Metaphysical Continuity in Peirce. Thought of the Day 122.0

image12

Continuity has wide implications in the different parts of Peirce’s architectonics of theories. Time and time again, Peirce refers to his ‘principle of continuity’ which has not immediately anything to do with Poncelet’s famous such principle in geometry, but, is rather, a metaphysical implication taken to follow from fallibilism: if all more or less distinct phenomena swim in a vague sea of continuity then it is no wonder that fallibilism must be accepted. And if the world is basically continuous, we should not expect conceptual borders to be definitive but rather conceive of terminological distinctions as relative to an underlying, monist continuity. In this system, mathematics is first science. Thereafter follows philosophy which is distinguished form purely hypothetical mathematics by having an empirical basis. Philosophy, in turn, has three parts, phenomenology, the normative sciences, and metaphysics. The first investigates solely ‘the Phaneron’ which is all what could be imagined to appear as an object for experience: ‘ by the word phaneron I mean the collective total of all that is in any way or in any sense present to the mind, quite regardless whether it corresponds to any real thing or not.’ (Charles Sanders Peirce – Collected Papers of Charles Sanders Peirce) As is evident, this definition of Peirce’s ‘phenomenology’ is parallel to Husserl’s phenomenological reduction in bracketing the issue of the existence of the phenomenon in question. Even if it thus is built on introspection and general experience, it is – analogous to Husserl and other Brentano disciples at the same time – conceived in a completely antipsychological manner: ‘It religiously abstains from all speculation as to any relations between its categories and physiological facts, cerebral or other.’ and ‘ I abstain from psychology which has nothing to do with ideoscopy.’ (Letter to Lady Welby). The normative sciences fall in three: aesthetics, ethics, logic, in that order (and hence decreasing generality), among which Peirce does not spend very much time on the former two. Aesthetics is the investigation of which possible goals it is possible to aim at (Good, Truth, Beauty, etc.), and ethics how they may be reached. Logic is concerned with the grasping and conservation of Truth and takes up the larger part of Peirce’s interest among the normative sciences. As it deals with how truth can be obtained by means of signs, it is also called semiotics (‘logic is formal semiotics’) which is thus coextensive with theory of science – logic in this broad sense contains all parts of philosophy of science, including contexts of discovery as well as contexts of justification. Semiotics has, in turn, three branches: grammatica speculativa (or stekheiotics), critical logic, and methodeutic (inspired by mediaeval trivium: grammar, logic, and rhetoric). The middle one of these three lies closest to our days’ conception of logic; it is concerned with the formal conditions for truth in symbols – that is, propositions, arguments, their validity and how to calculate them, including Peirce’s many developments of the logic of his time: quantifiers, logic of relations, ab-, de-, and induction, logic notation systems, etc. All of these, however, presuppose the existence of simple signs which are investigated by what is often seen as semiotics proper, the grammatica speculativa; it may also be called formal grammar. It investigates the formal condition for symbols having meaning, and it is here we find Peirce’s definition of signs and his trichotomies of different types of sign aspects. Methodeutic or formal rhetorics, on the other hand, concerns the pragmatical use of the former two branches, that is, the study of how to use logic in a fertile way in research, the formal conditions for the ‘power’ of symbols, that is, their reference to their interpretants; here can be found, e.g., Peirce’s famous definitions of pragmati(ci)sm and his directions for scientific investigation. To phenomenology – again in analogy to Husserl – logic adds the interest in signs and their truth. After logic, metaphysics follows in Peirce’s system, concerning the inventarium of existing objects, conceived in general – and strongly influenced by logic in the Kantian tradition for seeing metaphysics mirroring logic. Also here, Peirce has several proposals for subtypologies, even if none of them seem stable, and under this headline classical metaphysical issues mix freely with generalizations of scientific results and cosmological speculations.

