Coarse Philosophies of Coarse Embeddabilities: Metric Space Conjectures Act Algorithmically On Manifolds – Thought of the Day 145.0

1-s2.0-S002212361730143X-gr007

A coarse structure on a set X is defined to be a collection of subsets of X × X, called the controlled sets or entourages for the coarse structure, which satisfy some simple axioms. The most important of these states that if E and F are controlled then so is

E ◦ F := {(x, z) : ∃y, (x, y) ∈ E, (y, z) ∈ F}

Consider the metric spaces Zn and Rn. Their small-scale structure, their topology is entirely different, but on the large scale they resemble each other closely: any geometric configuration in Rn can be approximated by one in Zn, to within a uniformly bounded error. We think of such spaces as “coarsely equivalent”. The other axioms require that the diagonal should be a controlled set, and that subsets, transposes, and (finite) unions of controlled sets should be controlled. It is accurate to say that a coarse structure is the large-scale counterpart of a uniformity than of a topology.

Coarse structures and coarse spaces enjoy a philosophical advantage over coarse metric spaces, in that, all left invariant bounded geometry metrics on a countable group induce the same metric coarse structure which is therefore transparently uniquely determined by the group. On the other hand, the absence of a natural gauge complicates the notion of a coarse family, while it is natural to speak of sets of uniform size in different metric spaces it is not possible to do so in different coarse spaces without imposing additional structure.

Mikhail Leonidovich Gromov introduced the notion of coarse embedding for metric spaces. Let X and Y be metric spaces.

A map f : X → Y is said to be a coarse embedding if ∃ nondecreasing functions ρ1 and ρ2 from R+ = [0, ∞) to R such that

  • ρ1(d(x,y)) ≤ d(f(x),f(y)) ≤ ρ2(d(x,y)) ∀ x, y ∈ X.
  • limr→∞ ρi(r) = +∞ (i=1, 2).

Intuitively, coarse embeddability of a metric space X into Y means that we can draw a picture of X in Y which reflects the large scale geometry of X. In early 90’s, Gromov suggested that coarse embeddability of a discrete group into Hilbert space or some Banach spaces should be relevant to solving the Novikov conjecture. The connection between large scale geometry and differential topology and differential geometry, such as the Novikov conjecture, is built by index theory. Recall that an elliptic differential operator D on a compact manifold M is Fredholm in the sense that the kernel and cokernel of D are finite dimensional. The Fredholm index of D, which is defined by

index(D) = dim(kerD) − dim(cokerD),

has the following fundamental properties:

(1) it is an obstruction to invertibility of D;

(2) it is invariant under homotopy equivalence.

The celebrated Atiyah-Singer index theorem computes the Fredholm index of elliptic differential operators on compact manifolds and has important applications. However, an elliptic differential operator on a noncompact manifold is in general not Fredholm in the usual sense, but Fredholm in a generalized sense. The generalized Fredholm index for such an operator is called the higher index. In particular, on a general noncompact complete Riemannian manifold M, John Roe (Coarse Cohomology and Index Theory on Complete Riemannian Manifolds) introduced a higher index theory for elliptic differential operators on M.

The coarse Baum-Connes conjecture is an algorithm to compute the higher index of an elliptic differential operator on noncompact complete Riemannian manifolds. By the descent principal, the coarse Baum-Connes conjecture implies the Novikov higher signature conjecture. Guoliang Yu has proved the coarse Baum-Connes conjecture for bounded geometry metric spaces which are coarsely embeddable into Hilbert space. The metric spaces which admit coarse embeddings into Hilbert space are a large class, including e.g. all amenable groups and hyperbolic groups. In general, however, there are counterexamples to the coarse Baum-Connes conjecture. A notorious one is expander graphs. On the other hand, the coarse Novikov conjecture (i.e. the injectivity part of the coarse Baum-Connes conjecture) is an algorithm of determining non-vanishing of the higher index. Kasparov-Yu have proved the coarse Novikov conjecture for spaces which admit coarse embeddings into a uniformly convex Banach space.

Complete Manifolds’ Pure Logical Necessity as the Totality of Possible Formations. Thought of the Day 124.0

husserl-phenomenology

In Logical Investigations, Husserl called his theory of complete manifolds the key to the only possible solution to how in the realm of numbers impossible, non-existent, meaningless concepts might be dealt with as real ones. In Ideas, he wrote that his chief purpose in developing his theory of manifolds had been to find a theoretical solution to the problem of imaginary quantities (Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy).

Husserl saw how questions regarding imaginary numbers come up in mathematical contexts in which formalization yields constructions which arithmetically speaking are nonsense, but can be used in calculations. When formal reasoning is carried out mechanically as if these symbols have meaning, if the ordinary rules are observed, and the results do not contain any imaginary components, these symbols might be legitimately used. And this could be empirically verified (Philosophy of Arithmetic_ Psychological and Logical Investigations with Supplementary Texts).

In a letter to Carl Stumpf in the early 1890s, Husserl explained how, in trying to understand how operating with contradictory concepts could lead to correct theorems, he had found that for imaginary numbers like √2 and √-1, it was not a matter of the possibility or impossibility of concepts. Through the calculation itself and its rules, as defined for those fictive numbers, the impossible fell away, and a genuine equation remained. One could calculate again with the same signs, but referring to valid concepts, and the result was again correct. Even if one mistakenly imagined that what was contradictory existed, or held the most absurd theories about the content of the corresponding concepts of number, the calculation remained correct if it followed the rules. He concluded that this must be a result of the signs and their rules (Early Writings in the Philosophy of Logic and Mathematics). The fact that one can generalize, produce variations of formal arithmetic that lead outside the quantitative domain without essentially altering formal arithmetic’s theoretical nature and calculational methods brought Husserl to realize that there was more to the mathematical or formal sciences, or the mathematical method of calculation than could be captured in purely quantitative analyses.

Understanding the nature of theory forms, shows how reference to impossible objects can be justified. According to his theory of manifolds, one could operate freely within a manifold with imaginary concepts and be sure that what one deduced was correct when the axiomatic system completely and unequivocally determined the body of all the configurations possible in a domain by a purely analytical procedure. It was the completeness of the axiomatic system that gave one the right to operate in that free way. A domain was complete when each grammatically constructed proposition exclusively using the language of the domain was determined from the outset to be true or false in virtue of the axioms, i.e., necessarily followed from the axioms or did not. In that case, calculating with expressions without reference could never lead to contradictions. Complete manifolds have the

distinctive feature that a finite number of concepts and propositions – to be drawn as occasion requires from the essential nature of the domain under consideration –  determines completely and unambiguously on the lines of pure logical necessity the totality of all possible formations in the domain, so that in principle, therefore, nothing further remains open within it.

In such complete manifolds, he stressed, “the concepts true and formal implication of the axioms are equivalent (Ideas).

