Collateral Debt Obligations. Thought of the Day 111.0

A CDO is a general term that describes securities backed by a pool of fixed-income assets. These assets can be bank loans (CLOs), bonds (CBOs), residential mortgages (residential- mortgage–backed securities, or RMBSs), and many others. A CDO is a subset of asset- backed securities (ABS), which is a general term for a security backed by assets such as mortgages, credit card receivables, auto loans, or other debt.

To create a CDO, a bank or other entity transfers the underlying assets (“the collateral”) to a special-purpose vehicle (SPV) that is a separate legal entity from the issuer. The SPV then issues securities backed with cash flows generated by assets in the collateral pool. This general process is called securitization. The securities are separated into tranches, which differ primarily in the priority of their rights to the cash flows coming from the asset pool. The senior tranche has first priority, the mezzanine second, and the equity third. Allocation of cash flows to specific securities is called a “waterfall”. A waterfall is specified in the CDO’s indenture and governs both principal and interest payments.


1: If coverage tests are not met, and to the extent not corrected with principal proceeds, the remaining interest proceeds will be used to redeem the most senior notes to bring the structure back into compliance with the coverage tests. Interest on the mezzanine securities may be deferred and compounded if cash flow is not available to pay current interest due.

One may observe that the creation of a CDO is a complex and costly process. Professionals such as bankers, lawyers, rating agencies, accountants, trustees, fund managers, and insurers all charge considerable fees to create and manage a CDO. In other words, the cash coming from the collateral is greater than the sum of the cash paid to all security holders. Professional fees to create and manage the CDO make up the difference.

CDOs are designed to offer asset exposure precisely tailored to the risk that investors desire, and they provide liquidity because they trade daily on the secondary market. This liquidity enables, for example, a finance minister from the Chinese government to gain exposure to the U.S. mortgage market and to buy or sell that exposure at will. However, because CDOs are more complex securities than corporate bonds, they are designed to pay slightly higher interest rates than correspondingly rated corporate bonds.

CDOs enable a bank that specializes in making loans to homeowners to make more loans than its capital would otherwise allow, because the bank can sell its loans to a third party. The bank can therefore originate more loans and take in more origination fees. As a result, consumers have more access to capital, banks can make more loans, and investors a world away can not only access the consumer loan market but also invest with precisely the level of risk they desire.


1: To the extent not paid by interest proceeds.

2: To the extent senior note coverage tests are met and to the extent not already paid by interest proceeds. If coverage tests are not met, the remaining principal proceeds will be used to redeem the most senior notes to bring the structure back into compliance with the coverage tests. Interest on the mezzanine securities may be deferred and compounded if cash flow is not available to pay current interest due.

The Structured Credit Handbook provides an explanation of investors’ nearly insatiable appetite for CDOs:

Demand for [fixed income] assets is heavily bifurcated, with the demand concentrated at the two ends of the safety spectrum . . . Prior to the securitization boom, the universe of fixed-income instruments issued tended to cluster around the BBB rating, offering neither complete safety nor sizzling returns. For example, the number of AA and AAA-rated companies is quite small, as is debt issuance of companies rated B or lower. Structured credit technology has evolved essentially in order to match investors’ demands with the available profile of fixed-income assets. By issuing CDOs from portfolios of bonds or loans rated A, BBB, or BB, financial intermediaries can create a larger pool of AAA-rated securities and a small unrated or low-rated bucket where almost all the risk is concentrated.

CDOs have been around for more than twenty years, but their popularity skyrocketed during the late 1990s. CDO issuance nearly doubled in 2005 and then again in 2006, when it topped $500 billion for the first time. “Structured finance” groups at large investment banks (the division responsible for issuing and managing CDOs) became one of the fastest-growing areas on Wall Street. These divisions, along with the investment banking trading desks that made markets in CDOs, contributed to highly successful results for the banking sector during the 2003–2007 boom. Many CDOs became quite liquid because of their size, investor breadth, and rating agency coverage.