Peirce himself saw this classification in an almost sociological manner, so that the criteria of distinction do not stem directly from the implied objects’ natural kinds, but after which groups of persons study which objects: ‘the only natural lines of demarcation between nearly related sciences are the divisions between the social groups of devotees of those sciences’. Science collects scientists into bundles, because they are defined by their causa finalis, a teleologial intention demanding of them to solve a central problem.

Measured on this definition, one has to say that Peirce himself was not modest, not only does he continuously transgress such boundaries in his production, he frequently does so even within the scope of single papers. There is always, in his writings, a brief distance only from mathematics to metaphysics – or between any other two issues in mathematics and philosophy, and this implies, first, that the investigation of continuity and generality in Peirce’s system is more systematic than any actually existing exposition of these issues in Peirce’s texts, second, that the discussion must constantly rely on cross-references. This has the structural motivation that as soon as you are below the level of mathematics in Peirce’s system, inspired by the Comtean system, the single science receives determinations from three different directions, each science consisting of material and formal aspects alike. First, it receives formal directives ‘from above’, from those more general sciences which stand above it, providing the general frameworks in which it must unfold. Second, it receives material determinations from its own object, requiring it to make certain choices in its use of formal insights from the higher sciences. The cosmological issue of the character of empirical space, for instance, can take from mathematics the different (non-)Euclidean geometries and investigate which of these are fit to describe spatial aspects of our universe, but it does not, in itself, provide the formal tools. Finally, the single sciences receive in practice determinations ‘from below’, from more specific sciences, when their results by means of abstraction, prescission, induction, and other procedures provide insights on its more general, material level. Even if cosmology is, for instance, part of metaphysics, it receives influences from the empirical results of physics (or biology, from where Peirce takes the generalized principle of evolution). The distinction between formal and material is thus level specific: what is material on one level is a formal bundle of possibilities for the level below; what is formal on one level is material on the level above.

For these reasons, the single step on the ladder of sciences is only partially independent in Peirce, hence also the tendency of his own investigations to zigzag between the levels. His architecture of theories thus forms a sort of phenomenological theory of aspects: the hierarchy of sciences is an architecture of more and less general aspects of the phenomena, not completely independent domains. Finally, Peirce’s realism has as a result a somewhat disturbing style of thinking: many of his central concepts receive many, often highly different determinations which has often led interpreters to assume inconsistencies or theoretical developments in Peirce where none necessarily exist. When Peirce, for instance, determines the icon as the sign possessing a similarity to its object, and elsewhere determines it as the sign by the contemplation of which it is possible to learn more about its object, then they are not conflicting definitions. Peirce’s determinations of concepts are rarely definitions at all in the sense that they provide necessary and sufficient conditions exhausting the phenomenon in question. His determinations should rather be seen as descriptions from different perspectives of a real (and maybe ideal) object – without these descriptions necessarily conflicting. This style of thinking can, however, be seen as motivated by metaphysical continuity. When continuous grading between concepts is the rule, definitions in terms of necessary and sufficient conditions should not be expected to be exhaustive.

The Second Trichotomy. Thought of the Day 120.0

Figure-2-Peirce's-triple-trichotomy

The second trichotomy (here is the first) is probably the most well-known piece of Peirce’s semiotics: it distinguishes three possible relations between the sign and its (dynamical) object. This relation may be motivated by similarity, by actual connection, or by general habit – giving rise to the sign classes icon, index, and symbol, respectively.

According to the second trichotomy, a Sign may be termed an Icon, an Index, or a Symbol.

An Icon is a sign which refers to the Object that it denotes merely by virtue of characters of its own, and which it possesses, just the same, whether any such Object actually exists or not. It is true that unless there really is such an Object, the Icon does not act as a sign; but this has nothing to do with its character as a sign. Anything whatever, be it quality, existent individual, or law, is an Icon of anything, in so far as it is like that thing and used as a sign of it.

