Schematic Grothendieck Representation

A spectral Grothendieck representation Rep is said to be schematic if for every triple γ ≤ τ ≤ δ in Top(A), for every A in R^(Ring) we have a commutative diagram in R^:

IMG_20191226_064217

 

If Rep is schematic, then, P : Top(A) → R^ is a presheaf with values in R^ over the lattice Top(A)o, for every A in R.

The modality is to restrict attention to Tors(Rep(A)); that is, a lattice in the usual sense; and hence this should be viewed as the commutative shadow of a suitable noncommutative theory.

For obtaining the complete lattice Q(A), a duality is expressed by an order-reversing bijection: (−)−1 : Q(A) → Q((Rep(A))o). (Rep(A))o is not a Grothendieck category. It is additive and has a projective generator; moreover, it is known to be a varietal category (also called triplable) in the sense that it has a projective regular generator P, it is co-complete and has kernel pairs with respect to the functor Hom(P, −), and moreover every equivalence relation in the category is a kernel pair. If a comparison functor is constructed via Hom(P, −) as a functor to the category of sets, it works well for the category of set-valued sheaves over a Grothendieck topology.

Now (−)−1 is defined as an order-reversing bijection between idempotent radicals on Rep(A) and (Rep(A))o, implying we write (Top(A))−1 for the image of Top(A) in Q((Rep( A))o). This is encoded in the exact sequence in Rep(A):

0 → ρ(M) → M → ρ−1(M) → 0

(reversed in (Rep(A))o). By restricting attention to hereditary torsion theories (kernel functors) when defining Tors(−), we introduce an asymmetry that breaks the duality because Top(A)−1 is not in Tors((Rep(A))op). If notationally, TT(G) is the complete lattice of torsion theories (not necessarily hereditary) of the category G; then (TT(G))−1 ≅ TT(Gop). Hence we may view Tors(G)−1 as a complete sublattice of TT(Gop).

Define Operators Corresponding to Cobordisms Only Iff Each Connected Component of the Cobordism has Non-empty Outgoing Boundary. Drunken Risibility.

1-s2.0-S0022404913002338-fx003

 

Define a category B whose objects are the oriented submanifolds of X, and whose vector space of morphisms from Y to Z is OYZ = ExtH(X)(H(Y), H(Z)) – the cohomology, as usual, has complex coefficients, and H(Y) and H(Z) are regarded as H(X)-modules by restriction. The composition of morphisms is given by the Yoneda composition of Ext groups. With this definition, however, it will not be true that OYZ is dual to OZY. (To see this it is enough to consider the case when Y = Z is a point of X, and X is a product of odd-dimensional spheres; then OYZ is a symmetric algebra, and is not self-dual as a vector space.)

We can do better by defining a cochain complex O’YZ of morphisms by

O’YZ = BΩ(X)(Ω(Y), Ω(Z)) —– (1)

where Ω(X) denotes the usual de Rham complex of a manifold X, and BA(B,C), for a differential graded algebra A and differential graded A- modules B and C, is the usual cobar resolution

Hom(B, C) → Hom(A ⊗ B, C) → Hom(A ⊗ A ⊗ B, C) → · · ·  —– (2)

in which the differential is given by

dƒ(a1 ⊗ · · · ⊗ ak ⊗ b) = 􏰝a1 ƒ(a2 ⊗ · · · ⊗ ak ⊗ b) + ∑(-1)i ƒ(a1 ⊗ · · · ⊗ aiai+1 ⊗ ak ⊗ b) + (-1)k ƒ(a1 ⊗ · · · ⊗ ak-1 ⊗ akb) —– (3)

whose cohomology is ExtA(B,C). This is different from OYZ = ExtH(X)(H(Y), H(Z)), but related to it by a spectral sequence whose E2-term is OYZ and which converges to H(O’YZ) = ExtΩ(X)(Ω(Y), Ω(Z)). But more important is that H(O’YZ) is the homology of the space PYZ of paths in X which begin in Y and end in Z. To be precise, Hp(O’YZ) ≅ Hp+dZ(PYZ), where dZ is the dimension of Z. On the cochain complexes the Yoneda composition is associative up to cochain homotopy, and defines a structure of an A category B’. The corresponding composition of homology groups

Hi(PYZ) × Hj(PZW) → Hi+j−dZ(PYW) —— (4)

is the composition of the Gysin map associated to the inclusion of the codimension dZ submanifold M of pairs of composable paths in the product PYZ × PZW with the concatenation map M → PYW.

Now let’s attempt to fit the closed string cochain algebra C to this A category. C is equivalent to the usual Hochschild complex of the differential graded algebra Ω(X), whose cohomology is the homology of the free loop space LX with its degrees shifted downwards by the dimension dX of X, so that the cohomology Hi(C) is potentially non-zero for −dX ≤ i < ∞. There is a map Hi(X) → H−i(C) which embeds the ordinary cohomology ring of X to the Pontrjagin ring of the based loop space L0X, based at any chosen point in X.

The structure is, however, not a cochain-level open and closed theory, as we have no trace maps inducing inner products on H(O’YZ). When one tries to define operators corresponding to cobordisms it turns out to be possible only when each connected component of the cobordism has non-empty outgoing boundary. 

Philosophical Equivariance – Sewing Holonomies Towards Equal Trace Endomorphisms.

