# Closed String Algebra as a Graded-Commutative Algebra C: Cochain Complex Differentials: Part 2, Note Quote.

The most general target category we can consider is a symmetric tensor category: clearly we need a tensor product, and the axiom HY1⊔Y2 ≅ HY1 ⊗ HY2 only makes sense if there is an involutory canonical isomorphism HY1 ⊗ HY2 ≅ HY2 ⊗ HY1 .

A very common choice in physics is the category of super vector spaces, i.e., vector spaces V with a mod 2 grading V = V0 ⊕ V1, where the canonical isomorphism V ⊗ W ≅ W ⊗ V is v ⊗ w ↦ (−1)deg v deg ww ⊗ v. One can also consider the category of Z-graded vector spaces, with the same sign convention for the tensor product.

In either case the closed string algebra is a graded-commutative algebra C with a trace θ : C → C. In principle the trace should have degree zero, but in fact the commonly encountered theories have a grading anomaly which makes the trace have degree −n for some integer n.

We define topological-spinc theories, which model 2d theories with N = 2 supersymmetry, by replacing “manifolds” with “manifolds with spinc structure”.

A spinc structure on a surface with a conformal structure is a pair of holomorphic line bundles L1, L2 with an isomorphism L1 ⊗ L2 ≅ TΣ of holomorphic line bundles. A spin structure is the particular case when L1 = L2. On a 1-manifold S a spinc structure means a spinc structure on a ribbon neighbourhood of S in a surface with conformal structure. An N = 2 superconformal theory assigns a vector space HS;L1,L2 to each 1-manifold S with spinc structure, and an operator

US0;L1,L2: HS0;L1,L2 → HS1;L1,L2

to each spinc-cobordism from S0 to S1. To explain the rest of the structure we need to define the N = 2 Lie superalgebra associated to a spin1-manifold (S;L1,L2). Let G = Aut(L1) denote the group of bundle isomorphisms L1 → L1 which cover diffeomorphisms of S. (We can identify this group with Aut(L2).) It has a homomorphism onto the group Diff+(S) of orientation-preserving diffeomorphisms of S, and the kernel is the group of fibrewise automorphisms of L1, which can be identified with the group of smooth maps from S to C×. The Lie algebra Lie(G) is therefore an extension of the Lie algebra Vect(S) of Diff+(S) by the commutative Lie algebra Ω0(S) of smooth real-valued functions on S. Let Λ0S;L1,L2 denote the complex Lie algebra obtained from Lie(G) by complexifying Vect(S). This is the even part of a Lie super algebra whose odd part is Λ1S;L1,L2 = Γ(L1) ⊕ Γ(L2). The bracket Λ1 ⊗ Λ1 → Λ0 is completely determined by the property that elements of Γ(L1) and of Γ(L2) anticommute among themselves, while the composite

Γ(L1) ⊗ Γ(L2) → Λ0 → VectC(S)

takes (λ12) to λ1λ2 ∈ Γ(TS).

In an N = 2 theory we require the superalgebra Λ(S;L1,L2) to act on the vector space HS;L1,L2, compatibly with the action of the group G, and with a similar intertwining property with the cobordism operators to that of the N = 1 case. For an N = 2 theory the state space always has an action of the circle group coming from its embedding in G as the group of fibrewise multiplications on L1 and L2. Equivalently, the state space is always Z-graded.

An N = 2 theory always gives rise to two ordinary conformal field theories by equipping a surface Σ with the spinc structures (C,TΣ) and (TΣ,C). These are called the “A-model” and the “B-model” associated to the N = 2 theory. In each case the state spaces are cochain complexes in which the differential is the action of the constant section of the trivial component of the spinc-structure.