An Index is a sign which refers to the Object that it denotes by virtue of being really affected by that Object. It cannot, therefore, be a Qualisign, because qualities are whatever they are independently of anything else. In so far as the Index is affected by the Object, it necessarily has some Quality in common with the Object, and it is in respect to these that it refers to the Object. It does, therefore, involve a sort of Icon, although an Icon of a peculiar kind; and it is not the mere resemblance of its Object, even in these respects which makes it a sign, but it is the actual modification of it by the Object. 

A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an association of general ideas, which operates to cause the Symbol to be interpreted as referring to that Object. It is thus itself a general type or law, that is, a Legisign. As such it acts through a Replica. Not only is it general in itself, but the Object to which it refers is of general nature. Now that which is general has its being in the instances it will determine. There must, therefore, be existent instances of what the Symbol denotes, although we must here understand by ‘existent’, existent in the possibly imaginary universe to which the Symbol refers. The Symbol will indirectly, through the association or other law, be affected by those instances; and thus the Symbol will involve a sort of Index, although an Index of a peculiar kind. It will not, however, be by any means true that the slight effect upon the Symbol of those instances accounts for the significant character of the Symbol.

The icon refers to its object solely by means of its own properties. This implies that an icon potentially refers to an indefinite class of objects, namely all those objects which have, in some respect, a relation of similarity to it. In recent semiotics, it has often been remarked by someone like Nelson Goodman that any phenomenon can be said to be like any other phenomenon in some respect, if the criterion of similarity is chosen sufficiently general, just like the establishment of any convention immediately implies a similarity relation. If Nelson Goodman picks out two otherwise very different objects, then they are immediately similar to the extent that they now have the same relation to Nelson Goodman. Goodman and others have for this reason deemed the similarity relation insignificant – and consequently put the whole burden of semiotics on the shoulders of conventional signs only. But the counterargument against this rejection of the relevance of the icon lies close at hand. Given a tertium comparationis, a measuring stick, it is no longer possible to make anything be like anything else. This lies in Peirce’s observation that ‘It is true that unless there really is such an Object, the Icon does not act as a sign ’ The icon only functions as a sign to the extent that it is, in fact, used to refer to some object – and when it does that, some criterion for similarity, a measuring stick (or, at least, a delimited bundle of possible measuring sticks) are given in and with the comparison. In the quote just given, it is of course the immediate object Peirce refers to – it is no claim that there should in fact exist such an object as the icon refers to. Goodman and others are of course right in claiming that as ‘Anything whatever ( ) is an Icon of anything ’, then the universe is pervaded by a continuum of possible similarity relations back and forth, but as soon as some phenomenon is in fact used as an icon for an object, then a specific bundle of similarity relations are picked out: ‘ in so far as it is like that thing.’