In d-dimensional topological field theory one begins with a category S whose objects are oriented (d − 1)-manifolds and whose morphisms are oriented cobordisms. Physicists say that a theory admits a group G as a global symmetry group if G acts on the vector space associated to each (d−1)-manifold, and the linear operator associated to each cobordism is a G-equivariant map. When we have such a “global” symmetry group G we can ask whether the symmetry can be “gauged”, i.e., whether elements of G can be applied “independently” – in some sense – at each point of space-time. Mathematically the process of “gauging” has a very elegant description: it amounts to extending the field theory functor from the category S to the category SG whose objects are (d − 1)-manifolds equipped with a principal G-bundle, and whose morphisms are cobordisms with a G-bundle. We regard S as a subcategory of SG by equipping each (d − 1)-manifold S with the trivial G-bundle S × G. In SG the group of automorphisms of the trivial bundle S × G contains G, and so in a gauged theory G acts on the state space H(S): this should be the original “global” action of G. But the gauged theory has a state space H(S,P) for each G-bundle P on S: if P is non-trivial one calls H(S,P) a “twisted sector” of the theory. In the case d = 2, when S = S1 we have the bundle Pg → S1 obtained by attaching the ends of [0,2π] × G via multiplication by g. Any bundle is isomorphic to one of these, and Pg is isomorphic to Pg iff g′ is conjugate to g. But note that the state space depends on the bundle and not just its isomorphism class, so we have a twisted sector state space Cg = H(S,Pg) labelled by a group element g rather than by a conjugacy class.

We shall call a theory defined on the category SG a G-equivariant Topological Field Theory (TFT). It is important to distinguish the equivariant theory from the corresponding “gauged theory”. In physics, the equivariant theory is obtained by coupling to nondynamical background gauge fields, while the gauged theory is obtained by “summing” over those gauge fields in the path integral.

An alternative and equivalent viewpoint which is especially useful in the two-dimensional case is that SG is the category whose objects are oriented (d − 1)-manifolds S equipped with a map p : S → BG, where BG is the classifying space of G. In this viewpoint we have a bundle over the space Map(S,BG) whose fibre at p is Hp. To say that Hp depends only on the G-bundle pEG on S pulled back from the universal G-bundle EG on BG by p is the same as to say that the bundle on Map(S,BG) is equipped with a flat connection allowing us to identify the fibres at points in the same connected component by parallel transport; for the set of bundle isomorphisms p0EG → p1EG is the same as the set of homotopy classes of paths from p0 to p1. When S = S1 the connected components of the space of maps correspond to the conjugacy classes in G: each bundle Pg corresponds to a specific point pg in the mapping space, and a group element h defines a specific path from pg to phgh−1 .

G-equivariant topological field theories are examples of “homotopy topological field theories”. Using Vladimir Turaev‘s two main results: first, an attractive generalization of the theorem that a two-dimensional TFT “is” a commutative Frobenius algebra, and, secondly, a classification of the ways of gauging a given global G-symmetry of a semisimple TFT.

Untitled

Definition of the product in the G-equivariant closed theory. The heavy dot is the basepoint on S1. To specify the morphism unambiguously we must indicate consistent holonomies along a set of curves whose complement consists of simply connected pieces. These holonomies are always along paths between points where by definition the fibre is G. This means that the product is not commutative. We need to fix a convention for holonomies of a composition of curves, i.e., whether we are using left or right path-ordering. We will take h(γ1 ◦ γ2) = h(γ1) · h(γ2).

A G-equivariant TFT gives us for each element g ∈ G a vector space Cg, associated to the circle equipped with the bundle pg whose holonomy is g. The usual pair-of-pants cobordism, equipped with the evident G-bundle which restricts to pg1 and pg2 on the two incoming circles, and to pg1g2 on the outgoing circle, induces a product

Cg1 ⊗ Cg2 → Cg1g2 —– (1)

Untitled

making C := ⊕g∈GCg into a G-graded algebra. Also there is a trace θ: C1  → C defined by the disk diagram with one ingoing circle. The holonomy around the boundary of the disk must be 1. Making the standard assumption that the cylinder corresponds to the unit operator we obtain a non-degenerate pairing

Cg ⊗ Cg−1 → C

A new element in the equivariant theory is that G acts as an automorphism group on C. That is, there is a homomorphism α : G → Aut(C) such that

αh : Cg → Chgh−1 —– (2)

Diagramatically, αh is defined by the surface in the immediately above figure. Now let us note some properties of α. First, if φ ∈ Ch then αh(φ) = φ. The reason for this is diagrammatically in the below figure.

Untitled

If the holonomy along path P2 is h then the holonomy along path P1 is 1. However, a Dehn twist around the inner circle maps P1 into P2. Therefore, αh(φ) = α1(φ) = φ, if φ ∈ Ch.

Next, while C is not commutative, it is “twisted-commutative” in the following sense. If φ1 ∈ Cg1 and φ2 ∈ Cg2 then

αg212 = φ2φ1 —– (3)

The necessity of this condition is illustrated in the figure below.

Untitled

The trace of the identity map of Cg is the partition function of the theory on a torus with the bundle with holonomy (g,1). Cutting the torus the other way, we see that this is the trace of αg on C1. Similarly, by considering the torus with a bundle with holonomy (g,h), where g and h are two commuting elements of G, we see that the trace of αg on Ch is the trace of αh on Cg−1. But we need a strengthening of this property. Even when g and h do not commute we can form a bundle with holonomy (g,h) on a torus with one hole, around which the holonomy will be c = hgh−1g−1. We can cut this torus along either of its generating circles to get a cobordism operator from Cc ⊗ Ch to Ch or from Cg−1 ⊗ Cc to Cg−1. If ψ ∈ Chgh−1g−1. Let us introduce two linear transformations Lψ, Rψ associated to left- and right-multiplication by ψ. On the one hand, Lψαg : φ􏰀 ↦ ψαg(φ) is a map Ch → Ch. On the other hand Rψαh : φ ↦ αh(φ)ψ is a map Cg−1 → Cg−1. The last sewing condition states that these two endomorphisms must have equal traces:

TrCh 􏰌Lψαg􏰍 = TrCg−1 􏰌Rψαh􏰍 —– (4)

Untitled

Untitled

(4) was taken by Turaev as one of his axioms. It can, however, be reexpressed in a way that we shall find more convenient. Let ∆g ∈ Cg ⊗ Cg−1 be the “duality” element corresponding to the identity cobordism of (S1,Pg) with both ends regarded as outgoing. We have ∆g = ∑ξi ⊗ ξi, where ξi and ξi ru􏰟n through dual bases of Cg and Cg−1. Let us also write

h = ∑ηi ⊗ ηi ∈ Ch ⊗ Ch−1. Then (4) is easily seen to be equivalent to

∑αhii = 􏰟 ∑ηiαgi) —– (5)

in which both sides are elements of Chgh−1g−1.

Closed String Algebra as a Graded-Commutative Algebra C: Cochain Complex Differentials: Part 2, Note Quote.

Screen Shot 2018-08-09 at 11.13.06 AM

The most general target category we can consider is a symmetric tensor category: clearly we need a tensor product, and the axiom HY1⊔Y2 ≅ HY1 ⊗ HY2 only makes sense if there is an involutory canonical isomorphism HY1 ⊗ HY2 ≅ HY2 ⊗ HY1 .

A very common choice in physics is the category of super vector spaces, i.e., vector spaces V with a mod 2 grading V = V0 ⊕ V1, where the canonical isomorphism V ⊗ W ≅ W ⊗ V is v ⊗ w ↦ (−1)deg v deg ww ⊗ v. One can also consider the category of Z-graded vector spaces, with the same sign convention for the tensor product.

In either case the closed string algebra is a graded-commutative algebra C with a trace θ : C → C. In principle the trace should have degree zero, but in fact the commonly encountered theories have a grading anomaly which makes the trace have degree −n for some integer n.

We define topological-spinc theories, which model 2d theories with N = 2 supersymmetry, by replacing “manifolds” with “manifolds with spinc structure”.

A spinc structure on a surface with a conformal structure is a pair of holomorphic line bundles L1, L2 with an isomorphism L1 ⊗ L2 ≅ TΣ of holomorphic line bundles. A spin structure is the particular case when L1 = L2. On a 1-manifold S a spinc structure means a spinc structure on a ribbon neighbourhood of S in a surface with conformal structure. An N = 2 superconformal theory assigns a vector space HS;L1,L2 to each 1-manifold S with spinc structure, and an operator

US0;L1,L2: HS0;L1,L2 → HS1;L1,L2

to each spinc-cobordism from S0 to S1. To explain the rest of the structure we need to define the N = 2 Lie superalgebra associated to a spin1-manifold (S;L1,L2). Let G = Aut(L1) denote the group of bundle isomorphisms L1 → L1 which cover diffeomorphisms of S. (We can identify this group with Aut(L2).) It has a homomorphism onto the group Diff+(S) of orientation-preserving diffeomorphisms of S, and the kernel is the group of fibrewise automorphisms of L1, which can be identified with the group of smooth maps from S to C×. The Lie algebra Lie(G) is therefore an extension of the Lie algebra Vect(S) of Diff+(S) by the commutative Lie algebra Ω0(S) of smooth real-valued functions on S. Let Λ0S;L1,L2 denote the complex Lie algebra obtained from Lie(G) by complexifying Vect(S). This is the even part of a Lie super algebra whose odd part is Λ1S;L1,L2 = Γ(L1) ⊕ Γ(L2). The bracket Λ1 ⊗ Λ1 → Λ0 is completely determined by the property that elements of Γ(L1) and of Γ(L2) anticommute among themselves, while the composite

Γ(L1) ⊗ Γ(L2) → Λ0 → VectC(S)

takes (λ12) to λ1λ2 ∈ Γ(TS).

In an N = 2 theory we require the superalgebra Λ(S;L1,L2) to act on the vector space HS;L1,L2, compatibly with the action of the group G, and with a similar intertwining property with the cobordism operators to that of the N = 1 case. For an N = 2 theory the state space always has an action of the circle group coming from its embedding in G as the group of fibrewise multiplications on L1 and L2. Equivalently, the state space is always Z-graded.

An N = 2 theory always gives rise to two ordinary conformal field theories by equipping a surface Σ with the spinc structures (C,TΣ) and (TΣ,C). These are called the “A-model” and the “B-model” associated to the N = 2 theory. In each case the state spaces are cochain complexes in which the differential is the action of the constant section of the trivial component of the spinc-structure.

Why Can’t There Be Infinite Descending Chain Of Quotient Representations? – Part 3

 

8cmbD

For a quiver Q, the category Rep(Q) of finite-dimensional representations of Q is abelian. A morphism f : V → W in the category Rep(Q) defined by a collection of morphisms fi : Vi → Wi is injective (respectively surjective, an isomorphism) precisely if each of the linear maps fi is.

There is a collection of simple objects in Rep(Q). Indeed, each vertex i ∈ Q0 determines a simple object Si of Rep(Q), the unique representation of Q up to isomorphism for which dim(Vj) = δij. If Q has no directed cycles, then these so-called vertex simples are the only simple objects of Rep(Q), but this is not the case in general.

If Q is a quiver, then the category Rep(Q) has finite length.