Husserl pointed out that there may be two valid discipline forms that stand in relation to one another in such a way that the axiom system of one may be a formal limitation of that of the other. It is then clear that everything deducible in the narrower axiom system is included in what is deducible in the expanded system, he explained. In the arithmetic of cardinal numbers, Husserl explained, there are no negative numbers, for the meaning of the axioms is so restrictive as to make subtracting 4 from 3 nonsense. Fractions are meaningless there. So are irrational numbers, √–1, and so on. Yet in practice, all the calculations of the arithmetic of cardinal numbers can be carried out as if the rules governing the operations are unrestrictedly valid and meaningful. One can disregard the limitations imposed in a narrower domain of deduction and act as if the axiom system were a more extended one. We cannot arbitrarily expand the concept of cardinal number, Husserl reasoned. But we can abandon it and define a new, pure formal concept of positive whole number with the formal system of definitions and operations valid for cardinal numbers. And, as set out in our definition, this formal concept of positive numbers can be expanded by new definitions while remaining free of contradiction. Fractions do not acquire any genuine meaning through our holding onto the concept of cardinal number and assuming that units are divisible, he theorized, but rather through our abandonment of the concept of cardinal number and our reliance on a new concept, that of divisible quantities. That leads to a system that partially coincides with that of cardinal numbers, but part of which is larger, meaning that it includes additional basic elements and axioms. And so in this way, with each new quantity, one also changes arithmetics. The different arithmetics do not have parts in common. They have totally different domains, but an analogous structure. They have forms of operation that are in part alike, but different concepts of operation.

For Husserl, formal constraints banning meaningless expressions, meaningless imaginary concepts, reference to non-existent and impossible objects restrict us in our theoretical, deductive work, but that resorting to the infinity of pure forms and transformations of forms frees us from such conditions and explains why having used imaginaries, what is meaningless, must lead, not to meaningless, but to true results.

The Second Trichotomy. Thought of the Day 120.0

Figure-2-Peirce's-triple-trichotomy

The second trichotomy (here is the first) is probably the most well-known piece of Peirce’s semiotics: it distinguishes three possible relations between the sign and its (dynamical) object. This relation may be motivated by similarity, by actual connection, or by general habit – giving rise to the sign classes icon, index, and symbol, respectively.

According to the second trichotomy, a Sign may be termed an Icon, an Index, or a Symbol.

An Icon is a sign which refers to the Object that it denotes merely by virtue of characters of its own, and which it possesses, just the same, whether any such Object actually exists or not. It is true that unless there really is such an Object, the Icon does not act as a sign; but this has nothing to do with its character as a sign. Anything whatever, be it quality, existent individual, or law, is an Icon of anything, in so far as it is like that thing and used as a sign of it.

An Index is a sign which refers to the Object that it denotes by virtue of being really affected by that Object. It cannot, therefore, be a Qualisign, because qualities are whatever they are independently of anything else. In so far as the Index is affected by the Object, it necessarily has some Quality in common with the Object, and it is in respect to these that it refers to the Object. It does, therefore, involve a sort of Icon, although an Icon of a peculiar kind; and it is not the mere resemblance of its Object, even in these respects which makes it a sign, but it is the actual modification of it by the Object. 

A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an association of general ideas, which operates to cause the Symbol to be interpreted as referring to that Object. It is thus itself a general type or law, that is, a Legisign. As such it acts through a Replica. Not only is it general in itself, but the Object to which it refers is of general nature. Now that which is general has its being in the instances it will determine. There must, therefore, be existent instances of what the Symbol denotes, although we must here understand by ‘existent’, existent in the possibly imaginary universe to which the Symbol refers. The Symbol will indirectly, through the association or other law, be affected by those instances; and thus the Symbol will involve a sort of Index, although an Index of a peculiar kind. It will not, however, be by any means true that the slight effect upon the Symbol of those instances accounts for the significant character of the Symbol.

The icon refers to its object solely by means of its own properties. This implies that an icon potentially refers to an indefinite class of objects, namely all those objects which have, in some respect, a relation of similarity to it. In recent semiotics, it has often been remarked by someone like Nelson Goodman that any phenomenon can be said to be like any other phenomenon in some respect, if the criterion of similarity is chosen sufficiently general, just like the establishment of any convention immediately implies a similarity relation. If Nelson Goodman picks out two otherwise very different objects, then they are immediately similar to the extent that they now have the same relation to Nelson Goodman. Goodman and others have for this reason deemed the similarity relation insignificant – and consequently put the whole burden of semiotics on the shoulders of conventional signs only. But the counterargument against this rejection of the relevance of the icon lies close at hand. Given a tertium comparationis, a measuring stick, it is no longer possible to make anything be like anything else. This lies in Peirce’s observation that ‘It is true that unless there really is such an Object, the Icon does not act as a sign ’ The icon only functions as a sign to the extent that it is, in fact, used to refer to some object – and when it does that, some criterion for similarity, a measuring stick (or, at least, a delimited bundle of possible measuring sticks) are given in and with the comparison. In the quote just given, it is of course the immediate object Peirce refers to – it is no claim that there should in fact exist such an object as the icon refers to. Goodman and others are of course right in claiming that as ‘Anything whatever ( ) is an Icon of anything ’, then the universe is pervaded by a continuum of possible similarity relations back and forth, but as soon as some phenomenon is in fact used as an icon for an object, then a specific bundle of similarity relations are picked out: ‘ in so far as it is like that thing.’

Just like the qualisign, the icon is a limit category. ‘A possibility alone is an Icon purely by virtue of its quality; and its object can only be a Firstness.’ (Charles S. PeirceThe Essential Peirce_ Selected Philosophical Writings). Strictly speaking, a pure icon may only refer one possible Firstness to another. The pure icon would be an identity relation between possibilities. Consequently, the icon must, as soon as it functions as a sign, be more than iconic. The icon is typically an aspect of a more complicated sign, even if very often a most important aspect, because providing the predicative aspect of that sign. This Peirce records by his notion of ‘hypoicon’: ‘But a sign may be iconic, that is, may represent its object mainly by its similarity, no matter what its mode of being. If a substantive is wanted, an iconic representamen may be termed a hypoicon’. Hypoicons are signs which to a large extent makes use of iconical means as meaning-givers: images, paintings, photos, diagrams, etc. But the iconic meaning realized in hypoicons have an immensely fundamental role in Peirce’s semiotics. As icons are the only signs that look-like, then they are at the same time the only signs realizing meaning. Thus any higher sign, index and symbol alike, must contain, or, by association or inference terminate in, an icon. If a symbol can not give an iconic interpretant as a result, it is empty. In that respect, Peirce’s doctrine parallels that of Husserl where merely signitive acts require fulfillment by intuitive (‘anschauliche’) acts. This is actually Peirce’s continuation of Kant’s famous claim that intuitions without concepts are blind, while concepts without intuitions are empty. When Peirce observes that ‘With the exception of knowledge, in the present instant, of the contents of consciousness in that instant (the existence of which knowledge is open to doubt) all our thought and knowledge is by signs’ (Letters to Lady Welby), then these signs necessarily involve iconic components. Peirce has often been attacked for his tendency towards a pan-semiotism which lets all mental and physical processes take place via signs – in the quote just given, he, analogous to Husserl, claims there must be a basic evidence anterior to the sign – just like Husserl this evidence before the sign must be based on a ‘metaphysics of presence’ – the ‘present instant’ provides what is not yet mediated by signs. But icons provide the connection of signs, logic and science to this foundation for Peirce’s phenomenology: the icon is the only sign providing evidence (Charles S. Peirce The New Elements of Mathematics Vol. 4). The icon is, through its timeless similarity, apt to communicate aspects of an experience ‘in the present instant’. Thus, the typical index contains an icon (more or less elaborated, it is true): any symbol intends an iconic interpretant. Continuity is at stake in relation to the icon to the extent that the icon, while not in itself general, is the bearer of a potential generality. The infinitesimal generality is decisive for the higher sign types’ possibility to give rise to thought: the symbol thus contains a bundle of general icons defining its meaning. A special icon providing the condition of possibility for general and rigorous thought is, of course, the diagram.