Just like the qualisign, the icon is a limit category. ‘A possibility alone is an Icon purely by virtue of its quality; and its object can only be a Firstness.’ (Charles S. PeirceThe Essential Peirce_ Selected Philosophical Writings). Strictly speaking, a pure icon may only refer one possible Firstness to another. The pure icon would be an identity relation between possibilities. Consequently, the icon must, as soon as it functions as a sign, be more than iconic. The icon is typically an aspect of a more complicated sign, even if very often a most important aspect, because providing the predicative aspect of that sign. This Peirce records by his notion of ‘hypoicon’: ‘But a sign may be iconic, that is, may represent its object mainly by its similarity, no matter what its mode of being. If a substantive is wanted, an iconic representamen may be termed a hypoicon’. Hypoicons are signs which to a large extent makes use of iconical means as meaning-givers: images, paintings, photos, diagrams, etc. But the iconic meaning realized in hypoicons have an immensely fundamental role in Peirce’s semiotics. As icons are the only signs that look-like, then they are at the same time the only signs realizing meaning. Thus any higher sign, index and symbol alike, must contain, or, by association or inference terminate in, an icon. If a symbol can not give an iconic interpretant as a result, it is empty. In that respect, Peirce’s doctrine parallels that of Husserl where merely signitive acts require fulfillment by intuitive (‘anschauliche’) acts. This is actually Peirce’s continuation of Kant’s famous claim that intuitions without concepts are blind, while concepts without intuitions are empty. When Peirce observes that ‘With the exception of knowledge, in the present instant, of the contents of consciousness in that instant (the existence of which knowledge is open to doubt) all our thought and knowledge is by signs’ (Letters to Lady Welby), then these signs necessarily involve iconic components. Peirce has often been attacked for his tendency towards a pan-semiotism which lets all mental and physical processes take place via signs – in the quote just given, he, analogous to Husserl, claims there must be a basic evidence anterior to the sign – just like Husserl this evidence before the sign must be based on a ‘metaphysics of presence’ – the ‘present instant’ provides what is not yet mediated by signs. But icons provide the connection of signs, logic and science to this foundation for Peirce’s phenomenology: the icon is the only sign providing evidence (Charles S. Peirce The New Elements of Mathematics Vol. 4). The icon is, through its timeless similarity, apt to communicate aspects of an experience ‘in the present instant’. Thus, the typical index contains an icon (more or less elaborated, it is true): any symbol intends an iconic interpretant. Continuity is at stake in relation to the icon to the extent that the icon, while not in itself general, is the bearer of a potential generality. The infinitesimal generality is decisive for the higher sign types’ possibility to give rise to thought: the symbol thus contains a bundle of general icons defining its meaning. A special icon providing the condition of possibility for general and rigorous thought is, of course, the diagram.

The index connects the sign directly with its object via connection in space and time; as an actual sign connected to its object, the index is turned towards the past: the action which has left the index as a mark must be located in time earlier than the sign, so that the index presupposes, at least, the continuity of time and space without which an index might occur spontaneously and without any connection to a preceding action. Maybe surprisingly, in the Peircean doctrine, the index falls in two subtypes: designators vs. reagents. Reagents are the simplest – here the sign is caused by its object in one way or another. Designators, on the other hand, are more complex: the index finger as pointing to an object or the demonstrative pronoun as the subject of a proposition are prototypical examples. Here, the index presupposes an intention – the will to point out the object for some receiver. Designators, it must be argued, presuppose reagents: it is only possible to designate an object if you have already been in reagent contact (simulated or not) with it (this forming the rational kernel of causal reference theories of meaning). The closer determination of the object of an index, however, invariably involves selection on the background of continuities.

On the level of the symbol, continuity and generality play a main role – as always when approaching issues defined by Thirdness. The symbol is, in itself a legisign, that is, it is a general object which exists only due to its actual instantiations. The symbol itself is a real and general recipe for the production of similar instantiations in the future. But apart from thus being a legisign, it is connected to its object thanks to a habit, or regularity. Sometimes, this is taken to mean ‘due to a convention’ – in an attempt to distinguish conventional as opposed to motivated sign types. This, however, rests on a misunderstanding of Peirce’s doctrine in which the trichotomies record aspects of sign, not mutually exclusive, independent classes of signs: symbols and icons do not form opposed, autonomous sign classes; rather, the content of the symbol is constructed from indices and general icons. The habit realized by a symbol connects it, as a legisign, to an object which is also general – an object which just like the symbol itself exists in instantiations, be they real or imagined. The symbol is thus a connection between two general objects, each of them being actualized through replicas, tokens – a connection between two continua, that is:

Definition 1. Any Blank is a symbol which could not be vaguer than it is (although it may be so connected with a definite symbol as to form with it, a part of another partially definite symbol), yet which has a purpose.

