A Sheaf of Modules is a Geometric Generalization of a Module over a Ring – A Case Derivative of Abelian Closure

Untitled

A coherent sheaf is a generalization of, on the one hand, a module over a ring, and on the other hand, a vector bundle over a manifold. Indeed, the category of coherent sheaves is the “abelian closure” of the category of vector bundles on a variety.

Given a field which we always take to be the field of complex numbers C, an affine algebraic variety X is the vanishing locus

X = 􏰐(x1,…, xn) : fi(x1,…, xn) = 0􏰑 ⊂ An

of a set of polynomials fi(x1,…, xn) in affine space An with coordinates x1,…, xn. Associated to an affine variety is the ring A = C[X] of its regular functions, which is simply the ring C[x1,…, xn] modulo the ideal ⟨fi⟩ of the defining polynomials. Closed subvarieties Z of X are defined by the vanishing of further polynomials and open subvarieties U = X \ Z are the complements of closed ones; this defines the Zariski topology on X. The Zariski topology is not to be confused with the complex topology, which comes from the classical (Euclidean) topology of Cn defined using complex balls; every Zariski open set is also open in the complex topology, but the converse is very far from being true. For example, the complex topology of A1 is simply that of C, whereas in the Zariski topology, the only closed sets are A1 itself and finite point sets.

Projective varieties X ⊂ Pn are defined similarly. Projective space Pn is the set of lines in An+1 through the origin; an explicit coordinatization is by (n + 1)-tuples

(x0,…, xn) ∈ Cn+1 \ {0,…,0}

identified under the equivalence relation

(x0,…, xn) ∼ (λx0,…, λxn) for λ ∈ C

Projective space can be decomposed into a union of (n + 1) affine pieces (An)i = 􏰐[x0,…, xn] : xi ≠ 0􏰑 with n affine coordinates yj = xj/xi. A projective variety X is the locus of common zeros of a set {fi(x1,…, xn)} of homogeneous polynomials. The Zariski topology is again defined by choosing for closed sets the loci of vanishing of further homogeneous polynomials in the coordinates {xi}. The variety X is covered by the standard open sets Xi = X ∩ (An)i ⊂ X, which are themselves affine varieties. A variety􏰭 X is understood as a topological space with a finite open covering X = ∪i Ui, where every open piece Ui ⊂ An is an affine variety with ring of global functions Ai = C[Ui]; further, the pieces Ui are glued together by regular functions defined on open subsets. The topology on X is still referred to as the Zariski topology. X also carries the complex topology, which again has many more open sets.

Given affine varieties X ⊂ An, Y ⊂ Am, a morphism f : X → Y is given by an m-tuple of polynomials {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)} satisfying the defining relations of Y. Morphisms on projective varieties are defined similarly, using homogeneous polynomials of the same degree. Morphisms on general varieties are defined as morphisms on their affine pieces, which glue together in a compatible way.

If X is a variety, points P ∈ X are either singular or nonsingular. This is a local notion, and hence, it suffices to define a nonsingular point on an affine piece Ui ⊂ An. A point P ∈ Ui is nonsingular if, locally in the complex topology, a neighbourhood of P ∈ Ui is a complex submanifold of Cn.

The motivating example of a coherent sheaf of modules on an algebraic variety X is the structure sheaf or sheaf of regular functions OX. This is a gadget with the following properties:

  1. On every open set U ⊂ X, we are given an abelian group (or even a commutative ring) denoted OX(U), also written Γ(U, OX), the ring of regular functions on U.
  2. Restriction: if V ⊂ U is an open subset, a restriction map resUV : OX(U) → OX(V) is defined, which simply associates to every regular function f defined over U, the restriction of this function to V. If W ⊂ V ⊂ U are open sets, then the restriction maps clearly satisfy resUW = resVW ◦ resUV.
  3. Sheaf Property: suppose that an open subset U ⊂ X is covered by a collection of open subsets {Ui}, and suppose that a set of regular functions fi ∈ OX(Ui) is given such that whenever Ui and Uj intersect, then the restrictions of fi and fj to Ui ∩ Uj agree. Then there is a unique function f ∈ OX(U) whose restriction to Ui is fi.