# The Closed String Cochain Complex C is the String Theory Substitute for the de Rham Complex of Space-Time. Note Quote.

In closed string theory the central object is the vector space C = CS1 of states of a single parameterized string. This has an integer grading by the “ghost number”, and an operator Q : C → C called the “BRST operator” which raises the ghost number by 1 and satisfies Q2 = 0. In other words, C is a cochain complex. If we think of the string as moving in a space-time M then C is roughly the space of differential forms defined along the orbits of the action of the reparametrization group Diff+(S1) on the free loop space LM (more precisely, square-integrable forms of semi-infinite degree). Similarly, the space C of a topologically-twisted N = 2 supersymmetric theory, is a cochain complex which models the space of semi-infinite differential forms on the loop space of a Kähler manifold – in this case, all square-integrable differential forms, not just those along the orbits of Diff+(S1). In both kinds of example, a cobordism Σ from p circles to q circles gives an operator UΣ,μ : C⊗p → C⊗q which depends on a conformal structure μ on Σ. This operator is a cochain map, but its crucial feature is that changing the conformal structure μ on Σ changes the operator UΣ,μ only by a cochain homotopy. The cohomology H(C) = ker(Q)/im(Q) – the “space of physical states” in conventional string theory – is therefore the state space of a topological field theory.

A good way to describe how the operator UΣ,μ varies with μ is as follows:

If MΣ is the moduli space of conformal structures on the cobordism Σ, modulo diffeomorphisms of Σ which are the identity on the boundary circles, then we have a cochain map

UΣ : C⊗p → Ω(MΣ, C⊗q)

where the right-hand side is the de Rham complex of forms on MΣ with values in C⊗q. The operator UΣ,μ is obtained from UΣ by restricting from MΣ to {μ}. The composition property when two cobordisms Σ1 and Σ2 are concatenated is that the diagram

commutes, where the lower horizontal arrow is induced by the map MΣ1 × MΣ2 → MΣ2 ◦ Σ1 which expresses concatenation of the conformal structures.

For each pair a, b of boundary conditions we shall still have a vector space – indeed a cochain complex – Oab, but it is no longer the space of morphisms from b to a in a category. Rather, what we have is an A-category. Briefly, this means that instead of a composition law Oab × Obc → Oac we have a family of ways of composing, parametrized by the contractible space of conformal structures on the surface of the figure:

In particular, any two choices of a composition law from the family are cochain homotopic. Composition is associative in the sense that we have a contractible family of triple compositions Oab × Obc × Ocd → Oad, which contains all the maps obtained by choosing a binary composition law from the given family and bracketing the triple in either of the two possible ways.

This is not the usual way of defining an A-structure. According to Stasheff’s original definition, an A-structure on a space X consists of a sequence of choices: first, a composition law m2 : X × X → X; then, a choice of a map

m3 : [0, 1] × X × X × X → X which is a homotopy between

(x, y, z) ↦ m2(m2(x, y), z) and (x, y, z) ↦ m2(x, m2(y, z)); then, a choice of a map

m4 : S4 × X4 → X,

where S4 is a convex plane polygon whose vertices are indexed by the five ways of bracketing a 4-fold product, and m4|((∂S4) × X4) is determined by m3; and so on. There is an analogous definition – applying to cochain complexes rather than spaces.

Apart from the composition law, the essential algebraic properties are the non-degenerate inner product, and the commutativity of the closed algebra C. Concerning the latter, when we pass to cochain theories the multiplication in C will of course be commutative up to cochain homotopy, but, the moduli space MΣ of closed string multiplications i.e., the moduli space of conformal structures on a pair of pants Σ, modulo diffeomorphisms of Σ which are the identity on the boundary circles, is not contractible: it has the homotopy type of the space of ways of embedding two copies of the standard disc D2 disjointly in the interior of D2 – this space of embeddings is of course a subspace of MΣ. In particular, it contains a natural circle of multiplications in which one of the embedded discs moves like a planet around the other, and there are two different natural homotopies between the multiplication and the reversed multiplication. This might be a clue to an important difference between stringy and classical space-times. The closed string cochain complex C is the string theory substitute for the de Rham complex of space-time, an algebra whose multiplication is associative and (graded)commutative on the nose. Over the rationals or the real or complex numbers, such cochain algebras model the category of topological spaces up to homotopy, in the sense that to each such algebra C, we can associate a space XC and a homomorphism of cochain algebras from C to the de Rham complex of XC which is a cochain homotopy equivalence. If we do not want to ignore torsion in the homology of spaces we can no longer encode the homotopy type in a strictly commutative cochain algebra. Instead, we must replace commutative algebras with so-called E-algebras, i.e., roughly, cochain complexes C over the integers equipped with a multiplication which is associative and commutative up to given arbitrarily high-order homotopies. An arbitrary space X has an E-algebra CX of cochains, and conversely one can associate a space XC to each E-algebra C. Thus we have a pair of adjoint functors, just as in rational homotopy theory. The cochain algebras of closed string theory have less higher commutativity than do E-algebras, and this may be an indication that we are dealing with non-commutative spaces that fits in well with the interpretation of the B-field of a string background as corresponding to a bundle of matrix algebras on space-time. At the same time, the non-degenerate inner product on C – corresponding to Poincaré duality – seems to show we are concerned with manifolds, rather than more singular spaces.