Rating agencies helped bring liquidity to the CDO market. They analyzed each tranche of a CDO and assigned ratings accordingly. Equity tranches were often unrated. The rating agencies had limited manpower and needed to gauge the risk on literally thousands of new CDO securities. The agencies also specialized in using historical models to predict risk. Although CDOs had been around for a long time, they did not exist in a significant number until recently. Historical models therefore couldn’t possibly capture the full picture. Still, the underlying collateral could be assessed with a strong degree of confidence. After all, banks have been making home loans for hundreds of years. The rating agencies simply had to allocate risk to the appropriate tranche and understand how the loans in the collateral base were correlated with each other – an easy task in theory perhaps, but not in practice.

The most difficult part of valuing a CDO tranche is determining correlation. If loans are uncorrelated, defaults will occur evenly over time and asset diversification can solve most problems. With low correlation, an AAA-rated senior tranche should be safe and the interest rate attached to this tranche should be close to the rate for AAA-rated corporate bonds. High correlation, however, creates nondiversifiable risk, in which case the senior tranche has a reasonable likelihood of becoming impaired. Correlation does not affect the price of the CDO in total because the expected value of each individual loan remains the same. Correlation does, however, affect the relative price of each tranche: Any increase in the yield of a senior tranche (to compensate for additional correlation) will be offset by a decrease in the yield of the junior tranches.


Accelerating the Synthetic Credit. Thought of the Day 96.0


The structural change in the structured credit universe continues to accelerate. While the market for synthetic structures is already pretty well established, many real money accounts remain outsiders owing to regulatory hurdles and technical limitations, e.g., to participate in the correlation market. Therefore, banks are continuously establishing new products to provide real money accounts with access to the structured market, with Constant proportion debt obligation (CPDOs) recently having been popular. Against this background, three vehicles which offer easy access to structured products for these investors have gained in importance: CDPCs (Credit Derivatives Product Company), PCVs (permanent capital vehicle), and SIVs (structured investment vehicles).

A CDPC is a rated company which buys credit risk via all types of credit derivative instruments, primarily super senior tranches, and sells this risk to investors via preferred shares (equity) or subordinated notes (debt). Hence, the vehicle uses super senior risk to create equity risk. The investment strategy is a buy-and-hold approach, while the aim is to offer high returns to investors and keep default risk limited. Investors are primarily exposed to rating migration risk, to mark-to-market risk, and, finally, to the capability of the external manager. The rating agencies assign, in general, an AAA-rating on the business model of the CDPC, which is a bankruptcy remote vehicle (special purpose vehicle [SPV]). The business models of specific CDPCs are different from each other in terms of investments and thresholds given to the manager. The preferred asset classes CDPC invested in are predominantly single-name CDS (credit default swaps), bespoke synthetic tranches, ABS (asset-backed security), and all kinds of CDOs (collateralized debt obligations). So far, CDPCs main investments are allocated to corporate credits, but CDPCs are extending their universe to ABS (Asset Backed Securities) and CDO products, which provide further opportunities in an overall tight spread environment. The implemented leverage is given through the vehicle and can be in the range of 15–60x. On average, the return target was typically around a 15% return on equity, paid in the form of dividends to the shareholders.

In contrast to CDPCs, PCVs do not invest in the top of the capital structure, but in equity pieces (mostly CDO equity pieces). The leverage is not implemented in the vehicle itself as it is directly related to the underlying instruments. PCVs are also set up as SPVs (special purpose vehicles) and listed on a stock exchange. They use the equity they receive from investors to purchase the assets, while the return on their investment is allocated to the shareholders via dividends. The target return amounts, in general, to around 10%. The portfolio is managed by an external manager and is marked-to-market. The share price of the company depends on the NAV (net asset value) of the portfolio and on the expected dividend payments.

In general, an SIV invests in the top of the capital structure of structured credits and ABS in line with CDPCs. In addition, SIVs also buy subordinated debt of financial institutions, and the portfolio is marked-to-market. SIVs are leveraged credit investment companies and bankruptcy remote. The vehicle issues typically investment-grade rated commercial paper, MTNs (medium term notes), and capital notes to its investors. The leverage depends on the character of the issued note and the underlying assets, ranging from 3 to 5 (bank loans) up to 14 (structured credits).

Credit Bubbles. Thought of the Day 90.0


At the macro-economic level of the gross statistics of money and loan supply to the economy, the reserve banking system creates a complex interplay between money, debt, supply and demand for goods, and the general price level. Rather than being constant, as implied by theoretical descriptions, money and loan supplies are constantly changing at a rate dependent on the average loan period, and a complex of details buried in the implementation and regulation of any given banking system.

