ⊂ D

τ≥n : D → D≥n ⊂ D

together with obvious functorial maps

inA : τ≤n A• → A•

jnA : A• → τ≥n A•

The preceding inA , jnA induce functorial isomorphisms

HomD≤n (B•,τ≤nA•) →~ HomD(B•, A•) (B• ∈ D≤n) —– (1)

HomD≥n≥nA•,C•) →~ HomD(A•,C• ) (C• ∈ D≥n) —– (2)

Bijectivity of (1) means that any map φ : B• → A• (in D) with B• ∈ D≤n factors uniquely via iA := inA

Given φ, we have a commutative diagram

Untitled

and since B• ∈ D≤n, therefore iB is an isomorphism in D, so we can write

φ = i ◦ (τ≤nφ ◦ i−1B),

and thus (1) is surjective.

To prove that (1) is also injective, we assume that iA ◦ τ≤n φ = 0 and deduce that τ≤n φ = 0. The assumption means that there is a commutative diagram in K(A)

Untitled

where s and s′′ are quasi-isomorphisms, and f/s = τ≤nφ

Applying the (idempotent) functor τ≥n, we get a commutative diagram

Untitled

Since τ≤ns and τ≤ns′′ are quasi-isomorphisms, we have

τ≤nφ = τ≤n f/τ≤ns = 0/τ≤ns′′ = 0

as desired.

Abelian Categories, or Injective Resolutions are Diagrammatic. Note Quote.

DqkJq

Jean-Pierre Serre gave a more thoroughly cohomological turn to the conjectures than Weil had. Grothendieck says

Anyway Serre explained the Weil conjectures to me in cohomological terms around 1955 – and it was only in these terms that they could possibly ‘hook’ me …I am not sure anyone but Serre and I, not even Weil if that is possible, was deeply convinced such [a cohomology] must exist.

Specifically Serre approached the problem through sheaves, a new method in topology that he and others were exploring. Grothendieck would later describe each sheaf on a space T as a “meter stick” measuring T. The cohomology of a given sheaf gives a very coarse summary of the information in it – and in the best case it highlights just the information you want. Certain sheaves on T produced the Betti numbers. If you could put such “meter sticks” on Weil’s arithmetic spaces, and prove standard topological theorems in this form, the conjectures would follow.

By the nuts and bolts definition, a sheaf F on a topological space T is an assignment of Abelian groups to open subsets of T, plus group homomorphisms among them, all meeting a certain covering condition. Precisely these nuts and bolts were unavailable for the Weil conjectures because the arithmetic spaces had no useful topology in the then-existing sense.

At the École Normale Supérieure, Henri Cartan’s seminar spent 1948-49 and 1950-51 focussing on sheaf cohomology. As one motive, there was already de Rham cohomology on differentiable manifolds, which not only described their topology but also described differential analysis on manifolds. And during the time of the seminar Cartan saw how to modify sheaf cohomology as a tool in complex analysis. Given a complex analytic variety V Cartan could define sheaves that reflected not only the topology of V but also complex analysis on V.

These were promising for the Weil conjectures since Weil cohomology would need sheaves reflecting algebra on those spaces. But understand, this differential analysis and complex analysis used sheaves and cohomology in the usual topological sense. Their innovation was to find particular new sheaves which capture analytic or algebraic information that a pure topologist might not focus on.

The greater challenge to the Séminaire Cartan was, that along with the cohomology of topological spaces, the seminar looked at the cohomology of groups. Here sheaves are replaced by G-modules. This was formally quite different from topology yet it had grown from topology and was tightly tied to it. Indeed Eilenberg and Mac Lane created category theory in large part to explain both kinds of cohomology by clarifying the links between them. The seminar aimed to find what was common to the two kinds of cohomology and they found it in a pattern of functors.

The cohomology of a topological space X assigns to each sheaf F on X a series of Abelian groups HnF and to each sheaf map f : F → F′ a series of group homomorphisms Hnf : HnF → HnF′. The definition requires that each Hn is a functor, from sheaves on X to Abelian groups. A crucial property of these functors is:

HnF = 0 for n > 0

for any fine sheaf F where a sheaf is fine if it meets a certain condition borrowed from differential geometry by way of Cartan’s complex analytic geometry.

The cohomology of a group G assigns to each G-module M a series of Abelian groups HnM and to each homomorphism f : M →M′ a series of homomorphisms HnF : HnM → HnM′. Each Hn is a functor, from G-modules to Abelian groups. These functors have the same properties as topological cohomology except that:

HnM = 0 for n > 0

for any injective module M. A G-module I is injective if: For every G-module inclusion N M and homomorphism f : N → I there is at least one g : M → I making this commute

Untitled

Cartan could treat the cohomology of several different algebraic structures: groups, Lie groups, associative algebras. These all rest on injective resolutions. But, he could not include topological spaces, the source of the whole, and still one of the main motives for pursuing the other cohomologies. Topological cohomology rested on the completely different apparatus of fine resolutions. As to the search for a Weil cohomology, this left two questions: What would Weil cohomology use in place of topological sheaves or G-modules? And what resolutions would give their cohomology? Specifically, Cartan & Eilenberg defines group cohomology (like several other constructions) as a derived functor, which in turn is defined using injective resolutions. So the cohomology of a topological space was not a derived functor in their technical sense. But a looser sense was apparently current.