Axiom 1. It is the nature of every symbol to blank in part. [ ]

Definition 2. Any Sheet would be that element of an entire symbol which is the subject of whatever definiteness it may have, and any such element of an entire symbol would be a Sheet. (‘Sketch of Dichotomic Mathematics’ (The New Elements of Mathematics Vol. 4 Mathematical Philosophy)

The symbol’s generality can be described as it having always blanks having the character of being indefinite parts of its continuous sheet. Thus, the continuity of its blank parts is what grants its generality. The symbol determines its object according to some rule, granting the object satisfies that rule – but leaving the object indeterminate in all other respects. It is tempting to take the typical symbol to be a word, but it should rather be taken as the argument – the predicate and the proposition being degenerate versions of arguments with further continuous blanks inserted by erasure, so to speak, forming the third trichotomy of term, proposition, argument.

Triadomania. Thought of the Day 117.0

figure-2

Peirce’s famous ‘triadomania’ lets most of his decisive distinctions appear in threes, following the tripartition of his list of categories, the famous triad of First, Second, and Third, or Quality, Reaction, Representation, or Possibility, Actuality, Reality.

Firstness is the mode of being of that which is such as it is, positively and without reference to anything else.

Secondness is the mode of being of that which is such as it is, with respect to a second but regardless of any third.

Thirdness is the mode of being of that which is such as it is, in bringing a second and third into relation to each other.

Firstness constitutes the quality of experience: in order for something to appear at all, it must do so due to a certain constellation of qualitative properties. Peirce often uses sensory qualities as examples, but it is important for the understanding of his thought that the examples may refer to phenomena very far from our standard conception of ‘sensory data’, e.g. forms or the ‘feeling’ of a whole melody or of a whole mathematical proof, not to be taken in a subjective sense but as a concept for the continuity of melody or proof as a whole, apart from the analytical steps and sequences in which it may be, subsequently, subdivided. In short, all sorts of simple and complex Gestalt qualities also qualify as Firstnesses. Firstness tend to form continua of possibilities such as the continua of shape, color, tone, etc. These qualities, however, are, taken in themselves, pure possibilities and must necessarily be incarnated in phenomena in order to appear. Secondness is the phenomenological category of ‘incarnation’ which makes this possible: it is the insistency, then, with which the individuated, actualized, existent phenomenon appears. Thus, Secondness necessarily forms discontinuous breaks in Firstness, allowing for particular qualities to enter into existence. The mind may imagine anything whatever in all sorts of quality combinations, but something appears with an irrefutable insisting power, reacting, actively, yielding resistance. Peirce’s favorite example is the resistance of the closed door – which might be imagined reduced to the quality of resistance feeling and thus degenerate to pure Firstness so that his theory imploded into a Hume-like solipsism – but to Peirce this resistance, surprise, event, this thisness, ‘haecceity’ as he calls it with a Scotist term, remains irreducible in the description of the phenomenon (a Kantian idea, at bottom: existence is no predicate). About Thirdness, Peirce may directly state that continuity represents it perfectly: ‘continuity and generality are two names of the same absence of distinction of individuals’. As against Secondness, Thirdness is general; it mediates between First and Second. The events of Secondness are never completely unique, such an event would be inexperiencable, but relates (3) to other events (2) due to certain features (1) in them; Thirdness is thus what facilitates understanding as well as pragmatic action, due to its continuous generality. With a famous example: if you dream about an apple pie, then the very qualities of that dream (taste, smell, warmth, crustiness, etc.) are pure Firstnesses, while the act of baking is composed of a series of actual Secondnesses. But their coordination is governed by a Thirdness: the recipe, being general, can never specify all properties in the individual apple pie, it has a schematic frame-character and subsumes an indefinite series – a whole continuum – of possible apple pies. Thirdness is thus necessarily general and vague. Of course, the recipe may be more or less precise, but no recipe exists which is able to determine each and every property in the cake, including date, hour, place, which tree the apples stem from, etc. – any recipe is necessarily general. In this case, the recipe (3) mediates between dream (1) and fulfilment (2) – its generality, symbolicity, relationality and future orientation are all characteristic for Thirdness. An important aspect of Peirce’s realism is that continuous generality may be experienced directly in perceptual judgments: ‘Generality, Thirdness, pours in upon us in our very perceptual judgments’.