Given a representation E of a quiver Q, then either E is simple, or there is a nontrivial short exact sequence

0 → A → E → B → 0

Now if B is not simple, then we can break it up into pieces. This process must halt, as every representation of Q consists of finite-dimensional vector spaces. In the end, we will have found a simple object S and a surjection f : E → S. Take E1 ⊂ E to be the kernel of f and repeat the argument with E1. In this way we get a filtration

… ⊂ E3 ⊂ E2 ⊂ E1 ⊂ E

with each quotient object Ei−1/Ei simple. Once again, this filtration cannot continue indefinitely, so after a finite number of steps we get En = 0. Renumbering by setting Ei := En−i for 1 ≤ i ≤ n gives a Jordan-Hölder filtration for E. The basic reason for finiteness is the assumption that all representations of Q are finite-dimensional. This means that there can be no infinite descending chains of subrepresentations or quotient representations, since a proper subrepresentation or quotient representation has strictly smaller dimension.

In many geometric and algebraic contexts, what is of interest in representations of a quiver Q are morphisms associated to the arrows that satisfy certain relations. Formally, a quiver with relations (Q, R) is a quiver Q together with a set R = {ri} of elements of its path algebra, where each ri is contained in the subspace A(Q)aibi of A(Q) spanned by all paths p starting at vertex aiand finishing at vertex bi. Elements of R are called relations. A representation of (Q, R) is a representation of Q, where additionally each relation ri is satisfied in the sense that the corresponding linear combination of homomorphisms from Vai to Vbi is zero. Representations of (Q, R) form an abelian category Rep(Q, R).

A special class of relations on quivers comes from the following construction, inspired by the physics of supersymmetric gauge theories. Given a quiver Q, the path algebra A(Q) is non-commutative in all but the simplest examples, and hence the sub-vector space [A(Q), A(Q)] generated by all commutators is non-trivial. The vector space quotientA(Q)/[A(Q), A(Q)] is seen to have a basis consisting of the cyclic paths anan−1 · · · a1 of Q, formed by composable arrows ai of Q with h(an) = t(a1), up to cyclic permutation of such paths. By definition, a superpotential for the quiver Q is an element W ∈ A(Q)/[A(Q), A(Q)] of this vector space, a linear combination of cyclic paths up to cyclic permutation.

The Case of Morphisms of Representation Corresponding to A-Module Holomorphisms. Part 2

1-s2.0-S0001870811003495-fx003

Representations of a quiver can be interpreted as modules over a non-commutative algebra A(Q) whose elements are linear combinations of paths in Q.

Let Q be a quiver. A non-trivial path in Q is a sequence of arrows am…a0 such that h(ai−1) = t(ai) for i = 1,…, m:

Untitled

The path is p = am…a0. Writing t(p) = t(a0) and saying that p starts at t(a0) and, similarly, writing h(p) = h(am) and saying that p finishes at h(am). For each vertex i ∈ Q0, we denote by ei the trivial path which starts and finishes at i. Two paths p and q are compatible if t(p) = h(q) and, in this case, the composition pq can defined by juxtaposition of p and q. The length l(p) of a path is the number of arrows it contains; in particular, a trivial path has length zero.

The path algebra A(Q) of a quiver Q is the complex vector space with basis consisting of all paths in Q, equipped with the multiplication in which the product pq of paths p and q is defined to be the composition pq if t(p) = h(q), and 0 otherwise. Composition of paths is non-commutative; in most cases, if p and q can be composed one way, then they cannot be composed the other way, and even if they can, usually pq ≠ qp. Hence the path algebra is indeed non-commutative.

Let us define Al ⊂ A to be the subspace spanned by paths of length l. Then A = ⊕l≥0Al is a graded C-algebra. The subring A0 ⊂ A spanned by the trivial paths ei is a semisimple ring in which the elements ei are orthogonal idempotents, in other words eiej = ei when i = j, and 0 otherwise. The algebra A is finite-dimensional precisely if Q has no directed cycles.

The category of finite-dimensional representations of a quiver Q is isomorphic to the category of finitely generated left A(Q)-modules. Let (V, φ) be a representation of Q. We can then define a left module V over the algebra A = A(Q) as follows: as a vector space it is

V = ⊕i∈Q0 Vi

and the A-module structure is extended linearly from

eiv = v, v ∈ Mi

= 0, v ∈ Mj for j ≠ i

for i ∈ Qand

av = φa(vt(a)), v ∈ Vt(a)

= 0, v ∈ Vj for j ≠ t(a)

for a ∈ Q1. This construction can be inverted as follows: given a left A-module V, we set Vi = eiV for i ∈ Q0 and define the map φa: Vt(a) → Vh(a) by v ↦ a(v). Morphisms of representations of (Q, V) correspond to A-module homomorphisms.

Indecomposable Objects – Part 1

An object X in a category C with an initial object is called indecomposable if X is not the initial object and X is not isomorphic to a coproduct of two noninitial objects. A group G is called indecomposable if it cannot be expressed as the internal direct product of two proper normal subgroups of G. This is equivalent to saying that G is not isomorphic to the direct product of two nontrivial groups.

A quiver Q is a directed graph, specified by a set of vertices Q0, a set of arrows Q1, and head and tail maps

h, t : Q1 → Q0

We always assume that Q is finite, i.e., the sets Q0 and Q1 are finite.

Untitled

A (complex) representation of a quiver Q consists of complex vector spaces Vi for i ∈ Qand linear maps

φa : Vt(a) → Vh(a)

for a ∈ Q1. A morphism between such representations (V, φ) and (W, ψ) is a collection of linear maps fi : Vi → Wi for i ∈ Q0 such that the diagram

Untitled

commutes ∀ a ∈ Q1. A representation of Q is finite-dimensional if each vector space Vi is. The dimension vector of such a representation is just the tuple of non-negative integers (dim Vi)i∈Q0.