The index connects the sign directly with its object via connection in space and time; as an actual sign connected to its object, the index is turned towards the past: the action which has left the index as a mark must be located in time earlier than the sign, so that the index presupposes, at least, the continuity of time and space without which an index might occur spontaneously and without any connection to a preceding action. Maybe surprisingly, in the Peircean doctrine, the index falls in two subtypes: designators vs. reagents. Reagents are the simplest – here the sign is caused by its object in one way or another. Designators, on the other hand, are more complex: the index finger as pointing to an object or the demonstrative pronoun as the subject of a proposition are prototypical examples. Here, the index presupposes an intention – the will to point out the object for some receiver. Designators, it must be argued, presuppose reagents: it is only possible to designate an object if you have already been in reagent contact (simulated or not) with it (this forming the rational kernel of causal reference theories of meaning). The closer determination of the object of an index, however, invariably involves selection on the background of continuities.

On the level of the symbol, continuity and generality play a main role – as always when approaching issues defined by Thirdness. The symbol is, in itself a legisign, that is, it is a general object which exists only due to its actual instantiations. The symbol itself is a real and general recipe for the production of similar instantiations in the future. But apart from thus being a legisign, it is connected to its object thanks to a habit, or regularity. Sometimes, this is taken to mean ‘due to a convention’ – in an attempt to distinguish conventional as opposed to motivated sign types. This, however, rests on a misunderstanding of Peirce’s doctrine in which the trichotomies record aspects of sign, not mutually exclusive, independent classes of signs: symbols and icons do not form opposed, autonomous sign classes; rather, the content of the symbol is constructed from indices and general icons. The habit realized by a symbol connects it, as a legisign, to an object which is also general – an object which just like the symbol itself exists in instantiations, be they real or imagined. The symbol is thus a connection between two general objects, each of them being actualized through replicas, tokens – a connection between two continua, that is:

Definition 1. Any Blank is a symbol which could not be vaguer than it is (although it may be so connected with a definite symbol as to form with it, a part of another partially definite symbol), yet which has a purpose.

Axiom 1. It is the nature of every symbol to blank in part. [ ]

Definition 2. Any Sheet would be that element of an entire symbol which is the subject of whatever definiteness it may have, and any such element of an entire symbol would be a Sheet. (‘Sketch of Dichotomic Mathematics’ (The New Elements of Mathematics Vol. 4 Mathematical Philosophy)

The symbol’s generality can be described as it having always blanks having the character of being indefinite parts of its continuous sheet. Thus, the continuity of its blank parts is what grants its generality. The symbol determines its object according to some rule, granting the object satisfies that rule – but leaving the object indeterminate in all other respects. It is tempting to take the typical symbol to be a word, but it should rather be taken as the argument – the predicate and the proposition being degenerate versions of arguments with further continuous blanks inserted by erasure, so to speak, forming the third trichotomy of term, proposition, argument.

Modal Structuralism. Thought of the Day 106.0

1c937ce49f02f66e2f61c08b75ba2709--labs-joseph

Structuralism holds that mathematics is ultimately about the shared structures that may be instantiated by particular systems of objects. Eliminative structuralists, such as Geoffrey Hellman (Mathematics Without Numbers Towards a Modal-Structural Interpretation), try to develop this insight in a way that does not assume the existence of abstract structures over and above any instances. But since not all mathematical theories have concrete instances, this brings a modal element to this kind of structuralist view: mathematical theories are viewed as being concerned with what would be the case in any system of objects satisfying their axioms. In Hellman’s version of the view, this leads to a reinterpretation of ordinary mathematical utterances made within the context of a theory. A mathematical utterance of the sentence S, made against the context of a system of axioms expressed as a conjunction AX, becomes interpreted as the claim that the axioms are logically consistent and that they logically imply S (so that, were we to find an interpretation of those axioms, S would be true in that interpretation). Formally, an utterance of the sentence S becomes interpreted as the claim:

◊ AX & □ (AX ⊃ S)

Here, in order to preserve standard mathematics (and to avoid infinitary conjunctions of axioms), AX is usually a conjunction of second-order axioms for a theory. The operators “◊” and “□” are modal operators on sentences, interpreted as “it is logically consistent that”, and “it is logically necessary that”, respectively.

This view clearly shares aspects of the core of algebraic approaches to mathematics. According to modal structuralism what makes a mathematical theory good is that it is logically consistent. Pure mathematical activity becomes inquiry into the consistency of axioms, and into the consequences of axioms that are taken to be consistent. As a result, we need not view a theory as applying to any particular objects, so certainly not to one particular system of objects. Since mathematical utterances so construed do not refer to any objects, we do not get into difficulties with deciding on the unique referent for apparent singular terms in mathematics. The number 2 in mathematical contexts refers to no object, though if there were a system of objects satisfying the second-order Peano axioms, whatever mathematical theorems we have about the number 2 would apply to whatever the interpretation of 2 is in that system. And since our mathematical utterances are made true by modal facts, about what does and does not follow from consistent axioms, we no longer need to answer Benacerraf’s question of how we can have knowledge of a realm of abstract objects, but must instead consider how we know these (hopefully more accessible) facts about consistency and logical consequence.

Stewart Shapiro’s (Philosophy of Mathematics Structure and Ontology) non-eliminative version of structuralism, by contrast, accepts the existence of structures over and above systems of objects instantiating those structures. Specifically, according to Shapiro’s ante rem view, every logically consistent theory correctly describes a structure. Shapiro uses the terminology “coherent” rather than “logically consistent” in making this claim, as he reserves the term “consistent” for deductively consistent, a notion which, in the case of second-order theories, falls short of coherence (i.e., logical consistency), and wishes also to separate coherence from the model-theoretic notion of satisfiability, which, though plausibly coextensive with the notion of coherence, could not be used in his theory of structure existence on pain of circularity. Like Hellman, Shapiro thinks that many of our most interesting mathematical structures are described by second-order theories (first-order axiomatizations of sufficiently complex theories fail to pin down a unique structure up to isomorphism). Mathematical theories are then interpreted as bodies of truths about structures, which may be instantiated in many different systems of objects. Mathematical singular terms refer to the positions or offices in these structures, positions which may be occupied in instantiations of the structures by many different officeholders.

While this account provides a standard (referential) semantics for mathematical claims, the kinds of objects (offices, rather than officeholders) that mathematical singular terms are held to refer to are quite different from ordinary objects. Indeed, it is usually simply a category mistake to ask of the various possible officeholders that could fill the number 2 position in the natural number structure whether this or that officeholder is the number 2 (i.e., the office). Independent of any particular instantiation of a structure, the referent of the number 2 is the number 2 office or position. And this office/position is completely characterized by the axioms of the theory in question: if the axioms provide no answer to a question about the number 2 office, then within the context of the pure mathematical theory, this question simply has no answer.

Elements of the algebraic approach can be seen here in the emphasis on logical consistency as the criterion for the existence of a structure, and on the identification of the truths about the positions in a structure as being exhausted by what does and does not follow from a theory’s axioms. As such, this version of structuralism can also respond to Benacerraf’s problems. The question of which instantiation of a theoretical structure one is referring to when one utters a sentence in the context of a mathematical theory is dismissed as a category mistake. And, so long as the basic principle of structure-existence, according to which every logically consistent axiomatic theory truly describes a structure, is correct, we can explain our knowledge of mathematical truths simply by appeal to our knowledge of consistency.