In other words, the sheaf of regular functions consists of the collection of regular functions on open sets, together with the obvious restriction maps for open subsets; moreover, this data satisfies the Sheaf Property, which says that local functions, agreeing on overlaps, glue in a unique way to a global function on U.

A sheaf F on the algebraic variety X is a gadget satisfying the same formal properties; namely, it is defined by a collection {F(U)} of abelian groups on open sets, called sections of F over U, together with a compatible system of restriction maps on sections resUV : F(U) → F(V) for V ⊂ U, so that the Sheaf Property is satisfied: sections are locally defined just as regular functions are. But, what of sheaves of OX-modules? The extra requirement is that the sections F(U) over an open set U form a module over the ring of regular functions OX(U), and all restriction maps are compatible with the module structures. In other words, we multiply local sections by local functions, so that multiplication respects restriction. A sheaf of OX-modules is defined by the data of an A-module for every open subset U ⊂ X with ring of functions A = OX(U), so that these modules are glued together compatibly with the way the open sets glue. Hence, a sheaf of modules is indeed a geometric generalization of a module over a ring.

Affine Schemes

1-s2.0-S0022404915000730-fx001

Let us associate to any commutative ring A its spectrum, that is the topological space Spec A. As a set, Spec A consists of all the prime ideals in A. For each subset S A we define as closed sets in Spec A:

V(S) := {p ∈ Spec A | S ⊂ p} ⊂ Spec A

If X is an affine variety, defined over an algebraically closed field, and O(X) is its coordinate ring, we have that the points of the topological space underlying X are in one-to-one correspondence with the maximal ideals in O(X).

We also define the basic open sets in Spec A as

Uƒ := Spec A \ V(ƒ) = Spec Aƒ with ƒ ∈ A,

where Aƒ = A[ƒ-1] is the localization of A obtained by inverting the element ƒ. The collection of the basic open sets Uƒ, ∀ ƒ ∈ A forms a base for Zariski topology. Next, we define the structure sheaf OA on the topological space Spec A. In order to do this, it is enough to give an assignment

U ↦ OA(U) for each basic open set U = Uƒ in Spec A.

The assignment

Uƒ ↦ Aƒ

defines a B-sheaf on the topological space Spec A and it extends uniquely to a sheaf of commutative rings on Spec A, called the structure sheaf and denoted by OA. Moreover, the stalk at a point p ∈ Spec A, OA,p is the localization Ap of the ring at the prime p. While the differentiable manifolds are locally modeled, as ringed spaces, by (Rn, CRn), the schemes are geometric objects modeled by the spectrum of commutative rings.

Affine scheme is a locally ringed space isomorphic to Spec A for some commutative ring A. We say that X is a scheme if X = (|X|, OX) is a locally ringed space, which is locally isomorphic to affine schemes. In other words, for each x ∈ |X|, ∃ an open set Ux ⊂ |X| such that (Ux, OX|Ux) is an affine scheme. A morphism of schemes is just a morphism of locally ringed spaces.

There is an equivalence of categories between the category of affine schemes (aschemes) and the category of commutative rings (rings). This equivalence is defined on the objects by

(rings)op → (aschemes), A Spec A

In particular a morphism of commutative rings A → B contravariantly to a morphism Spec B → Spec A of the corresponding affine superschemes.

Since any affine variety X is completely described by the knowledge of its coordinate ring O(X), we can associate uniquely to an affine variety X, the affine scheme Spec O(X). A morphism between algebraic varieties determines uniquely a morphism between the corresponding schemes. In the language of categories, we say we have a fully faithful functor from the category of algebraic varieties to the category of schemes.

Marching Along Categories, Groups and Rings. Part 2

A category C consists of the following data:

A collection Obj(C) of objects. We will write “x ∈ C” to mean that “x ∈ Obj(C)

For each ordered pair x, y ∈ C there is a collection HomC (x, y) of arrows. We will write α∶x→y to mean that α ∈ HomC(x,y). Each collection HomC(x,x) has a special element called the identity arrow idx ∶ x → x. We let Arr(C) denote the collection of all arrows in C.