Rep(Q) is the category of finite-dimensional representations of Q. This category is additive; we can add morphisms by adding the corresponding linear maps fi, the trivial representation in which each Vi = 0 is a zero object, and the direct sum of two representations is obtained by taking the direct sums of the vector spaces associated to each vertex. If Q is the one-arrow quiver, • → •, then the classification of indecomposable objects of Rep(Q), yields the objects E ∈ Rep(Q) which do not have a non-trivial direct sum decomposition E = A ⊕ B. An object of Rep(Q) is just a linear map of finite-dimensional vector spaces f: V1 → V2. If W = im(f) is a nonzero proper subspace of V2, then the splitting V2 = U ⊕ W, and the corresponding object of Rep(Q) splits as a direct sum of the two representations

V1 →ƒ W and 0 → W

Thus if an object f: V1 → V2 of Rep(Q) is indecomposable, the map f must be surjective. Similarly, if ƒ is nonzero, then it must also be injective. Continuing in this way, one sees that Rep(Q) has exactly three indecomposable objects up to isomorphism:

C → 0, 0 → C, C →id C

Every other object of Rep(Q) is a direct sum of copies of these basic representations.

Categories of Pointwise Convergence Topology: Theory(ies) of Bundles.

Let H be a fixed, separable Hilbert space of dimension ≥ 1. Lets denote the associated projective space of H by P = P(H). It is compact iff H is finite-dimensional. Let PU = PU(H) = U(H)/U(1) be the projective unitary group of H equipped with the compact-open topology. A projective bundle over X is a locally trivial bundle of projective spaces, i.e., a fibre bundle P → X with fibre P(H) and structure group PU(H). An application of the Banach-Steinhaus theorem shows that we may identify projective bundles with principal PU(H)-bundles and the pointwise convergence topology on PU(H).

If G is a topological group, let GX denote the sheaf of germs of continuous functions G → X, i.e., the sheaf associated to the constant presheaf given by U → F(U) = G. Given a projective bundle P → X and a sufficiently fine good open cover {Ui}i∈I of X, the transition functions between trivializations P|Ui can be lifted to bundle isomorphisms gij on double intersections Uij = Ui ∩ Uj which are projectively coherent, i.e., over each of the triple intersections Uijk = Ui ∩ Uj ∩ Uk the composition gki gjk gij is given as multiplication by a U(1)-valued function fijk : Uijk → U(1). The collection {(Uij, fijk)} defines a U(1)-valued two-cocycle called a B-field on X,which represents a class BP in the sheaf cohomology group H2(X, U(1)X). On the other hand, the sheaf cohomology H1(X, PU(H)X) consists of isomorphism classes of principal PU(H)-bundles, and we can consider the isomorphism class [P] ∈ H1(X,PU(H)X).

There is an isomorphism

H1(X, PU(H)X) → H2(X, U(1)X) provided by the

boundary map [P] ↦ BP. There is also an isomorphism

H2(X, U(1)X) → H3(X, ZX) ≅ H3(X, Z)

The image δ(P) ∈ H3(X, Z) of BP is called the Dixmier-Douady invariant of P. When δ(P) = [H] is represented in H3(X, R) by a closed three-form H on X, called the H-flux of the given B-field BP, we will write P = PH. One has δ(P) = 0 iff the projective bundle P comes from a vector bundle E → X, i.e., P = P(E). By Serre’s theorem every torsion element of H3(X,Z) arises from a finite-dimensional bundle P. Explicitly, consider the commutative diagram of exact sequences of groups given by

Untitled

where we identify the cyclic group Zn with the group of n-th roots of unity. Let P be a projective bundle with structure group PU(n), i.e., with fibres P(Cn). Then the commutative diagram of long exact sequences of sheaf cohomology groups associated to the above commutative diagram of groups implies that the element BP ∈ H2(X, U(1)X) comes from H2(X, (Zn)X), and therefore its order divides n.

One also has δ(P1 ⊗ P2) = δ(P1) + δ(P2) and δ(P) = −δ(P). This follows from the commutative diagram

Untitled

and the fact that P ⊗ P = P(E) where E is the vector bundle of Hilbert-Schmidt endomorphisms of P . Putting everything together, it follows that the cohomology group H3(X, Z) is isomorphic to the group of stable equivalence classes of principal PU(H)-bundles P → X with the operation of tensor product.

We are now ready to define the twisted K-theory of the manifold X equipped with a projective bundle P → X, such that Px = P(H) ∀ x ∈ X. We will first give a definition in terms of Fredholm operators, and then provide some equivalent, but more geometric definitions. Let H be a Z2-graded Hilbert space. We define Fred0(H) to be the space of self-adjoint degree 1 Fredholm operators T on H such that T2 − 1 ∈ K(H), together with the subspace topology induced by the embedding Fred0(H) ֒→ B(H) × K(H) given by T → (T, T2 − 1) where the algebra of bounded linear operators B(H) is given the compact-open topology and the Banach algebra of compact operators K = K(H) is given the norm topology.