Let us consider the category K of cochain complexes of finitely generated free abelian groups and cochain homotopy classes of cochain maps. This is called the derived category of the category of finitely generated abelian groups. Passing to cohomology gives us a functor from K to the category of Z-graded finitely generated abelian groups. In fact the subcategory K0 of K consisting of complexes whose cohomology vanishes except in degree 0 is actually equivalent to the category of finitely generated abelian groups. But the category K inherits from the category of finitely generated free abelian groups a duality functor with properties as ideal as one could wish: each object is isomorphic to its double dual, and dualizing preserves exact sequences. (The dual C of a complex C is defined by (C)i = Hom(C−i, Z).) There is no such nice duality in the category of finitely generated abelian groups. Indeed, the subcategory K0 is not closed under duality, for the dual of the complex CA corresponding to a group A has in general two non-vanishing cohomology groups: Hom(A,Z) in degree 0, and in degree +1 the finite group Ext1(A,Z) Pontryagin-dual to the torsion subgroup of A. This follows from the exact sequence:

0 → Hom(A, Z) → Hom(FA, Z) → Hom(RA, Z) → Ext1(A, Z) → 0

derived from an exact sequence

0 → RA → FA → A → 0

The category K also has a tensor product with better properties than the tensor product of abelian groups, and, better still, there is a canonical cochain functor from (locally well-behaved) compact spaces to K which takes Cartesian products to tensor products.

# Time and World-Lines

Let γ: [s1, s2] → M be a smooth, future-directed timelike curve in M with tangent field ξa. We associate with it an elapsed proper time (relative to gab) given by

∥γ∥= ∫s1s2 (gabξaξb)1/2 ds

This elapsed proper time is invariant under reparametrization of γ and is just what we would otherwise describe as the length of (the image of) γ . The following is another basic principle of relativity theory:

Clocks record the passage of elapsed proper time along their world-lines.

Again, a number of qualifications and comments are called for. We have taken for granted that we know what “clocks” are. We have assumed that they have worldlines (rather than worldtubes). And we have overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand) do not do well at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock against the wall.) Again, these concerns are important and raise interesting questions about the role of idealization in the formulation of physical theory. (One might construe an “ideal clock” as a point-size test object that perfectly records the passage of proper time along its worldline, and then take the above principle to assert that real clocks are, under appropriate conditions and to varying degrees of accuracy, approximately ideal.) But they do not have much to do with relativity theory as such. Similar concerns arise when one attempts to formulate corresponding principles about clock behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays. Then one can use clocks, rather than free particles, to determine the conformal factor.

Let g′ab be a second smooth metric on M, with g′ab = Ω2gab. Further suppose that the two metrics assign the same lengths to timelike curves – i.e., ∥γ∥g′ab = ∥γ∥gab ∀ smooth, timelike curves γ: I → M. Then Ω = 1 everywhere. (Here ∥γ∥gab is the length of γ relative to gab.)