Mathematical Reductionism: As Case Via C. S. Peirce’s Hypothetical Realism.

mathematical-beauty

During the 20th century, the following epistemology of mathematics was predominant: a sufficient condition for the possibility of the cognition of objects is that these objects can be reduced to set theory. The conditions for the possibility of the cognition of the objects of set theory (the sets), in turn, can be given in various manners; in any event, the objects reduced to sets do not need an additional epistemological discussion – they “are” sets. Hence, such an epistemology relies ultimately on ontology. Frege conceived the axioms as descriptions of how we actually manipulate extensions of concepts in our thinking (and in this sense as inevitable and intuitive “laws of thought”). Hilbert admitted the use of intuition exclusively in metamathematics where the consistency proof is to be done (by which the appropriateness of the axioms would be established); Bourbaki takes the axioms as mere hypotheses. Hence, Bourbaki’s concept of justification is the weakest of the three: “it works as long as we encounter no contradiction”; nevertheless, it is still epistemology, because from this hypothetical-deductive point of view, one insists that at least a proof of relative consistency (i.e., a proof that the hypotheses are consistent with the frequently tested and approved framework of set theory) should be available.

Doing mathematics, one tries to give proofs for propositions, i.e., to deduce the propositions logically from other propositions (premisses). Now, in the reductionist perspective, a proof of a mathematical proposition yields an insight into the truth of the proposition, if the premisses are already established (if one has already an insight into their truth); this can be done by giving in turn proofs for them (in which new premisses will occur which ask again for an insight into their truth), or by agreeing to put them at the beginning (to consider them as axioms or postulates). The philosopher tries to understand how the decision about what propositions to take as axioms is arrived at, because he or she is dissatisfied with the reductionist claim that it is on these axioms that the insight into the truth of the deduced propositions rests. Actually, this epistemology might contain a short-coming since Poincaré (and Wittgenstein) stressed that to have a proof of a proposition is by no means the same as to have an insight into its truth.

Attempts to disclose the ontology of mathematical objects reveal the following tendency in epistemology of mathematics: Mathematics is seen as suffering from a lack of ontological “determinateness”, namely that this science (contrarily to many others) does not concern material data such that the concept of material truth is not available (especially in the case of the infinite). This tendency is embarrassing since on the other hand mathematical cognition is very often presented as cognition of the “greatest possible certainty” just because it seems not to be bound to material evidence, let alone experimental check.

The technical apparatus developed by the reductionist and set-theoretical approach nowadays serves other purposes, partly for the reason that tacit beliefs about sets were challenged; the explanations of the science which it provides are considered as irrelevant by the practitioners of this science. There is doubt that the above mentioned sufficient condition is also necessary; it is not even accepted throughout as a sufficient one. But what happens if some objects, as in the case of category theory, do not fulfill the condition? It seems that the reductionist approach, so to say, has been undocked from the historical development of the discipline in several respects; an alternative is required.

Anterior to Peirce, epistemology was dominated by the idea of a grasp of objects; since Descartes, intuition was considered throughout as a particular, innate capacity of cognition (even if idealists thought that it concerns the general, and empiricists that it concerns the particular). The task of this particular capacity was the foundation of epistemology; already from Aristotle’s first premisses of syllogism, what was aimed at was to go back to something first. In this traditional approach, it is by the ontology of the objects that one hopes to answer the fundamental question concerning the conditions for the possibility of the cognition of these objects. One hopes that there are simple “basic objects” to which the more complex objects can be reduced and whose cognition is possible by common sense – be this an innate or otherwise distinguished capacity of cognition common to all human beings. Here, epistemology is “wrapped up” in (or rests on) ontology; to do epistemology one has to do ontology first.

Peirce shares Kant’s opinion according to which the object depends on the subject; however, he does not agree that reason is the crucial means of cognition to be criticised. In his paper “Questions concerning certain faculties claimed for man”, he points out the basic assumption of pragmatist philosophy: every cognition is semiotically mediated. He says that there is no immediate cognition (a cognition which “refers immediately to its object”), but that every cognition “has been determined by a previous cognition” of the same object. Correspondingly, Peirce replaces critique of reason by critique of signs. He thinks that Kant’s distinction between the world of things per se (Dinge an sich) and the world of apparition (Erscheinungswelt) is not fruitful; he rather distinguishes the world of the subject and the world of the object, connected by signs; his position consequently is a “hypothetical realism” in which all cognitions are only valid with reservations. This position does not negate (nor assert) that the object per se (with the semiotical mediation stripped off) exists, since such assertions of “pure” existence are seen as necessarily hypothetical (that means, not withstanding philosophical criticism).

By his basic assumption, Peirce was led to reveal a problem concerning the subject matter of epistemology, since this assumption means in particular that there is no intuitive cognition in the classical sense (which is synonymous to “immediate”). Hence, one could no longer consider cognitions as objects; there is no intuitive cognition of an intuitive cognition. Intuition can be no more than a relation. “All the cognitive faculties we know of are relative, and consequently their products are relations”. According to this new point of view, intuition cannot any longer serve to found epistemology, in departure from the former reductionist attitude. A central argument of Peirce against reductionism or, as he puts it,

the reply to the argument that there must be a first is as follows: In retracing our way from our conclusions to premisses, or from determined cognitions to those which determine them, we finally reach, in all cases, a point beyond which the consciousness in the determined cognition is more lively than in the cognition which determines it.

Peirce gives some examples derived from physiological observations about perception, like the fact that the third dimension of space is inferred, and the blind spot of the retina. In this situation, the process of reduction loses its legitimacy since it no longer fulfills the function of cognition justification. At such a place, something happens which I would like to call an “exchange of levels”: the process of reduction is interrupted in that the things exchange the roles performed in the determination of a cognition: what was originally considered as determining is now determined by what was originally considered as asking for determination.

The idea that contents of cognition are necessarily provisional has an effect on the very concept of conditions for the possibility of cognitions. It seems that one can infer from Peirce’s words that what vouches for a cognition is not necessarily the cognition which determines it but the livelyness of our consciousness in the cognition. Here, “to vouch for a cognition” means no longer what it meant before (which was much the same as “to determine a cognition”), but it still means that the cognition is (provisionally) reliable. This conception of the livelyness of our consciousness roughly might be seen as a substitute for the capacity of intuition in Peirce’s epistemology – but only roughly, since it has a different coverage.

Task of the Philosopher. Thought of the Day 75.0

4578-004-B2A539B2

Poincaré in Science and Method discusses how “reasonable” axioms (theories) are chosen. In a section which is intended to cool down the expectations put in the “logistic” project, he points out the problem as follows:

Even admitting that it has been established that all theorems can be deduced by purely analytical processes, by simple logical combinations of a finite number of axioms, and that these axioms are nothing but conventions, the philosopher would still retain the right to seek the origin of these conventions, and to ask why they were judged preferable to the contrary conventions.

[ …] A selection must be made out of all the constructions that can be combined with the materials furnished by logic. the true geometrician makes this decision judiciously, because he is guided by a sure instinct, or by some vague consciousness of I know not what profounder and more hidden geometry, which alone gives a value to the constructed edifice.

Hence, Poincaré sees the task of the philosophers to be the explanation of how conventions came to be. At the end of the quotation, Poincaré tries to give such an explanation, namely in referring to an “instinct” (in the sequel, he mentions briefly that one can obviously ask where such an instinct comes from, but he gives no answer to this question). The pragmatist position to be developed will lead to an essentially similar, but more complete and clear point of view.

