A Sheaf of Modules is a Geometric Generalization of a Module over a Ring – A Case Derivative of Abelian Closure


A coherent sheaf is a generalization of, on the one hand, a module over a ring, and on the other hand, a vector bundle over a manifold. Indeed, the category of coherent sheaves is the “abelian closure” of the category of vector bundles on a variety.

Given a field which we always take to be the field of complex numbers C, an affine algebraic variety X is the vanishing locus

X = 􏰐(x1,…, xn) : fi(x1,…, xn) = 0􏰑 ⊂ An

of a set of polynomials fi(x1,…, xn) in affine space An with coordinates x1,…, xn. Associated to an affine variety is the ring A = C[X] of its regular functions, which is simply the ring C[x1,…, xn] modulo the ideal ⟨fi⟩ of the defining polynomials. Closed subvarieties Z of X are defined by the vanishing of further polynomials and open subvarieties U = X \ Z are the complements of closed ones; this defines the Zariski topology on X. The Zariski topology is not to be confused with the complex topology, which comes from the classical (Euclidean) topology of Cn defined using complex balls; every Zariski open set is also open in the complex topology, but the converse is very far from being true. For example, the complex topology of A1 is simply that of C, whereas in the Zariski topology, the only closed sets are A1 itself and finite point sets.

Projective varieties X ⊂ Pn are defined similarly. Projective space Pn is the set of lines in An+1 through the origin; an explicit coordinatization is by (n + 1)-tuples

(x0,…, xn) ∈ Cn+1 \ {0,…,0}

identified under the equivalence relation

(x0,…, xn) ∼ (λx0,…, λxn) for λ ∈ C

Projective space can be decomposed into a union of (n + 1) affine pieces (An)i = 􏰐[x0,…, xn] : xi ≠ 0􏰑 with n affine coordinates yj = xj/xi. A projective variety X is the locus of common zeros of a set {fi(x1,…, xn)} of homogeneous polynomials. The Zariski topology is again defined by choosing for closed sets the loci of vanishing of further homogeneous polynomials in the coordinates {xi}. The variety X is covered by the standard open sets Xi = X ∩ (An)i ⊂ X, which are themselves affine varieties. A variety􏰭 X is understood as a topological space with a finite open covering X = ∪i Ui, where every open piece Ui ⊂ An is an affine variety with ring of global functions Ai = C[Ui]; further, the pieces Ui are glued together by regular functions defined on open subsets. The topology on X is still referred to as the Zariski topology. X also carries the complex topology, which again has many more open sets.

Given affine varieties X ⊂ An, Y ⊂ Am, a morphism f : X → Y is given by an m-tuple of polynomials {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)} satisfying the defining relations of Y. Morphisms on projective varieties are defined similarly, using homogeneous polynomials of the same degree. Morphisms on general varieties are defined as morphisms on their affine pieces, which glue together in a compatible way.

If X is a variety, points P ∈ X are either singular or nonsingular. This is a local notion, and hence, it suffices to define a nonsingular point on an affine piece Ui ⊂ An. A point P ∈ Ui is nonsingular if, locally in the complex topology, a neighbourhood of P ∈ Ui is a complex submanifold of Cn.

The motivating example of a coherent sheaf of modules on an algebraic variety X is the structure sheaf or sheaf of regular functions OX. This is a gadget with the following properties:

  1. On every open set U ⊂ X, we are given an abelian group (or even a commutative ring) denoted OX(U), also written Γ(U, OX), the ring of regular functions on U.
  2. Restriction: if V ⊂ U is an open subset, a restriction map resUV : OX(U) → OX(V) is defined, which simply associates to every regular function f defined over U, the restriction of this function to V. If W ⊂ V ⊂ U are open sets, then the restriction maps clearly satisfy resUW = resVW ◦ resUV.
  3. Sheaf Property: suppose that an open subset U ⊂ X is covered by a collection of open subsets {Ui}, and suppose that a set of regular functions fi ∈ OX(Ui) is given such that whenever Ui and Uj intersect, then the restrictions of fi and fj to Ui ∩ Uj agree. Then there is a unique function f ∈ OX(U) whose restriction to Ui is fi.

In other words, the sheaf of regular functions consists of the collection of regular functions on open sets, together with the obvious restriction maps for open subsets; moreover, this data satisfies the Sheaf Property, which says that local functions, agreeing on overlaps, glue in a unique way to a global function on U.

A sheaf F on the algebraic variety X is a gadget satisfying the same formal properties; namely, it is defined by a collection {F(U)} of abelian groups on open sets, called sections of F over U, together with a compatible system of restriction maps on sections resUV : F(U) → F(V) for V ⊂ U, so that the Sheaf Property is satisfied: sections are locally defined just as regular functions are. But, what of sheaves of OX-modules? The extra requirement is that the sections F(U) over an open set U form a module over the ring of regular functions OX(U), and all restriction maps are compatible with the module structures. In other words, we multiply local sections by local functions, so that multiplication respects restriction. A sheaf of OX-modules is defined by the data of an A-module for every open subset U ⊂ X with ring of functions A = OX(U), so that these modules are glued together compatibly with the way the open sets glue. Hence, a sheaf of modules is indeed a geometric generalization of a module over a ring.