Since the majority of loans are made for years at a time, the results of these interactions play out over a long enough time scale that gross monetary features of regulatory failure, such as continuous asset price inflation, have come to be regarded as normal, e.g. ”House prices always go up”. The price level however is not only dependent on purely monetary factors, but also on the supply and demand for goods and services, including financial assets such as shares, which requires that estimates of the real price level versus production be used. As a simplification, if constant demand for goods and services is assumed as shown in the table below, then there are two possible causes of price inflation, either the money supply available to purchase the good in question has increased, or the supply of the good has been reduced. Critically, the former is simply a mathematical effect, whilst the latter is a useful signal, providing economic information on relative supply and demand levels that can be used locally by consumers and producers to adapt their behaviour. Purely arbitrary changes in both the money and the loan supply that are induced by the mechanical operation of the banking system fail to provide any economic benefit, and by distorting the actual supply and demand signal can be actively harmful.


Credit bubbles are often explained as a phenomena of irrational demand, and crowd behaviour. However, this explanation ignores the question of why they aren’t throttled by limits on the loan supply? An alternate explanation which can be offered is that their root cause is periodic failures in the regulation of the loan and money supply within the commercial banking system. The introduction of widespread securitized lending allows a rapid increase in the total amount of lending available from the banking system and an accompanying if somewhat smaller growth in the money supply. Channeled predominantly into property lending, the increased availability of money from lending sources, acted to increase house prices creating rational speculation on their increase, and over time a sizeable disruption in the market pricing mechanisms for all goods and services purchased through loans. Monetary statistics of this effect such as the Consumer Price Index (CPI) for example, are however at least partially masked by production deflation from the sizeable productivity increases over decades. Absent any limit on the total amount of credit being supplied, the only practical limit on borrowing is the availability of borrowers and their ability to sustain the capital and interest repayments demanded for their loans.

Owing to the asymmetric nature of long term debt flows there is a tendency for money to become concentrated in the lending centres, which then causes liquidity problems for the rest of the economy. Eventually repayment problems surface, especially if the practice of further borrowing to repay existing loans is allowed, since the underlying mathematical process is exponential. As general insolvency as well as a consequent debt deflation occurs, the money and loan supply contracts as the banking system removes loan capacity from the economy either from loan repayment, or as a result of bank failure. This leads to a domino effect as businesses that have become dependent on continuously rolling over debt fail and trigger further defaults. Monetary expansion and further lending is also constrained by the absence of qualified borrowers, and by the general unwillingness to either lend or borrow that results from the ensuing economic collapse. Further complications, as described by Ben Bernanke and Harold James, can occur when interactions between currencies are considered, in particular in conjunction with gold-based capital regulation, because of the difficulties in establishing the correct ratio of gold for each individual currency and maintaining it, in a system where lending and the associated money supply are continually fluctuating and gold is also being used at a national level for international debt repayments.

The debt to money imbalance created by the widespread, and global, sale of Asset Backed securities may be unique to this particular crisis. Although asset backed security issuance dropped considerably in 2008, as the resale markets were temporarily frozen, current stated policy in several countries, including the USA and the United Kingdom, is to encourage further securitization to assist the recovery of the banking sector. Unfortunately this appears to be succeeding.

Asset Backed Securities. Drunken Risibility.

Asset Backed Securities (ABS) are freely traded financial instruments that represent packages of loans issued by the commercial banks. The majority are created from mortgages, but credit card debt, commercial real estate loans, student loans, and hedge fund loans are also known to have been securitized. The earliest form of ABS within the American banking system appears to stem from the creation of the Federal National Mortgage Association (Fannie Mae) in 1938 as part of amendments to the US National Housing Act, a Great Depression measure aimed at creating loan liquidity. Fannie Mae, and the other Government Sponsored Enterprises buy loans from approved mortgage sellers, typically banks, and create guaranteed financial debt instruments from them, to be sold on the credit markets. The resulting bonds, backed as they are by loan insurance, are widely used in pension funds and insurance companies, as a secure, financial instrument providing a predictable, low risk return.