According to Poincaré’s definition, the task of the philosopher starts where that of the mathematician ends: for a mathematician, a result is right if he or she has a proof, that means, if the result can be logically deduced from the axioms; that one has to adopt some axioms is seen as a necessary evil, and one perhaps puts some energy in the project to minimize the number of axioms (this might have been how set theory become thought of as a foundation of mathematics). A philosopher, however, wants to understand why exactly these axioms and no other were chosen. In particular, the philosopher is concerned with the question whether the chosen axioms actually grasp the intended model. This question is justified since formal definitions are not automatically sufficient to grasp the intention of a concept; at the same time, the question is methodologically very hard, since ultimately a concept is available in mathematical proof only by a formal explication. At any rate, it becomes clear that the task of the philosopher is related to a criterion problem.

Georg Kreisel thinks that we do indeed have the capacity to decide whether a given model was intended or not:

many formal independence proofs consist in the construction of models which we recognize to be different from the intended notion. It is a fact of experience that one can be honest about such matters! When we are shown a ‘non-standard’ model we can honestly say that it was not intended. [ . . . ] If it so happens that the intended notion is not formally definable this may be a useful thing to know about the notion, but it does not cast doubt on its objectivity.

Poincaré could not yet know (but he was experienced enough a mathematician to “feel”) that axiom systems quite often fail to grasp the intended model. It was seldom the work of professional philosophers and often the byproduct of the actual mathematical work to point out such discrepancies.

Following Kant, one defines the task of epistemology thus: to determine the conditions of the possibility of the cognition of objects. Now, what is meant by “cognition of objects”? It is meant that we have an insight into (the truth of) propositions about the objects (we can then speak about the propositions as facts); and epistemology asks what are the conditions for the possibility of such an insight. Hence, epistemology is not concerned with what objects are (ontology), but with what (and how) we can know about them (ways of access). This notwithstanding, both things are intimately related, especially, in the Peircean stream of pragmatist philosophy. The 19th century (in particular Helmholtz) stressed against Kant the importance of physiological conditions for this access to objects. Nevertheless, epistemology is concerned with logic and not with the brain. Pragmatism puts the accent on the means of cognition – to which also the brain belongs.

Kant in his epistemology stressed that the object depends on the subject, or, more precisely, that the cognition of an object depends on the means of cognition used by the subject. For him, the decisive means of cognition was reason; thus, his epistemology was to a large degree critique of reason. Other philosophers disagreed about this special role of reason but shared the view that the task of philosophy is to criticise the means of cognition. For all of them, philosophy has to point out about what we can speak “legitimately”. Such a critical approach is implicitly contained in Poincaré’s description of the task of the philosopher.

Reichenbach decomposes the task of epistemology into different parts: guiding, justification and limitation of cognition. While justification is usually considered as the most important of the three aspects, the “task of the philosopher” as specified above following Poincaré is not limited to it. Indeed, the question why just certain axioms and no others were chosen is obviously a question concerning the guiding principles of cognition: which criteria are at work? Mathematics presents itself at its various historical stages as the result of a series of decisions on questions of the kind “Which objects should we consider? Which definitions should we make? Which theorems should we try to prove?” etc. – for short: instances of the “criterion problem”. Epistemology, has all the task to evoke these criteria – used but not evoked by the researchers themselves. For after all, these criteria cannot be without effect on the conditions for the possibility of cognition of the objects which one has decided to consider. (In turn, the conditions for this possibility in general determine the range of objects from which one has to choose.) However, such an epistemology has not the task to resolve the criterion problem normatively (that means to prescribe for the scientist which choices he has to make).

Fundamental Theorem of Asset Pricing: Tautological Meeting of Mathematical Martingale and Financial Arbitrage by the Measure of Probability.

thinkstockphotos-496599823

The Fundamental Theorem of Asset Pricing (FTAP hereafter) has two broad tenets, viz.

1. A market admits no arbitrage, if and only if, the market has a martingale measure.

2. Every contingent claim can be hedged, if and only if, the martingale measure is unique.

The FTAP is a theorem of mathematics, and the use of the term ‘measure’ in its statement places the FTAP within the theory of probability formulated by Andrei Kolmogorov (Foundations of the Theory of Probability) in 1933. Kolmogorov’s work took place in a context captured by Bertrand Russell, who observed that

It is important to realise the fundamental position of probability in science. . . . As to what is meant by probability, opinions differ.

In the 1920s the idea of randomness, as distinct from a lack of information, was becoming substantive in the physical sciences because of the emergence of the Copenhagen Interpretation of quantum mechanics. In the social sciences, Frank Knight argued that uncertainty was the only source of profit and the concept was pervading John Maynard Keynes’ economics (Robert Skidelsky Keynes the return of the master).

Two mathematical theories of probability had become ascendant by the late 1920s. Richard von Mises (brother of the Austrian economist Ludwig) attempted to lay down the axioms of classical probability within a framework of Empiricism, the ‘frequentist’ or ‘objective’ approach. To counter–balance von Mises, the Italian actuary Bruno de Finetti presented a more Pragmatic approach, characterised by his claim that “Probability does not exist” because it was only an expression of the observer’s view of the world. This ‘subjectivist’ approach was closely related to the less well-known position taken by the Pragmatist Frank Ramsey who developed an argument against Keynes’ Realist interpretation of probability presented in the Treatise on Probability.

Kolmogorov addressed the trichotomy of mathematical probability by generalising so that Realist, Empiricist and Pragmatist probabilities were all examples of ‘measures’ satisfying certain axioms. In doing this, a random variable became a function while an expectation was an integral: probability became a branch of Analysis, not Statistics. Von Mises criticised Kolmogorov’s generalised framework as un-necessarily complex. About a decade and a half back, the physicist Edwin Jaynes (Probability Theory The Logic Of Science) champions Leonard Savage’s subjectivist Bayesianism as having a “deeper conceptual foundation which allows it to be extended to a wider class of applications, required by current problems of science”.

The objections to measure theoretic probability for empirical scientists can be accounted for as a lack of physicality. Frequentist probability is based on the act of counting; subjectivist probability is based on a flow of information, which, following Claude Shannon, is now an observable entity in Empirical science. Measure theoretic probability is based on abstract mathematical objects unrelated to sensible phenomena. However, the generality of Kolmogorov’s approach made it flexible enough to handle problems that emerged in physics and engineering during the Second World War and his approach became widely accepted after 1950 because it was practically more useful.

In the context of the first statement of the FTAP, a ‘martingale measure’ is a probability measure, usually labelled Q, such that the (real, rather than nominal) price of an asset today, X0, is the expectation, using the martingale measure, of its (real) price in the future, XT. Formally,

X0 = EQ XT

The abstract probability distribution Q is defined so that this equality exists, not on any empirical information of historical prices or subjective judgement of future prices. The only condition placed on the relationship that the martingale measure has with the ‘natural’, or ‘physical’, probability measures usually assigned the label P, is that they agree on what is possible.