For each ordered triple of objects x, y, z ∈ C there is a function

○ ∶ HomC (x, y) × HomC(y, z) → HomC (x, z), which is called composition of  arrows. If  α ∶ x → y and β ∶ y → z then we denote the composite arrow by β ○ α ∶ x → z.

If each collection of arrows HomC(x,y) is a set then we say that the category C is locally small. If in addition the collection Obj(C) is a set then we say that C is small.

Identitiy: For each arrow α ∶ x → y the following diagram commutes:

img_20170202_165814

Associative: For all arrows α ∶ x → y, β ∶ y → z, γ ∶ z → w, the following diagram commutes:

img_20170202_165833

We say that C′ ⊆ C is a subcategory if Obj(C′) ⊆ Obj(C) and if ∀ x,y ∈ Obj(C′) we have HomC′(x,y) ⊆ HomC(x,y). We say that the subcategory is full if each inclusion of hom sets is an equality.

Let C be a category. A diagram D ⊆ C is a collection of objects in C with some arrows between them. Repetition of objects and arrows is allowed. OR. Let I be any small category, which we think of as an “index category”. Then any functor D ∶ I → C is called a diagram of shape I in C. In either case, we say that the diagram D commutes if for all pairs of objects x,y in D, any two directed paths in D from x to y yield the same arrow under composition.

Identity arrows generalize the reflexive property of posets, and composition of arrows generalizes the transitive property of posets. But whatever happened to the antisymmetric property? Well, it’s the same issue we had before: we should really define equivalence of objects in terms of antisymmetry.

Isomorphism: Let C be a category. We say that two objects x,y ∈ C are isomorphic in C if there exist arrows α ∶ x → y and β ∶ y → x such that the following diagram commutes:

img_20170202_175924

In this case we write x ≅C y, or just x ≅ y if the category is understood.

If γ ∶ y → x is any other arrow satisfying the same diagram as β, then by the axioms of identity and associativity we must have

γ = γ ○ idy = γ ○ (α ○ β) = (γ ○ α) ○ β = idx ○ β = β

This allows us to refer to β as the inverse of the arrow α. We use the notations β = α−1 and

β−1 = α.

A category with one object is called a monoid. A monoid in which each arrow is invertible is called a group. A small category in which each arrow is invertible is called a groupoid.

Subcategories of Set are called concrete categories. Given a concrete category C ⊆ Set we can think of its objects as special kinds of sets and its arrows as special kinds of functions. Some famous examples of conrete categories are:

• Grp = groups & homomorphisms
• Ab = abelian groups & homomorphisms
• Rng = rings & homomorphisms
• CRng = commutative rings & homomorphisms

Note that Ab ⊆ Grp and CRng ⊆ Rng are both full subcategories. In general, the arrows of a concrete category are called morphisms or homomorphisms. This explains our notation of HomC.

Homotopy: The most famous example of a non-concrete category is the fundamental groupoid π1(X) of a topological space X. Here the objects are points and the arrows are homotopy classes of continuous directed paths. The skeleton is the set π0(X) of path components (really a discrete category, i.e., in which the only arrows are the identities). Categories like this are the reason we prefer the name “arrow” instead of “morphism”.

Limit/Colimit: Let D ∶ I → C be a diagram in a category C (thus D is a functor and I is a small “index” category). A cone under D consists of

• an object c ∈ C,

• a collection of arrows αi ∶ x → D(i), one for each index i ∈ I,

such that for each arrow δ ∶ i → j in I we have αj = D(δ) ○ α

In visualizing this:

img_20170202_182016

The cone (c,(αi)i∈I) is called a limit of the diagram D if, for any cone (z,(βi)i∈I) under D, the following picture holds:

img_20170202_182041

[This picture means that there exists a unique arrow υ ∶ z → c such that, for each arrow δ ∶ i → j in I (including the identity arrows), the following diagram commutes:

img_20170202_182906

When δ = idi this diagram just says that βi = αi ○ υ. We do not assume that D itself is commutative. Dually, a cone over D consists of an object c ∈ C and a set of arrows αi ∶ D(i) → c satisfying αi = αj ○ D(δ) for each arrow δ ∶ i → j in I. This cone is called a colimit of the diagram D if, for any cone (z,(βi)i∈I) over D, the following picture holds:

img_20170202_183619

When the (unique) limit or colimit of the diagram D ∶ I → C exists, we denote it by (limI D, (φi)i∈I) or (colimI D, (φi)i∈I), respectively. Sometimes we omit the canonical arrows φi from the notation and refer to the object limID ∈ C as “the limit of D”. However, we should not forget that the arrows are part of the structure, i.e., the limit is really a cone.

Posets: Let P be a poset. We have already seen that the product/coproduct in P (if they exist) are the meet/join, respectively, and that the final/initial objects in P (if they exist) are the top/bottom elements, respectively. The only poset with a zero object is the one element poset.

Sets: The empty set ∅ ∈ Set is an initial object and the one point set ∗ ∈ Set is a final object. Note that two sets are isomorphic in Set precisely when there is a bijection between them, i.e., when they have the same cardinality. Since initial/final objects are unique up to isomorphism, we can identify the initial object with the cardinal number 0 and the final object with the cardinal number 1. There is no zero object in Set.

Products and coproducts exist in Set. The product of S,T ∈ Set consists of the Cartesian product S × T together with the canonical projections πS ∶ S × T → S and πT ∶ S × T → T. The coproduct of S, T ∈ Set consists of the disjoint union S ∐ T together with the canonical injections ιS ∶ S → S ∐ T and ιT ∶ T → S ∐ T. After passing to the skeleton, the product and coproduct of sets become the product and sum of cardinal numbers.

[Note: The “external disjoint union” S ∐ T is a formal concept. The familiar “internal disjoint union” S ⊔ T is only defined when there exists a set U containing both S and T as subsets. Then the union S ∪ T is the join operation in the Boolean lattice 2U ; we call the union “disjoint” when S ∩ T = ∅.]

Groups: The trivial group 1 ∈ Grp is a zero object, and for any groups G, H ∈ Grp the zero homomorphism 1 ∶ G → H sends all elements of G to the identity element 1H ∈ H. The product of groups G, H ∈ Grp is their direct product G × H and the coproduct is their free product G ∗ H, along with the usual canonical morphisms.

Let Ab ⊆ Grp be the full subcategory of abelian groups. The zero object and product are inherited from Grp, but we give them new names: we denote the zero object by 0 ∈ Ab and for any A, B ∈ Ab we denote the zero arrow by 0 ∶ A → B. We denote the Cartesian product by A ⊕ B and we rename it the direct sum. The big difference between Grp and Ab appears when we consider coproducts: it turns out that the product group A ⊕ B is also the coproduct group. We emphasize this fact by calling A ⊕ B the biproduct in Ab. It comes equipped with four canonical homomorphisms πA, πB, ιA, ιB satisfying the usual properties, as well as the following commutative diagram:

img_20170202_185619

This diagram is the ultimate reason for matrix notation. The universal properties of product and coproduct tell us that each endomorphism φ ∶ A ⊕ B → A ⊕ B is uniquely determined by its four components φij ∶= πi ○ φ ○ ιj for i, j ∈ {A,B},so we can represent it as a matrix:

img_20170202_185557

Then the composition of endomorphisms becomes matrix multiplication.

Rings. We let Rng denote the category of rings with unity, together with their homomorphisms. The initial object is the ring of integers Z ∈ Rng and the final object is the zero ring 0 ∈ Rng, i.e., the unique ring in which 0R = 1R. There is no zero object. The product of two rings R, S ∈ Rng is the direct product R × S ∈ Rng with component wise addition and multiplication. Let CRng ⊆ Rng be the full subcategory of commutative rings. The initial/final objects and product in CRng are inherited from Rng. The difference between Rng and CRng again appears when considering coproducts. The coproduct of R,S ∈ CRng is denoted by R ⊗Z S and is called the tensor product over Z…..