Let P = PH → X be a projective Hilbert bundle. Then we can construct an associated bundle Fred0(P) whose fibres are Fred0(H). We define the twisted K-theory group of the pair (X, P) to be the group of homotopy classes of maps

K0(X, H) = [X, Fred0(PH)]

The group K0(X, H) depends functorially on the pair (X, PH), and an isomorphism of projective bundles ρ : P → P′ induces a group isomorphism ρ∗ : K0(X, H) → K0(X, H′). Addition in K0(X, H) is defined by fibre-wise direct sum, so that the sum of two elements lies in K0(X, H2) with [H2] = δ(P ⊗ P(C2)) = δ(P) = [H]. Under the isomorphism H ⊗ C2 ≅ H, there is a projective bundle isomorphism P → P ⊗ P(C2) for any projective bundle P and so K0(X, H2) is canonically isomorphic to K0(X, H). When [H] is a non-torsion element of H3(X, Z), so that P = PH is an infinite-dimensional bundle of projective spaces, then the index map K0(X, H) → Z is zero, i.e., any section of Fred0(P) takes values in the index zero component of Fred0(H).

Let us now describe some other models for twisted K-theory which will be useful in our physical applications later on. A definition in algebraic K-theory may given as follows. A bundle of projective spaces P yields a bundle End(P) of algebras. However, if H is an infinite-dimensional Hilbert space, then one has natural isomorphisms H ≅ H ⊕ H and

End(H) ≅ Hom(H ⊕ H, H) ≅ End(H) ⊕ End(H)

as left End(H)-modules, and so the algebraic K-theory of the algebra End(H) is trivial. Instead, we will work with the Banach algebra K(H) of compact operators on H with the norm topology. Given that the unitary group U(H) with the compact-open topology acts continuously on K(H) by conjugation, to a given projective bundle PH we can associate a bundle of compact operators EH → X given by

EH = PH ×PU K

with δ(EH) = [H]. The Banach algebra AH := C0(X, EH) of continuous sections of EH vanishing at infinity is the continuous trace C∗-algebra CT(X, H). Then the twisted K-theory group K(X, H) of X is canonically isomorphic to the algebraic K-theory group K(AH).

We will also need a smooth version of this definition. Let AH be the smooth subalgebra of AH given by the algebra CT(X, H) = C(X, L1PH),

where L1PH = PH ×PUL1. Then the inclusion CT(X, H) → CT(X, H) induces an isomorphism KCT(X, H) → KCT(X, H) of algebraic K-theory groups. Upon choosing a bundle gerbe connection, one has an isomorphism KCT(X, H) ≅ K(X, H) with the twisted K-theory defined in terms of projective Hilbert bundles P = PH over X.

Finally, we propose a general definition based on K-theory with coefficients in a sheaf of rings. It parallels the bundle gerbe approach to twisted K-theory. Let B be a Banach algebra over C. Let E(B, X) be the category of continuous B-bundles over X, and let C(X, B) be the sheaf of continuous maps X → B. The ring structure in B equips C(X, B) with the structure of a sheaf of rings over X. We can therefore consider left (or right) C(X, B)-modules, and in particular the category LF C(X, B) of locally free C(X, B)-modules. Using the functor in the usual way, for X an equivalence of additive categories

E(B, X) ≅ LF (C(X, B))

Since these are both additive categories, we can apply the Grothendieck functor to each of them and obtain the abelian groups K(LF(C(X, B))) and K(E(B, X)). The equivalence of categories ensures that there is a natural isomorphism of groups

K(LF (C(X, B))) ≅ K(E(B, X))

This motivates the following general definition. If A is a sheaf of rings over X, then we define the K-theory of X with coefficients in A to be the abelian group

K(X, A) := K LF(A)

For example, consider the case B = C. Then C(X, C) is just the sheaf of continuous functions X → C, while E(C, X) is the category of complex vector bundles over X. Using the isomorphism of K-theory groups we then have

K(X, C(X,C)) := K(LF (C(X, C))) ≅ K (E(C, X)) = K0(X)

The definition of twisted K-theory uses another special instance of this general construction. For this, we define an Azumaya algebra over X of rank m to be a locally trivial algebra bundle over X with fibre isomorphic to the algebra of m × m complex matrices over C, Mm(C). An example is the algebra End(E) of endomorphisms of a complex vector bundle E → X. We can define an equivalence relation on the set A(X) of Azumaya algebras over X in the following way. Two Azumaya algebras A, A′ are called equivalent if there are vector bundles E, E′ over X such that the algebras A ⊗ End(E), A′ ⊗ End(E′) are isomorphic. Then every Azumaya algebra of the form End(E) is equivalent to the algebra of functions C(X) on X. The set of all equivalence classes is a group under the tensor product of algebras, called the Brauer group of X and denoted Br(X). By Serre’s theorem there is an isomorphism

δ : Br(X) → tor(H3(X, Z))

where tor(H3(X, Z)) is the torsion subgroup of H3(X, Z).

If A is an Azumaya algebra bundle, then the space of continuous sections C(X, A) of X is a ring and we can consider the algebraic K-theory group K(A) := K0(C(X,A)) of equivalence classes of projective C(X, A)-modules, which depends only on the equivalence class of A in the Brauer group. Under the equivalence, we can represent the Brauer group Br(X) as the set of isomorphism classes of sheaves of Azumaya algebras. Let A be a sheaf of Azumaya algebras, and LF(A) the category of locally free A-modules. Then as above there is an isomorphism

K(X, C(X, A)) ≅ K Proj (C(X, A))

where Proj (C(X, A)) is the category of finitely-generated projective C(X, A)-modules. The group on the right-hand side is the group K(A). For given [H] ∈ tor(H3(X, Z)) and A ∈ Br(X) such that δ(A) = [H], this group can be identified as the twisted K-theory group K0(X, H) of X with twisting A. This definition is equivalent to the description in terms of bundle gerbe modules, and from this construction it follows that K0(X, H) is a subgroup of the ordinary K-theory of X. If δ(A) = 0, then A is equivalent to C(X) and we have K(A) := K0(C(X)) = K0(X). The projective C(X, A)-modules over a rank m Azumaya algebra A are vector bundles E → X with fibre Cnm ≅ (Cm)⊕n, which is naturally an Mm(C)-module.