The creation of a more general form of Mortgage Backed Security is credited to Bob Dall and the trading desk of Salmon brothers in 1977 by Michael Lewis (Liar’s Poker Rising Through the Wreckage on Wall Street). Lewis also describes a rapid expansion in their sale beginning in 1981 as a side effect of the United States savings and loans crisis. The concept was extended in 1987 by bankers at Drexel Burnham Lambert Inc. to corporate bonds and loans in the form of Collateralized Debt Obligations (CDOs), which eventually came to include mortgage backed securities, and in the form of CDO-Squared instruments, pools of CDO.

Analysis of the systemic effects of Asset Backed Security has concentrated chiefly on their ability to improve the quantity of loans, or loan liquidity, which has been treated as a positive feature by Greenspan. It has also been noted that securitization allowed banks to increase their return on capital by transforming their operations into a credit generating pipeline process. Hyun Song Shin has also analysed their effect on bank leverage and the stability of the larger financial system within an accounting framework. He highlights the significance of loan supply factors in causing the sub-prime crisis. Although his model appears not to completely incorporate the full implications of the process operating within the capital reserve regulated banking system, it presents an alternate, matrix based analysis of the uncontrolled debt expansion that these instruments permit.

The systemic problem introduced by asset backed securities, or any form of sale that transfers loans made by commercial banking institutions outside the regulatory framework is that they allow banks to escape the explicit reserve and regulatory capital based regulation on the total amount of loans being issued against customer deposits. This has the effect of steadily increasing the ratio of bank originated loans to money on deposit within the banking system.

The following example demonstrates the problem using two banks, A and B. For simplicity fees related to loans and ABS sales are excluded. It is assumed that the deposit accounts are Net Transaction accounts carry a 10% reserve requirement, and that both banks are ”well capitalised” and that the risk weighted multiplier for the capital reserve for these loans is also 10.

The example proceeds as a series of interactions as money flows between the two banks. The liabilities (deposits) and assets (loans) are shown, with loans being separated into bank loans, and Mortgage Backed Securities (MBS), depending on their state.

Initial Conditions: To simplify Bank B is shown as having made no loans, and has excess reserves at the central bank to maintain the balance sheet. The normal inter-bank and central bank lending mechanisms would enable the bank to compensate for temporary imbalances during the process under normal conditions. All deposit money used within the example remains on deposit at either Bank A or Bank B. On the right hand side of the table the total amount of deposits and loans for both banks is shown.


Step 1: Bank A creates a $1000 Mortgage Backed Security from the loan on its balance sheet.


Step 2: The securitized loan is sold to the depositor at Bank B. $1000 is paid to Bank A from that depositor in payment for the loan. Bank A now has no loans outstanding against its deposits, and the securitized loan has been moved outside of banking system regulation. Note that total deposits at the two banks have temporarily shrunk due to the repayment of the loan capital at A. The actual transfer of the deposits between the banks is facilitated through the reserve holdings which also function as clearing funds.


Step 3: As Bank A now has no loans against its deposits, and is within its regulatory capital ratios, it can make a new $1000 loan. The funds from this loan are deposited at Bank B. The sum of the deposits rises as a result as does the quantity of loans. Note that the transfer of the loan money from Bank A to Bank B again goes through the reserve holdings in the clearing system and restores the original balance at Bank B.


Step 4: Bank A securitizes the loan made in Step 3 repeating Step 1.


Step 5: Bank A sells the MBS to the depositor at Bank B, repeating Step 2.


Step 6: Bank A makes a new loan which is deposited at Bank B, repeating Step 3.


Step 7: Bank A securitizes the loan made in Step 6, repeating Step 4.


Since the Deposit and Loan positions of the two banks are identical in all respects in Steps (1,4), (2,5), (3,6) and (4,7) the process can continue indefinitely, resulting in expansion of the total commercial bank originated loan supply independent of central bank control.

This is a simplified version of the flows between loans, deposits, and asset backed securities that occur daily in the banking system. At no point has either bank needed recourse to central bank funds, or broken any of their statutory requirements with respect to capitalisation or reserve requirements where they apply.

The problem is the implicit assumption with reserve based banking systems that bank originated loans remain within the banking system. Allowing the sale of loans to holders outside of the regulated banking system (i.e. to entities other than regulated banks) removes these loans from that control and thus creates a systemic loophole in the regulation of the commercial bank loan supply.