The Affinity of Mirror Symmetry to Algebraic Geometry: Going Beyond Formalism



Even though formalism of homological mirror symmetry is an established case, what of other explanations of mirror symmetry which lie closer to classical differential and algebraic geometry? One way to tackle this is the so-called Strominger, Yau and Zaslow mirror symmetry or SYZ in short.

The central physical ingredient in this proposal is T-duality. To explain this, let us consider a superconformal sigma model with target space (M, g), and denote it (defined as a geometric functor, or as a set of correlation functions), as

CFT(M, g)

In physics, a duality is an equivalence

CFT(M, g) ≅ CFT(M′, g′)

which holds despite the fact that the underlying geometries (M,g) and (M′, g′) are not classically diffeomorphic.

T-duality is a duality which relates two CFT’s with toroidal target space, M ≅ M′ ≅ Td, but different metrics. In rough terms, the duality relates a “small” target space, with noncontractible cycles of length L < ls, with a “large” target space in which all such cycles have length L > ls.

This sort of relation is generic to dualities and follows from the following logic. If all length scales (lengths of cycles, curvature lengths, etc.) are greater than ls, string theory reduces to conventional geometry. Now, in conventional geometry, we know what it means for (M, g) and (M′, g′) to be non-isomorphic. Any modification to this notion must be associated with a breakdown of conventional geometry, which requires some length scale to be “sub-stringy,” with L < ls. To state T-duality precisely, let us first consider M = M′ = S1. We parameterise this with a coordinate X ∈ R making the identification X ∼ X + 2π. Consider a Euclidean metric gR given by ds2 = R2dX2. The real parameter R is usually called the “radius” from the obvious embedding in R2. This manifold is Ricci-flat and thus the sigma model with this target space is a conformal field theory, the “c = 1 boson.” Let us furthermore set the string scale ls = 1. With this, we attain a complete physical equivalence.

CFT(S1, gR) ≅ CFT(S1, g1/R)

Thus these two target spaces are indistinguishable from the point of view of string theory.

Just to give a physical picture for what this means, suppose for sake of discussion that superstring theory describes our universe, and thus that in some sense there must be six extra spatial dimensions. Suppose further that we had evidence that the extra dimensions factorized topologically and metrically as K5 × S1; then it would make sense to ask: What is the radius R of this S1 in our universe? In principle this could be measured by producing sufficiently energetic particles (so-called “Kaluza-Klein modes”), or perhaps measuring deviations from Newton’s inverse square law of gravity at distances L ∼ R. In string theory, T-duality implies that R ≥ ls, because any theory with R < ls is equivalent to another theory with R > ls. Thus we have a nontrivial relation between two (in principle) observable quantities, R and ls, which one might imagine testing experimentally. Let us now consider the theory CFT(Td, g), where Td is the d-dimensional torus, with coordinates Xi parameterising Rd/2πZd, and a constant metric tensor gij. Then there is a complete physical equivalence

CFT(Td, g) ≅ CFT(Td, g−1)

In fact this is just one element of a discrete group of T-duality symmetries, generated by T-dualities along one-cycles, and large diffeomorphisms (those not continuously connected to the identity). The complete group is isomorphic to SO(d, d; Z).

While very different from conventional geometry, T-duality has a simple intuitive explanation. This starts with the observation that the possible embeddings of a string into X can be classified by the fundamental group π1(X). Strings representing non-trivial homotopy classes are usually referred to as “winding states.” Furthermore, since strings interact by interconnecting at points, the group structure on π1 provided by concatenation of based loops is meaningful and is respected by interactions in the string theory. Now π1(Td) ≅ Zd, as an abelian group, referred to as the group of “winding numbers”.

Of course, there is another Zd we could bring into the discussion, the Pontryagin dual of the U(1)d of which Td is an affinization. An element of this group is referred to physically as a “momentum,” as it is the eigenvalue of a translation operator on Td. Again, this group structure is respected by the interactions. These two group structures, momentum and winding, can be summarized in the statement that the full closed string algebra contains the group algebra C[Zd] ⊕ C[Zd].

In essence, the point of T-duality is that if we quantize the string on a sufficiently small target space, the roles of momentum and winding will be interchanged. But the main point can be seen by bringing in some elementary spectral geometry. Besides the algebra structure, another invariant of a conformal field theory is the spectrum of its Hamiltonian H (technically, the Virasoro operator L0 + L ̄0). This Hamiltonian can be thought of as an analog of the standard Laplacian ∆g on functions on X, and its spectrum on Td with metric g is

Spec ∆= {∑i,j=1d gijpipj; pi ∈ Zd}

On the other hand, the energy of a winding string is (intuitively) a function of its length. On our torus, a geodesic with winding number w ∈ Zd has length squared

L2 = ∑i,j=1d gijwiwj

Now, the only string theory input we need to bring in is that the total Hamiltonian contains both terms,

H = ∆g + L2 + · · ·

where the extra terms … express the energy of excited (or “oscillator”) modes of the string. Then, the inversion g → g−1, combined with the interchange p ↔ w, leaves the spectrum of H invariant. This is T-duality.