 

Ringed Spaces (2)

maxresdefault

Let |M| be a topological space. A presheaf of commutative algebras F on X is an assignment

U ↦ F(U), U open in |M|, F(U) is a commutative algebra, such that the following holds,

(1) If U ⊂ V are two open sets in |M|, ∃ a morphism rV, U: F(V) → F(U), called the restriction morphism and often denoted by rV, U(ƒ) = ƒ|U, such that

(i) rU, U = id,

(ii) rW, U = rV, U ○ rW, V

A presheaf ƒ is called a sheaf if the following holds:

(2) Given an open covering {Ui}i∈I of U and a family {ƒi}i∈I, ƒi ∈ F(Ui) such that ƒi|Ui ∩ Uj = ƒj|Ui ∩ Uj ∀ i, j ∈ I, ∃ a unique ƒ ∈ F(U) with ƒ|Ui = ƒi

The elements in F(U) are called sections over U, and with U = |M|, these are termed global sections.

The assignments U ↦ C(U), U open in the differentiable manifold M and U ↦ OX(U), U open in algebraic variety X are examples of sheaves of functions on the topological spaces |M| and |X| underlying the differentiable manifold M and the algebraic variety X respectively.

In the language of categories, the above definition says that we have defined a functor, F, from top(M) to (alg), where top(M) is the category of the open sets in the topological space |M|, the arrows given by the inclusions of open sets while (alg) is the category of commutative algebras. In fact, the assignment U ↦ F(U) defines F on the objects while the assignment

U ⊂ V ↦ rV, U: F(V) → F(U)

defines F on the arrows.

Let |M| be a topological space. We define a presheaf of algebras on |M| to be a functor

F: top(M)op → (alg)

The suffix “op” denotes as usual the opposite category; in other words, F is a contravariant functor from top(M) to (alg). A presheaf is a sheaf if it satisfies the property (2) of the above definition.

If F is a (pre)sheaf on |M| and U is open in |M|, we define F|U, the (pre)sheaf F restricted to U, as the functor F restricted to the category of open sets in U (viewed as a topological space itself).

Let F be a presheaf on the topological space |M| and let x be a point in |M|. We define the stalk Fx of F, at the point x, as the direct limit

lim F(U)

where the direct limit is taken ∀ the U open neighbourhoods of x in |M|. Fx consists of the disjoint union of all pairs (U, s) with U open in |M|, x ∈ U, and s ∈ F(U), modulo the equivalence relation: (U, s) ≅ (V, t) iff ∃ a neighbourhood W of x, W ⊂ U ∩ V, such that s|W = t|W.

The elements in Fx are called germs of sections.

Let F and G be presheaves on |M|. A morphism of presheaves φ: F → G, for each open set U in |M|, such that ∀ V ⊂ U, the following diagram commutes

Untitled

Equivalently and more elegantly, one can also say that a morphism of presheaves is a natural transformation between the two presheaves F and G viewed as functors.

A morphism of sheaves is just a morphism of the underlying presheaves.

Clearly any morphism of presheaves induces a morphism on the stalks: φx: Fx → Gx. The sheaf property, i.e., property (2) in the above definition, ensures that if we have two morphisms of sheaves φ and ψ, such that φx = ψx ∀ x, then φ = ψ.

We say that the morphism of sheaves is injective (resp. surjective) if x is injective (resp. surjective).

On the notion of surjectivity, however, one should exert some care, since we can have a surjective sheaf morphism φ: F → G such that φU: F(U) → G(U) is not surjective for some open sets U. This strange phenomenon is a consequence of the following fact. While the assignment U ↦ ker(φ(U)) always defines a sheaf, the assignment

U ↦ im( φ(U)) = F(U)/G(U)

defines in general only a presheaf and not all the presheaves are sheaves. A simple example is given by the assignment associating to an open set U in R, the algebra of constant real functions on U. Clearly this is a presheaf, but not a sheaf.

We can always associate, in a natural way, to any presheaf a sheaf called its sheafification. Intuitively, one may think of the sheafification as the sheaf that best “approximates” the given presheaf. For example, the sheafification of the presheaf of constant functions on open sets in R is the sheaf of locally constant functions on open sets in R. We construct the sheafification of a presheaf using the étalé space, which we also need in the sequel, since it gives an equivalent approach to sheaf theory.

Let F be a presheaf on |M|. We define the étalé space of F to be the disjoint union ⊔x∈|M| Fx. Let each open U ∈ |M| and each s ∈ F(U) define the map šU: U ⊔x∈|U| Fx, šU(x) = sx. We give to the étalé space the finest topology that makes the maps š continuous, ∀ open U ⊂ |M| and all sections s ∈ F(U). We define Fet to be the presheaf on |M|:

U ↦ Fet(U) = {šU: U → ⊔x∈|U| Fx, šU(x) = sx ∈ Fx}

Let F be a presheaf on |M|. A sheafification of F is a sheaf F~, together with a presheaf morphism α: F → Fsuch that

(1) any presheaf morphism ψ: F → G, G a sheaf factors via α, i.e. ψ: F →α F~ → G,

(2) F and Fare locally isomorphic, i.e., ∃ an open cover {Ui}i∈I of |M| such that F(Ui) ≅ F~(Ui) via α.