The term ‘martingale’ in this context derives from doubling strategies in gambling and it was introduced into mathematics by Jean Ville in a development of von Mises’ work. The idea that asset prices have the martingale property was first proposed by Benoit Mandelbrot in response to an early formulation of Eugene Fama’s Efficient Market Hypothesis (EMH), the two concepts being combined by Fama. For Mandelbrot and Fama the key consequence of prices being martingales was that the current price was independent of the future price and technical analysis would not prove profitable in the long run. In developing the EMH there was no discussion on the nature of the probability under which assets are martingales, and it is often assumed that the expectation is calculated under the natural measure. While the FTAP employs modern terminology in the context of value-neutrality, the idea of equating a current price with a future, uncertain, has ethical ramifications.

The other technical term in the first statement of the FTAP, arbitrage, has long been used in financial mathematics. Liber Abaci Fibonacci (Laurence Sigler Fibonaccis Liber Abaci) discusses ‘Barter of Merchandise and Similar Things’, 20 arms of cloth are worth 3 Pisan pounds and 42 rolls of cotton are similarly worth 5 Pisan pounds; it is sought how many rolls of cotton will be had for 50 arms of cloth. In this case there are three commodities, arms of cloth, rolls of cotton and Pisan pounds, and Fibonacci solves the problem by having Pisan pounds ‘arbitrate’, or ‘mediate’ as Aristotle might say, between the other two commodities.

Within neo-classical economics, the Law of One Price was developed in a series of papers between 1954 and 1964 by Kenneth Arrow, Gérard Debreu and Lionel MacKenzie in the context of general equilibrium, in particular the introduction of the Arrow Security, which, employing the Law of One Price, could be used to price any asset. It was on this principle that Black and Scholes believed the value of the warrants could be deduced by employing a hedging portfolio, in introducing their work with the statement that “it should not be possible to make sure profits” they were invoking the arbitrage argument, which had an eight hundred year history. In the context of the FTAP, ‘an arbitrage’ has developed into the ability to formulate a trading strategy such that the probability, under a natural or martingale measure, of a loss is zero, but the probability of a positive profit is not.

To understand the connection between the financial concept of arbitrage and the mathematical idea of a martingale measure, consider the most basic case of a single asset whose current price, X0, can take on one of two (present) values, XTD < XTU, at time T > 0, in the future. In this case an arbitrage would exist if X0 ≤ XTD < XTU: buying the asset now, at a price that is less than or equal to the future pay-offs, would lead to a possible profit at the end of the period, with the guarantee of no loss. Similarly, if XTD < XTU ≤ X0, short selling the asset now, and buying it back would also lead to an arbitrage. So, for there to be no arbitrage opportunities we require that

XTD < X0 < XTU

This implies that there is a number, 0 < q < 1, such that

X0 = XTD + q(XTU − XTD)

= qXTU + (1−q)XTD

The price now, X0, lies between the future prices, XTU and XTD, in the ratio q : (1 − q) and represents some sort of ‘average’. The first statement of the FTAP can be interpreted simply as “the price of an asset must lie between its maximum and minimum possible (real) future price”.

If X0 < XTD ≤ XTU we have that q < 0 whereas if XTD ≤ XTU < X0 then q > 1, and in both cases q does not represent a probability measure which by Kolmogorov’s axioms, must lie between 0 and 1. In either of these cases an arbitrage exists and a trader can make a riskless profit, the market involves ‘turpe lucrum’. This account gives an insight as to why James Bernoulli, in his moral approach to probability, considered situations where probabilities did not sum to 1, he was considering problems that were pathological not because they failed the rules of arithmetic but because they were unfair. It follows that if there are no arbitrage opportunities then quantity q can be seen as representing the ‘probability’ that the XTU price will materialise in the future. Formally

X0 = qXTU + (1−q) XTD ≡ EQ XT

The connection between the financial concept of arbitrage and the mathematical object of a martingale is essentially a tautology: both statements mean that the price today of an asset must lie between its future minimum and maximum possible value. This first statement of the FTAP was anticipated by Frank Ramsey when he defined ‘probability’ in the Pragmatic sense of ‘a degree of belief’ and argues that measuring ‘degrees of belief’ is through betting odds. On this basis he formulates some axioms of probability, including that a probability must lie between 0 and 1. He then goes on to say that

These are the laws of probability, …If anyone’s mental condition violated these laws, his choice would depend on the precise form in which the options were offered him, which would be absurd. He could have a book made against him by a cunning better and would then stand to lose in any event.

This is a Pragmatic argument that identifies the absence of the martingale measure with the existence of arbitrage and today this forms the basis of the standard argument as to why arbitrages do not exist: if they did the, other market participants would bankrupt the agent who was mis-pricing the asset. This has become known in philosophy as the ‘Dutch Book’ argument and as a consequence of the fact/value dichotomy this is often presented as a ‘matter of fact’. However, ignoring the fact/value dichotomy, the Dutch book argument is an alternative of the ‘Golden Rule’– “Do to others as you would have them do to you.”– it is infused with the moral concepts of fairness and reciprocity (Jeffrey Wattles The Golden Rule).

FTAP is the ethical concept of Justice, capturing the social norms of reciprocity and fairness. This is significant in the context of Granovetter’s discussion of embeddedness in economics. It is conventional to assume that mainstream economic theory is ‘undersocialised’: agents are rational calculators seeking to maximise an objective function. The argument presented here is that a central theorem in contemporary economics, the FTAP, is deeply embedded in social norms, despite being presented as an undersocialised mathematical object. This embeddedness is a consequence of the origins of mathematical probability being in the ethical analysis of commercial contracts: the feudal shackles are still binding this most modern of economic theories.

Ramsey goes on to make an important point

Having any definite degree of belief implies a certain measure of consistency, namely willingness to bet on a given proposition at the same odds for any stake, the stakes being measured in terms of ultimate values. Having degrees of belief obeying the laws of probability implies a further measure of consistency, namely such a consistency between the odds acceptable on different propositions as shall prevent a book being made against you.

Ramsey is arguing that an agent needs to employ the same measure in pricing all assets in a market, and this is the key result in contemporary derivative pricing. Having identified the martingale measure on the basis of a ‘primal’ asset, it is then applied across the market, in particular to derivatives on the primal asset but the well-known result that if two assets offer different ‘market prices of risk’, an arbitrage exists. This explains why the market-price of risk appears in the Radon-Nikodym derivative and the Capital Market Line, it enforces Ramsey’s consistency in pricing. The second statement of the FTAP is concerned with incomplete markets, which appear in relation to Arrow-Debreu prices. In mathematics, in the special case that there are as many, or more, assets in a market as there are possible future, uncertain, states, a unique pricing vector can be deduced for the market because of Cramer’s Rule. If the elements of the pricing vector satisfy the axioms of probability, specifically each element is positive and they all sum to one, then the market precludes arbitrage opportunities. This is the case covered by the first statement of the FTAP. In the more realistic situation that there are more possible future states than assets, the market can still be arbitrage free but the pricing vector, the martingale measure, might not be unique. The agent can still be consistent in selecting which particular martingale measure they choose to use, but another agent might choose a different measure, such that the two do not agree on a price. In the context of the Law of One Price, this means that we cannot hedge, replicate or cover, a position in the market, such that the portfolio is riskless. The significance of the second statement of the FTAP is that it tells us that in the sensible world of imperfect knowledge and transaction costs, a model within the framework of the FTAP cannot give a precise price. When faced with incompleteness in markets, agents need alternative ways to price assets and behavioural techniques have come to dominate financial theory. This feature was realised in The Port Royal Logic when it recognised the role of transaction costs in lotteries.