Grothendieck wrote to Serre:

I have realized that by formulating the theory of derived functors for categories more general than modules, one gets the cohomology of spaces at the same time at small cost. The existence follows from a general criterion, and fine sheaves will play the role of injective modules. One gets the fundamental spectral sequences as special cases of delectable and useful general spectral sequences. But I am not yet sure if it all works as well for non-separated spaces and I recall your doubts on the existence of an exact sequence in cohomology for dimensions ≥ 2. Besides this is probably all more or less explicit in Cartan-Eilenberg’s book which I have not yet had the pleasure to see.

Here he lays out the whole paper, commonly cited as Tôhoku for the journal that published it. There are several issues. For one thing, fine resolutions do not work for all topological spaces but only for the paracompact – that is, Hausdorff spaces where every open cover has a locally finite refinement. The Séminaire Cartan called these separated spaces. The limitation was no problem for differential geometry. All differential manifolds are paracompact. Nor was it a problem for most of analysis. But it was discouraging from the viewpoint of the Weil conjectures since non-trivial algebraic varieties are never Hausdorff.

Serre replied using the same loose sense of derived functor:

The fact that sheaf cohomology is a special case of derived func- tors (at least for the paracompact case) is not in Cartan-Sammy. Cartan was aware of it and told [David] Buchsbaum to work on it, but he seems not to have done it. The interest of it would be to show just which properties of fine sheaves we need to use; and so one might be able to figure out whether or not there are enough fine sheaves in the non-separated case (I think the answer is no but I am not at all sure!).

So Grothendieck began rewriting Cartan-Eilenberg before he had seen it. Among other things he preempted the question of resolutions for Weil cohomology. Before anyone knew what “sheaves” it would use, Grothendieck knew it would use injective resolutions. He did this by asking not what sheaves “are” but how they relate to one another. As he later put it, he set out to:

consider the set13 of all sheaves on a given topological space or, if you like, the prodigious arsenal of all the “meter sticks” that measure it. We consider this “set” or “arsenal” as equipped with its most evident structure, the way it appears so to speak “right in front of your nose”; that is what we call the structure of a “category”…From here on, this kind of “measuring superstructure” called the “category of sheaves” will be taken as “incarnating” what is most essential to that space.

The Séminaire Cartan had shown this structure in front of your nose suffices for much of cohomology. Definitions and proofs can be given in terms of commutative diagrams and exact sequences without asking, most of the time, what these are diagrams of.  Grothendieck went farther than any other, insisting that the “formal analogy” between sheaf cohomology and group cohomology should become “a common framework including these theories and others”. To start with, injectives have a nice categorical sense: An object I in any category is injective if, for every monic N → M and arrow f : N → I there is at least one g : M → I such that

Untitled

Fine sheaves are not so diagrammatic.

Grothendieck saw that Reinhold Baer’s original proof that modules have injective resolutions was largely diagrammatic itself. So Grothendieck gave diagrammatic axioms for the basic properties used in cohomology, and called any category that satisfies them an Abelian category. He gave further diagrammatic axioms tailored to Baer’s proof: Every category satisfying these axioms has injective resolutions. Such a category is called an AB5 category, and sometimes around the 1960s a Grothendieck category though that term has been used in several senses.

So sheaves on any topological space have injective resolutions and thus have derived functor cohomology in the strict sense. For paracompact spaces this agrees with cohomology from fine, flabby, or soft resolutions. So you can still use those, if you want them, and you will. But Grothendieck treats paracompactness as a “restrictive condition”, well removed from the basic theory, and he specifically mentions the Weil conjectures.

Beyond that, Grothendieck’s approach works for topology the same way it does for all cohomology. And, much further, the axioms apply to many categories other than categories of sheaves on topological spaces or categories of modules. They go far beyond topological and group cohomology, in principle, though in fact there were few if any known examples outside that framework when they were given.

Badiou Contra Grothendieck Functorally. Note Quote.

What makes categories historically remarkable and, in particular, what demonstrates that the categorical change is genuine? On the one hand, Badiou fails to show that category theory is not genuine. But, on the other, it is another thing to say that mathematics itself does change, and that the ‘Platonic’ a priori in Badiou’s endeavour is insufficient, which could be demonstrated empirically.

Yet the empirical does not need to stand only in a way opposed to mathematics. Rather, it relates to results that stemmed from and would have been impossible to comprehend without the use of categories. It is only through experience that we are taught the meaning and use of categories. An experience obviously absent from Badiou’s habituation in mathematics.