Let F and G be sheaves of rings on some topological space |M|. Assume that we have an injective morphism of sheaves G → F such that G(U) ⊂ F(U) ∀ U open in |M|. We define the quotient F/G to be the sheafification of the image presheaf: U ↦ F(U)/G(U). In general F/G (U) ≠ F(U)/G(U), however they are locally isomorphic.

Ringed space is a pair M = (|M|, F) consisting of a topological space |M| and a sheaf of commutative rings F on |M|. This is a locally ringed space, if the stalk Fx is a local ring ∀ x ∈ |M|. A morphism of ringed spaces φ: M = (|M|, F) → N = (|N|, G) consists of a morphism |φ|: |M| → |N| of the topological spaces and a sheaf morphism φ*: ON → φ*OM, where φ*OM is a sheaf on |N| and defined as follows:

*OM)(U) = OM-1(U)) ∀ U open in |N|

Morphism of ringed spaces induces a morphism on the stalks for each

x ∈ |M|: φx: ON,|φ|(x) → OM,x

If M and N are locally ringed spaces, we say that the morphism of ringed spaces φ is a morphism of locally ringed spaces if φx is local, i.e. φ-1x(mM,x) = mN,|φ|(x), where mN,|φ|(x) and mM,x are the maximal ideals in the local rings ON,|φ|(x) and OM,x respectively.

Super Lie Algebra

JacobiatorIdentity

A super Lie algebra L is an object in the category of super vector spaces together with a morphism [ , ] : L ⊗ L → L, often called the super bracket, or simply, the bracket, which satisfies the following conditions

Anti-symmetry,

[ , ] + [ , ] ○ cL,L = 0

which is the same as

[x, y] + (-1)|x||y|[y, x] = 0 for x, y ∈ L homogenous.

Jacobi identity,

[, [ , ]] + [, [ , ]] ○ σ + [, [ , ]] ○ σ2 = 0,

where σ ∈ S3 is a three-cycle, i.e. taking the first entity of [, [ , ]] to the second, and the second to the third, and then the third to the first. So, for x, y, z ∈ L homogenous, this reads

[x + [y, z]] + (-1)|x||y| + |x||z|[y, [z, x]] + (-1)|y||z| + |x||z|[z, [x, y]] = 0

It is important to note that in the super category, these conditions are modifications of the properties of the bracket in a Lie algebra, designed to accommodate the odd variables. We can immediately extend this definition to the case where L is an A-module for A a commutative superalgebra, thus defining a Lie superalgebra in the category of A-modules. In fact, we can make any associative superalgebra A into a Lie superalgebra by taking the bracket to be

[a, b] = ab – (-1)|a||b|ba,

i.e., we take the bracket to be the difference τ – τ ○ cA,A, where τ is the multiplication morphism on A.

A left A-module is a super vector space M with a morphism A ⊗ M → M, a ⊗ m ↦ am, of super vector spaces obeying the usual identities; that is, ∀ a, b ∈ A and x, y ∈ M, we have

a (x + y) = ax + ay

(a + b)x = ax + bx

(ab)x  = a(bx)

1x = x

A right A-module is defined similarly. Note that if A is commutative, a left A-module is also a right A-module if we define (the sign rule)

m . a = (-1)|m||a|a . m

for m ∈ M and a ∈ A. Morphisms of A-modules are defined in the obvious manner: super vector space morphisms φ: M → N such that φ(am) = aφ(m) ∀ a ∈ A and m ∈ M. So, we have the category of A-modules. For A commutative, the category of A-modules admits tensor products: for M1, M2 A-modules, M1 ⊗ M2 is taken as the tensor product of M1 as a right module with M2 as a left module.

Turning our attention to free A-modules, we have the notion of super vector kp|q over k, and so we define Ap|q := A ⊗ kp|q where

(Ap|q)0 = A0 ⊗ (kp|q)0 ⊕ A1 ⊗ (kp|q)1

(Ap|q)1 = A1 ⊗ (kp|q)0 ⊕ A0 ⊗ (kp|q)1

We say that an A-module M is free if it is isomorphic (in the category of A-modules) to Ap|q for some (p, q). This is equivalent to saying that M contains p even elements {e1, …, ep} and q odd elements {ε1, …, εq} such that

M0 = spanA0{e1, …, ep} ⊕ spanA11, …, εq}

M1 = spanA1{e1, …, ep} ⊕ spanA01, …, εq}

We shall also say M as the free module generated over A by the even elements e1, …, eand the odd elements ε1, …, εq.

Let T: Ap|q → Ar|s be a morphism of free A-modules and then write ep+1, …., ep+q for the odd basis elements ε1, …, εq. Then T is defined on the basis elements {e1, …, ep+q} by

T(ej) = ∑i=1p+q eitij

Hence T can be represented as a matrix of size (r + s) x (p + q)

T = (T1 T2 T3 T4)

where T1 is an r x p matrix consisting of even elements of A, T2 is an r x q matrix of odd elements, T3 is an s x p matrix of odd elements, and T4 is an s x q matrix of even elements. When we say that T is a morphism of super A-modules, it means that it must preserve parity, and therefore the parity of the blocks, T1 & T4, which are even and T2 & T3, which are odd, is determined. When we define T on the basis elements, the basis elements precedes the coordinates tij. This is important to keep the signs in order and comes naturally from composing morphisms. In other words if the module is written as a right module with T acting from the left, composition becomes matrix product in the usual manner:

(S . T)(ej) = S(∑i eitij) = ∑i,keksiktij

hence for any x ∈ Ap|q , we can express x as the column vector x = ∑eixi and so T(x) is given by the matrix product T x.