Category of a Quantum Groupoid

A873C024-16E2-408D-8521-AC452457B0C4

For a quantum groupoid H let Rep(H) be the category of representations of H, whose objects are finite-dimensional left H -modules and whose morphisms are H -linear homomorphisms. We shall show that Rep(H) has a natural structure of a monoidal category with duality.

For objects V, W of Rep(H) set

V ⊗ W = x ∈ V ⊗k W|x = ∆(1) · x ⊂ V ⊗k W —– (1)

with the obvious action of H via the comultiplication ∆ (here ⊗k denotes the usual tensor product of vector spaces). Note that ∆(1) is an idempotent and therefore V ⊗ W = ∆(1) × (V ⊗k W). The tensor product of morphisms is the restriction of usual tensor product of homomorphisms. The standard associativity isomorphisms (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W ) are functorial and satisfy the pentagon condition, since ∆ is coassociative. We will suppress these isomorphisms and write simply U ⊗ V ⊗ W.

The target counital subalgebra Ht ⊂ H has an H-module structure given by h · z = εt(hz),where h ∈ H, z ∈ Ht.

Ht is the unit object of Rep(H).

Define a k-linear homomorphism lV : Ht ⊗ V → V by lV(1(1) · z ⊗ 1(2) · v) = z · v, z ∈ Ht, v ∈ V.

This map is H-linear, since

lV h · (1(1) · z ⊗ 1(2) · v) = lV(h(1) · z ⊗ h(2) · v) = εt(h(1)z)h(2) · v = hz · v = h · lV (1(1) · z ⊗ 1(2) · v),

∀ h ∈ H. The inverse map l−1V: → Ht ⊗ V is given by V

l−1V(v) = S(1(1)) ⊗ (1(2) · v) = (1(1) · 1) ⊗ (1(2) · v)

The collection {lV}V gives a natural equivalence between the functor Ht ⊗ (·) and the identity functor. Indeed, for any H -linear homomorphism f : V → U we have:

lU ◦ (id ⊗ f)(1(1) · z ⊗ 1(2) · v) = lU 1(1) · z ⊗ 1(2) · f(v) = z · f(v) = f(z·v) = f ◦ lV(1(1) · z ⊗ 1(2) · v)

Similarly, the k-linear homomorphism rV : V ⊗ Ht → V defined by rV(1(1) · v ⊗ 1(2) · z) = S(z) · v, z ∈ Ht, v ∈ V, has the inverse r−1V(v) = 1(1) · v ⊗ 1(2) and satisfies the necessary properties.

Finally, we can check the triangle axiom idV ⊗ lW = rV ⊗ idW : V ⊗ Ht ⊗ W → V ⊗ W ∀ objects V, W of Rep(H). For v ∈ V, w ∈ W we have

(idV ⊗ lW)(1(1) · v ⊗ 1′(1)1(2) · z ⊗ 1′(2) · w)

= 1(1) · v ⊗ 1′(2)z · w) = 1(1)S(z) · v ⊗ 1(2) · w

=(rV ⊗ idW) (1′(1) · v ⊗ 1′(2) 1(1) · z ⊗ 1(2) · w),

therefore, idV ⊗ lW = rV ⊗ idW

Using the antipode S of H, we can provide Rep(H) with a duality. For any object V of Rep(H), define the action of H on V = Homk(V, k) by

(h · φ)(v) = φ S(h) · v —– (2)

where h ∈ H , v ∈ V , φ ∈ V. For any morphism f : V → W , let f: W → V be the morphism dual to f. For any V in Rep(H), we define the duality morphisms dV : V ⊗ V → Ht, bV : Ht → V ⊗ V∗ as follows. For ∑j φj ⊗ vj ∈ V* ⊗ V, set

dV(∑j φj ⊗ vj)  = ∑j φj (1(1) · vj) 1(2) —– (3)

Let {fi}i and {ξi}i be bases of V and V, respectively, dual to each other. The element ∑i fi ⊗ ξi does not depend on choice of these bases; moreover, ∀ v ∈ V, φ ∈ V one has φ = ∑i φ(fi) ξi and v = ∑i fi ξi (v). Set

bV(z) = z · (∑i fi ⊗ ξi) —– (4)

The category Rep(H) is a monoidal category with duality. We know already that Rep(H) is monoidal, it remains to prove that dV and bV are H-linear and satisfy the identities

(idV ⊗ dV)(bV ⊗ idV) = idV, (dV ⊗ idV)(idV ⊗ bV) = idV.

Take ∑j φj ⊗ vj ∈ V ⊗ V, z ∈ Ht, h ∈ H. Using the axioms of a quantum groupoid, we have

h · dV(∑j φj ⊗ vj) = ((∑j φj (1(1) · vj) εt(h1(2))

= (∑j φj ⊗ εs(1(1)h) · vj 1(2)j φj S(h(1))1(1)h(2) · vj 1(2)

= (∑j h(1) · φj )(1(1) · (h(2) · vj))1(2)

= (∑j dV(h(1) · φj  ⊗ h(2) · vj) = dV(h · ∑j φj ⊗ vj)

therefore, dV is H-linear. To check the H-linearity of bV we have to show that h · bV(z) =

bV (h · z), i.e., that

i h(1)z · fi ⊗ h(2) · ξi = ∑i 1(1) εt(hz) · fi ⊗ 1(2) · ξi

Since both sides of the above equality are elements of V ⊗k V, evaluating the second factor on v ∈ V, we get the equivalent condition

h(1)zS(h(2)) · v = 1(1)εt (hz)S(1(2)) · v, which is easy to check. Thus, bV is H-linear.

Using the isomorphisms lV and rV identifying Ht ⊗ V, V ⊗ Ht, and V, ∀ v ∈ V and φ ∈ V we have:

(idV ⊗ dV)(bV ⊗ idV)(v)

=(idV ⊗ dV)bV(1(1) · 1) ⊗ 1(2) · v

= (idV ⊗ dV)bV(1(2)) ⊗ S−1(1(1)) · v

= ∑i (idV ⊗ dV) 1(2) · fi ⊗ 1(3) · ξi ⊗ S−1 (1(1)) · v

= ∑1(2) · fi ⊗ 1(3) · ξi (1′(1)S-1 (1(1)) · v) 1′(2)

= 1(2) S(1(3)) 1′(1) S-1 (1(1)) · v ⊗ 1′(2) = v

(dV ⊗ idV)(idV ⊗ bV)(φ)

= (dV ⊗ idV) 1(1) · φ ⊗ bV(1(2))

= ∑i (dV ⊗ idV)(1(1) · φ ⊗ 1(2) · 1(2) · 1(3) · ξi )

= ∑i (1(1) · φ (1′(1)1(2) · fi)1′(2) ⊗ 1(3) · ξi

= 1′(2) ⊗ 1(3)1(1) S(1′(1)1(2)) · φ = φ,

QED.

 

Evental Sites. Thought of the Day 48.0

badiou_being_and_appearance1

According to Badiou, the undecidable truth is located beyond the boundaries of authoritative claims of knowledge. At the same time, undecidability indicates that truth has a post-evental character: “the heart of the truth is that the event in which it originates is undecidable” (Being and Event). Badiou explains that, in terms of forcing, undecidability means that the conditions belonging to the generic set force sentences that are not consequences of axioms of set theory. If in the domains of specific languages (of politics, science, art or love) the effects of event are not visible, the content of “Being and Event” is an empty exercise in abstraction.