To contrast, Grothendieck opened up a new regime of algebraic geometry by generalising the notion of a space first scheme-theoretically (with sheaves) and then in terms of groupoids and higher categories. Topos theory became synonymous to the study of categories that would satisfy the so called Giraud’s axioms based on Grothendieck’s geometric machinery. By utilising such tools, Pierre Deligne was able to prove the so called Weil conjectures, mod-p analogues of the famous Riemann hypothesis.

These conjectures – anticipated already by Gauss – concern the so called local ζ-functions that derive from counting the number of points of an algebraic variety over a finite field, an algebraic structure similar to that of for example rational Q or real numbers R but with only a finite number of elements. By representing algebraic varieties in polynomial terms, it is possible to analyse geometric structures analogous to Riemann hypothesis but over finite fields Z/pZ (the whole numbers modulo p). Such ‘discrete’ varieties had previously been excluded from topological and geometric inquiry, while it now occurred that geometry was no longer overshadowed by a need to decide between ‘discrete’ and ‘continuous’ modalities of the subject (that Badiou still separates).

Along with the continuous ones, also discrete variates could then be studied based on Betti numbers, and similarly as what Cohen’s argument made manifest in set-theory, there seemed to occur ‘deeper’, topological precursors that had remained invisible under the classical formalism. In particular, the so called étale-cohomology allowed topological concepts (e.g., neighbourhood) to be studied in the context of algebraic geometry whose classical, Zariski-description was too rigid to allow a meaningful interpretation. Introducing such concepts on the basis of Jean-Pierre Serre’s suggestion, Alexander Grothendieck did revolutionarize the field of geometry, and Pierre Deligne’s proof of the Weil-conjenctures, not to mention Wiles’ work on Fermat’s last theorem that subsequentely followed.

Grothendieck’s crucial insight drew on his observation that if morphisms of varieties were considered by their ‘adjoint’ field of functions, it was possible to consider geometric morphisms as equivalent to algebraic ones. The algebraic category was restrictive, however, because field-morphisms are always monomorphisms which makes geometric morphisms: to generalize the notion of a neighbourhood to algebraic category he needed to embed algebraic fields into a larger category of rings. While a traditional Kuratowski covering space is locally ‘split’ – as mathematicians call it – the same was not true for the dual category of fields. In other words, the category of fields did not have an operator analogous to pull-backs (fibre products) unless considered as being embedded within rings from which pull-backs have a co-dual expressed by the tensor operator ⊗. Grothendieck thus realized he could replace ‘incorporeal’ or contained neighborhoods U ֒→ X by a more relational description: as maps U → X that are not necessarily monic, but which correspond to ring-morphisms instead.

Topos theory applies similar insight but not in the context of only specific varieties but for the entire theory of sets instead. Ultimately, Lawvere and Tierney realized the importance of these ideas to the concept of classification and truth in general. Classification of elements between two sets comes down to a question: does this element belong to a given set or not? In category of S ets this question calls for a binary answer: true or false. But not in a general topos in which the composition of the subobject-classifier is more geometric.

Indeed, Lawvere and Tierney then considered this characteristc map ‘either/or’ as a categorical relationship instead without referring to its ‘contents’. It was the structural form of this morphism (which they called ‘true’) and as contrasted with other relationships that marked the beginning of geometric logic. They thus rephrased the binary complete Heyting algebra of classical truth with the categorical version Ω defined as an object, which satisfies a specific pull-back condition. The crux of topos theory was then the so called Freyd–Mitchell embedding theorem which effectively guaranteed the explicit set of elementary axioms so as to formalize topos theory. The Freyd–Mitchell embedding theorem says that every abelian category is a full subcategory of a category of modules over some ring R and that the embedding is an exact functor. It is easy to see that not every abelian category is equivalent to RMod for some ring R. The reason is that RMod has all small limits and colimits. But for instance the category of finitely generated R-modules is an abelian category but lacks these properties.

But to understand its significance as a link between geometry and language, it is useful to see how the characteristic map (either/or) behaves in set theory. In particular, by expressing truth in this way, it became possible to reduce Axiom of Comprehension, which states that any suitable formal condition λ gives rise to a peculiar set {x ∈ λ}, to a rather elementary statement regarding adjoint functors.

At the same time, many mathematical structures became expressible not only as general topoi but in terms of a more specific class of Grothendieck-topoi. There, too, the ‘way of doing mathematics’ is different in the sense that the object-classifier is categorically defined and there is no empty set (initial object) but mathematics starts from the terminal object 1 instead. However, there is a material way to express the ‘difference’ such topoi make in terms of set theory: for every such a topos there is a sheaf-form enabling it to be expressed as a category of sheaves S etsC for a category C with a specific Grothendieck-topology.