Let ξoa be an arbitrary timelike vector at an arbitrary point p in M. We can certainly find a smooth, timelike curve γ: [s1, s2] → M through p whose tangent at p is ξoa. By our hypothesis, ∥γ∥g′ab = ∥γ∥gab. So, if ξa is the tangent field to γ,

s1s2 (g’ab ξaξb)1/2 ds = ∫s1s2 (gabξaξb)1/2 ds

∀ s in [s1, s2]. It follows that g′abξaξb = gabξaξb at every point on the image of γ. In particular, it follows that (g′ab − gab) ξoa ξob = 0 at p. But ξoa was an arbitrary timelike vector at p. So, g′ab = gab at our arbitrary point p. The principle gives the whole story of relativistic clock behavior. In particular, it implies the path dependence of clock readings. If two clocks start at an event p and travel along different trajectories to an event q, then, in general, they will record different elapsed times for the trip. This is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly line.) This is the case because, as the principle asserts, the elapsed time recorded by each of the clocks is just the length of the timelike curve it traverses from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask if there are any that minimize or maximize the recorded elapsed time between the events. The answer to the first question is “no.” Indeed, one then has the following proposition:

Let p and q be events in M such that p ≪ q. Then, for all ε > 0, there exists a smooth, future directed timelike curve γ from p to q with ∥γ ∥ < ε. (But there is no such curve with length 0, since all timelike curves have non-zero length.)

If there is a smooth, timelike curve connecting p and q, there is also a jointed, zig-zag null curve connecting them. It has length 0. But we can approximate the jointed null curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of the length function), we should expect that, for all ε > 0, there is an approximating timelike curve that has length less than ε.

The answer to the second question (“Can one maximize recorded elapsed time between p and q?”) is “yes” if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e., ones with signature of form (n, 0) – we know geodesics are locally shortest curves. The corresponding result for Lorentzian metrics is that timelike geodesics are locally longest curves.

Let γ: I → M be a smooth, future-directed, timelike curve. Then γ can be reparametrized so as to be a geodesic iff ∀ s ∈ I there exists an open set O containing γ(s) such that , ∀ s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image of γ′ = γ|[s1, s2] is contained in O, then γ′ (and its reparametrizations) are longer than all other timelike curves in O from γ(s1) to γ(s2). (Here γ|[s1, s2] is the restriction of γ to the interval [s1, s2].)

Of all clocks passing locally from p to q, the one that will record the greatest elapsed time is the one that “falls freely” from p to q. To get a clock to read a smaller elapsed time than the maximal value, one will have to accelerate the clock. Now, acceleration requires fuel, and fuel is not free. So the above proposition has the consequence that (locally) “saving time costs money.” And proposition before that may be taken to imply that “with enough money one can save as much time as one wants.” The restriction here to local regions of spacetime is essential. The connection described between clock behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes, one can find future-directed timelike geodesics connecting two events that have different lengths, and so clocks following the curves will record different elapsed times between the events even though both are in a state of free fall. Furthermore – this follows from the preceding claim by continuity considerations alone – it can be the case that of two clocks passing between the events, the one that undergoes acceleration during the trip records a greater elapsed time than the one that remains in a state of free fall. (A rolled-up version of two-dimensional Minkowski spacetime provides a simple example)

Two-dimensional Minkowski spacetime rolledup into a cylindrical spacetime. Three timelike curves are displayed: γ1 and γ3 are geodesics; γ2 is not; γ1 is longer than γ2; and γ2 is longer than γ3.

The connection we have been considering between clock behavior and acceleration was once thought to be paradoxical. Recall the so-called “clock paradox.” Suppose two clocks, A and B, pass from one event to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall but B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed time for the trip than B. This was thought paradoxical because it was believed that relativity theory denies the possibility of distinguishing “absolutely” between free-fall motion and accelerated motion. (If we are equally well entitled to think that it is clock B that is in a state of free fall and A that undergoes acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The situations of A and B here are not symmetric. The distinction between accelerated motion and free fall makes every bit as much sense in relativity theory as it does in Newtonian physics.

A “timelike curve” should be understood to be a smooth, future-directed, timelike curve parametrized by elapsed proper time – i.e., by arc length. In that case, the tangent field ξa of the curve has unit length (ξaξa = 1). And if a particle happens to have the image of the curve as its worldline, then, at any point, ξa is called the particle’s four-velocity there.