Badiou distances himself from\ a narrow interpretation of the function played by axioms. He rather regards them as collections of basic convictions that organize situations, the conceptual or ideological framework of a historical situation. An event, named by an intervention, is at the theoretical site indexed by a proposition A, a new apparatus, demonstrative or axiomatic, such that A is henceforth clearly admissible as a proposition of the situation. Accordingly, the undecidability of a truth would consist in transcending the theoretical framework of a historical situation or even breaking with it in the sense that the faithful subject accepts beliefs that are impossible to reconcile with the old mode of thinking.

However, if one consequently identifies the effect of event with the structure of the generic extension, they need to conclude that these historical situations are by no means the effects of event. This is because a crucial property of every generic extension is that axioms of set theory remain valid within it. It is the very core of the method of forcing. Without this assumption, Cohen’s original construction would have no raison d’être because it would not establish the undecidability of the cardinality of infinite power sets. Every generic extension satisfies axioms of set theory. In reference to historical situations, it must be conceded that a procedure of fidelity may modify a situation by forcing undecidable sentences, nonetheless it never overrules its organizing principles.

Another notion which cannot be located within the generic theory of truth without extreme consequences is evental site. An evental site – an element “on the edge of the void” – opens up a situation to the possibility of an event. Ontologically, it is defined as “a multiple such that none of its elements are presented in the situation”. In other words, it is a set such that neither itself nor any of its subsets are elements of the state of the situation. As the double meaning of this word indicates, the state in the context of historical situations takes the shape of the State. A paradigmatic example of a historical evental site is the proletariat – entirely dispossessed, and absent from the political stage.

The existence of an evental site in a situation is a necessary requirement for an event to occur. Badiou is very strict about this point: “we shall posit once and for all that there are no natural events, nor are there neutral events” – and it should be clarified that situations are divided into natural, neutral, and those that contain an evental site. The very matheme of event – its formal definition is of no importance here is based on the evental site. The event raises the evental site to the surface, making it represented on the level of the state of the situation. Moreover, a novelty that has the structure of the generic set but it does not emerge from the void of an evental site, leads to a simulacrum of truth, which is one of the figures of Evil.

However, if one takes the mathematical framework of Badiou’s concept of event seriously, it turns out that there is no place for the evental site there – it is forbidden by the assumption of transitivity of the ground model M. This ingredient plays a fundamental role in forcing, and its removal would ruin the whole construction of the generic extension. As is known, transitivity means that if a set belongs to M, all its elements also belong to M. However, an evental site is a set none of whose elements belongs to M. Therefore, contrary to Badious intentions, there cannot exist evental sites in the ground model. Using Badiou’s terminology, one can say that forcing may only be the theory of the simulacrum of truth.

Conjuncted: Operations of Truth. Thought of the Day 47.1

mathBIG2

Conjuncted here.

Let us consider only the power set of the set of all natural numbers, which is the smallest infinite set – the countable infinity. By a model of set theory we understand a set in which  – if we restrict ourselves to its elements only – all axioms of set theory are satisfied. It follows from Gödel’s completeness theorem that as long as set theory is consistent, no statement which is true in some model of set theory can contradict logical consequences of its axioms. If the cardinality of p(N) was such a consequence, there would exist a cardinal number κ such that the sentence the cardinality of p(N) is κ would be true in all the models. However, for every cardinal κ the technique of forcing allows for finding a model M where the cardinality of p(N) is not equal to κ. Thus, for no κ, the sentence the cardinality of p(N) is κ is a consequence of the axioms of set theory, i.e. they do not decide the cardinality of p(N).

The starting point of forcing is a model M of set theory – called the ground model – which is countably infinite and transitive. As a matter of fact, the existence of such a model cannot be proved but it is known that there exists a countable and transitive model for every finite subset of axioms.

A characteristic subtlety can be observed here. From the perspective of an inhabitant of the universe, that is, if all the sets are considered, the model M is only a small part of this universe. It is deficient in almost every respect; for example all of its elements are countable, even though the existence of uncountable sets is a consequence of the axioms of set theory. However, from the point of view of an inhabitant of M, that is, if elements outside of M are disregarded, everything is in order. Some of M because in this model there are no functions establishing a one-to-one correspondence between them and ω0. One could say that M simulates the properties of the whole universe.

The main objective of forcing is to build a new model M[G] based on M, which contains M, and satisfies certain additional properties. The model M[G] is called the generic extension of M. In order to accomplish this goal, a particular set is distinguished in M and its elements are referred to as conditions which will be used to determine basic properties of the generic extension. In case of the forcing that proves the undecidability of the cardinality of p(N), the set of conditions codes finite fragments of a function witnessing the correspondence between p(N) and a fixed cardinal κ.

In the next step, an appropriately chosen set G is added to M as well as other sets that are indispensable in order for M[G] to satisfy the axioms of set theory. This set – called generic – is a subset of the set of conditions that always lays outside of M. The construction of M[G] is exceptional in the sense that its key properties can be described and proved using M only, or just the conditions, thus, without referring to the generic set. This is possible for three reasons. First of all, every element x of M[G] has a name existing already in M (that is, an element in M that codes x in some particular way). Secondly, based on these names, one can design a language called the forcing language or – as Badiou terms it – the subject language that is powerful enough to express every sentence of set theory referring to the generic extension. Finally, it turns out that the validity of sentences of the forcing language in the extension M[G] depends on the set of conditions: the conditions force validity of sentences of the forcing language in a precisely specified sense. As it has already been said, the generic set G consists of some of the conditions, so even though G is outside of M, its elements are in M. Recognizing which of them will end up in G is not possible for an inhabitant of M, however in some cases the following can be proved: provided that the condition p is an element of G, the sentence S is true in the generic extension constructed using this generic set G. We say then that p forces S.

In this way, with an aid of the forcing language, one can prove that every generic set of the Cohen forcing codes an entire function defining a one-to-one correspondence between elements of p(N) and a fixed (uncountable) cardinal number – it turns out that all the conditions force the sentence stating this property of G, so regardless of which conditions end up in the generic set, it is always true in the generic extension. On the other hand, the existence of a generic set in the model M cannot follow from axioms of set theory, otherwise they would decide the cardinality of p(N).

The method of forcing is of fundamental importance for Badious philosophy. The event escapes ontology; it is “that-which-is-not-being-qua-being”, so it has no place in set theory or the forcing construction. However, the post-evental truth that enters, and modifies the situation, is presented by forcing in the form of a generic set leading to an extension of the ground model. In other words, the situation, understood as the ground model M, is transformed by a post-evental truth identified with a generic set G, and becomes the generic model M[G]. Moreover, the knowledge of the situation is interpreted as the language of set theory, serving to discern elements of the situation; and as axioms of set theory, deciding validity of statements about the situation. Knowledge, understood in this way, does not decide the existence of a generic set in the situation nor can it point to its elements. A generic set is always undecidable and indiscernible.

Therefore, from the perspective of knowledge, it is not possible to establish, whether a situation is still the ground-model or it has undergone a generic extension resulting from the occurrence of an event; only the subject can interventionally decide this. And it is only the subject who decides about the belonging of particular elements to the generic set (i.e. the truth). A procedure of truth or procedure of fidelity (Alain Badiou – Being and Event) supported in this way gives rise to the subject language. It consists of sentences of set theory, so in this respect it is a part of knowledge, although the veridicity of the subject language originates from decisions of the faithful subject. Consequently, a procedure of fidelity forces statements about the situation as it is after being extended, and modified by the operation of truth.