There is a simple generalization of the above to the case with a non-zero B-field on the torus satisfying dB = 0. In this case, since B is a constant antisymmetric tensor, we can label CFT’s by the matrix g + B. Now, the basic T-duality relation becomes

CFT(Td, g + B) ≅ CFT(Td, (g + B)−1)

Another generalization, which is considerably more subtle, is to do T-duality in families, or fiberwise T-duality. The same arguments can be made, and would become precise in the limit that the metric on the fibers varies on length scales far greater than ls, and has curvature lengths far greater than ls. This is sometimes called the “adiabatic limit” in physics. While this is a very restrictive assumption, there are more heuristic physical arguments that T-duality should hold more generally, with corrections to the relations proportional to curvatures ls2R and derivatives ls∂ of the fiber metric, both in perturbation theory and from world-sheet instantons.

Finite Fields


A finite field is a field with a finite field order (i.e., number of elements), also called a Galois field. The order of a finite field is always a prime or a power of a prime. For each prime power, there exists exactly one (with the usual caveat that “exactly one” means “exactly one up to an isomorphism“) finite field GF(p^n), often written as Fpn in current usage.


Let E be a finite field of characteristic p.

1. The cardinality of E is

|E| = pn, for some n ≥ 1. It is denoted E = Fpn

Furthermore, E is the splitting field for the separable polynomial f(X) = Xpn − X

over Fp, so that any finite field with pn elements is isomorphic to E. In fact, E coincides with the set of roots of f.


1. Let Fp be the finite field with p elements, given by the integers modulo p. Since E has characteristic p, it contains a copy of Fp. Thus E is a field extension of Fp, and we may see E as a vector space over Fp. If the dimension is n, then let α1,…,αn be a basis. Every x in E can be written as

x = x1α1 +···+ xnαn

and there are p choices for each xi, thus a total of pn different elements in E.

2. Let E× be the multiplicative group of non-zero elements of E. If α ∈ E×, then

αpn−1 = 1

by Lagrange’s Theorem, so that


∀ α in E (including α = 0). Thus each element of E is a root off, and f is separable.

Now f has at most pn distinct roots, and we have already identified the pn elements of E as roots of f.

Corollary: If E is a finite field of characteristic p, then E/Fp is a Galois extension, with cyclic Galois group, generated by the Frobenius automorphism

σ : x → σ(x) = xp, x ∈ E


By the above proposition, we know that E is a splitting field for a separable polynomial over Fp, thus E/Fp is Galois.

Since xp = x ∀ x in Fp, we have that

Fp ⊂ F(⟨σ⟩)

that is Fp is contained in the fixed field of the cyclic subgroup generated by the Frobenius automorphism σ. But conversely, each element fixed by σ is a root of Xp − X so F(⟨σ⟩) has at most p elements. Consequently

Fp = F(⟨σ⟩)


Gal(E/Fp) = ⟨σ⟩

This can be generalized when the base field is larger than Fp.

Corollary: Let E/F be a finite field extension with |E| = pn and |F| = pm. Then E/F is a Galois extension and m|n. Furthermore, the Galois group is cyclic, generated by the automorphism

τ : x → τ(x) = xpm, x ∈ E


If the degree [E : F] = d, then every x in E can be written as

x = x1α1 +···+ xdαd and there are pm choices for each xi, thus a total of

(pm)d = pn different elements in E, so that

d = m/n



The same proof as for the above corollary holds for the rest.

Thus a way to construct a finite field E is, given p and n, to construct E = Fpn as a splitting field for Xpn − X over Fp


If G is a finite subgroup of the multiplicative group of an arbitrary field, then G is cyclic. Thus in particular, the multiplicative group E× of a finite field E is cyclic.


The proof relies on the following fact: if G is a finite abelian group, it contains an element g whose order r is the exponent of G, that is, the least common multiple of the orders of all elements of G.

Assuming this fact, we proceed as follows: if x ∈ G, then its order divides r and thus

xr = 1

Therefore each element of G is a root of Xr − 1 and

|G| ≤ r

Conversely, |G| is a multiple of the order of every element, so |G| is at least as big as their least common multiple, that is


|G| ≥ r |G| = r

Since the order of |G| is r, and it coincides with the order of the element g whose order is the exponent, we have that G is generated by g, that is G = ⟨g⟩ is cyclic. Since E× is cyclic, it is generated by a single element, say α : E = Fp(α) and α is called a primitive element of E. The minimal polynomial of α is called a primitive polynomial.