The introduction of loans sales has consequently created a novel situation in those modern economies that allow them, not only in causing a significant expansion in total lending from the banking sector, but also in changing the systemic relationship between the quantity of money in the system to the quantity of bank originated debt, and thereby considerably diluting the influence the central bank can exert over the loan supply. The requirement that no individual bank should lend more than their deposits has been enforced by required reserves at the central bank since the 19th century in Europe, and the early 20th century in the USA. Serendipitously, this also created a systemic limit on the ratio of money to bank originated lending within the monetary system. While the sale of Asset Backed Securities does not allow any individual bank to exceed this ratio at any given point in time, as the process evolves the banking system itself exceeds it as loans are moved outside the constraints provided by regulatory capital or reserve regulation, thereby creating a mechanism for unconstrained growth in commercial bank originated lending.

While the asset backed security problem explains the dramatic growth in banking sector debt that has occurred over the last three decades, it does not explain the accompanying growth in the money supply. Somewhat uniquely of the many regulatory challenges that the banking system has created down the centuries, the asset backed security problem, in and of itself does not cause the banks, or the banking system to ”print money”.

The question of what exactly constitutes money in modern banking systems is a non-trivial one. As the examples above show, bank loans create money in the form of bank deposits, and bank deposits can be used directly for monetary purposes either through cheques or more usually now direct electronic transfer. For economic purposes then, bank deposits can be regarded as directly equivalent to physical money. The reality within the banking system however is somewhat more complex, in that transfers between bank deposits must be performed using deposits in the clearing mechanisms, either through the reserves at the central bank, or the bank’s own asset deposits at other banks. Nominally limits on the total quantity of central bank reserves should in turn limit the growth in bank deposits from bank lending, but it is clear from the monetary statistics that this is not the case.

Individually commercial banks are limited in the amount of money they can lend. They are limited by any reserve requirements for their deposits, by the accounting framework that surrounds the precise classification of assets and liabilities within their locale, and by the ratio of their equity or regulatory capital to their outstanding, risk weighted loans as recommended by the Basel Accords. However none of these limits is sufficient to prevent uncontrolled expansion.

Reserve requirements at the central bank can only effectively limit bank deposits if they apply to all accounts in the system, and the central bank maintains control over any mechanisms that allow individual banks to increase their reserve holdings. This appears not to be the case. Basel capital restrictions can also limit bank lending. Assets (loans) held by banks are classified by type, and have accordingly different percentage capital requirements. Regulatory capital requirements are divided into two tiers of capital with different provisions and risk categorisation applying to instruments held in them. To be adequately capitalised under the Basel accords, a bank must maintain a ratio of at least 8% between its Tier 1 and Tier 2 capital reserves, and its loans. Equity capital reserves are provided by a bank’s owners and shareholders when the bank is created, and exist to provide a buffer protecting the bank’s depositors against loan defaults.

Under Basel regulation, regulatory capital can be held in a variety of instruments, depending on Tier 1 or Tier 2 status. It appears that some of those instruments, in particular subordinated debt and hybrid debt capital instruments, can represent debt issued from within the commercial banking system.

Annex A – Basel Capital Accords, Capital Elements Tier 1

(a) Paid-up share capital/common stock

(b) Disclosed reserves

Tier 2

(a) Undisclosed reserves

(b) Asset revaluation reserves

(c) General provisions/general loan-loss reserves

(d) Hybrid (debt/equity) capital instruments

(e) Subordinated debt

Subordinated debt is defined in Annex A of the Basel treaty as:

(e) Subordinated term debt: includes conventional unsecured subordinated debt capital instruments with a minimum original fixed term to maturity of over five years and limited life redeemable preference shares. During the last five years to maturity, a cumulative discount (or amortisation) factor of 20% per year will be applied to reflect the diminishing value of these instruments as a continuing source of strength. Unlike instruments included in item (d), these instruments are not normally available to participate in the losses of a bank which continues trading. For this reason these instruments will be limited to a maximum of 50% of tier 1.

This is debt issued by the bank, in various forms, but of guaranteed long duration, and controlled repayment. In effect, it allows Banks to hold borrowed money in regulatory capital. It is subordinate to the claims of depositors in the event of Bank failure. The inclusion of subordinated debt in Tier 2 allows financial instruments created from lending to become part of the regulatory control on further lending, creating a classic feedback loop. This can also occur as a second order effect if any form of regulatory capital can be purchased with money borrowed from within the banking system