All these determinations remain purely phenomenological, even if the later semiotic and metaphysical interpretations clearly shine through. In a more general, non-Peircean terminology, his phenomenology can be seen as the description of minimum aspects inherent in any imaginable possible world – for this reason it is imaginability which is the main argument, and this might point in the direction that Peirce could be open to critique for subjectivism, so often aimed at Husserl’s project, in some respects analogous. The concept of consciousness is invoked as the basis of imaginability: phenomenology is the study of invariant properties in any phenomenon appearing for a mind. Peirce’s answer would here be, on the one hand, the research community which according to him defines reality – an argument which structurally corresponds to Husserl’s reference to intersubjectivity as a necessary ingredient in objectivity (an object is a phenomenon which is intersubjectively accessible). Peirce, however, has a further argument here, namely his consequent refusal to delimit his concept of mind exclusively to human subjects (a category the use of which he obviously tries to minimize), mind-like processes may take place in nature without any subject being responsible. Peirce will, for continuity reasons, never accept any hard distinction between subject and object and remains extremely parsimonious in the employment of such terms.

From Peirce’s New Elements of Mathematics (The New Elements of Mathematics Vol. 4),

But just as the qualities, which as they are for themselves, are equally unrelated to one other, each being mere nothing for any other, yet form a continuum in which and because of their situation in which they acquire more or less resemblance and contrast with one another; and then this continuum is amplified in the continuum of possible feelings of quality, so the accidents of reaction, which are waking consciousnesses of pairs of qualities, may be expected to join themselves into a continuum. 

Since, then an accidental reaction is a combination or bringing into special connection of two qualities, and since further it is accidental and antigeneral or discontinuous, such an accidental reaction ought to be regarded as an adventitious singularity of the continuum of possible quality, just as two points of a sheet of paper might come into contact.

But although singularities are discontinuous, they may be continuous to a certain extent. Thus the sheet instead of touching itself in the union of two points may cut itself all along a line. Here there is a continuous line of singularity. In like manner, accidental reactions though they are breaches of generality may come to be generalized to a certain extent.

Secondness is now taken to actualize these quality possibilities based on an idea that any actual event involves a clash of qualities – in the ensuing argumentation Peirce underlines that the qualities involved in actualization need not be restrained to two but may be many, if they may only be ‘dissolved’ into pairs and hence do not break into the domain of Thirdness. This appearance of actuality, hence, has the property of singularities, spontaneously popping up in the space of possibilities and actualizing pairs of points in it. This transition from First to Second is conceived of along Aristotelian lines: as an actualization of a possibility – and this is expressed in the picture of a discontinuous singularity in the quality continuum. The topological fact that singularities must in general be defined with respect to the neighborhood of the manifold in which they appear, now becomes the argument for the fact that Secondness can never be completely discontinuous but still ‘inherits’ a certain small measure of continuity from the continuum of Firstness. Singularities, being discontinuous along certain dimensions, may be continuous in others, which provides the condition of possibility for Thirdness to exist as a tendency for Secondness to conform to a general law or regularity. As is evident, a completely pure Secondness is impossible in this continuous metaphysics – it remains a conceivable but unrealizable limit case, because a completely discon- tinuous event would amount to nothing. Thirdness already lies as a germ in the non-discontinuous aspects of the singularity. The occurrences of Secondness seem to be infinitesimal, then, rather than completely extensionless points.

Time and World-Lines

Let γ: [s1, s2] → M be a smooth, future-directed timelike curve in M with tangent field ξa. We associate with it an elapsed proper time (relative to gab) given by

∥γ∥= ∫s1s2 (gabξaξb)1/2 ds

This elapsed proper time is invariant under reparametrization of γ and is just what we would otherwise describe as the length of (the image of) γ . The following is another basic principle of relativity theory:

Clocks record the passage of elapsed proper time along their world-lines.

Again, a number of qualifications and comments are called for. We have taken for granted that we know what “clocks” are. We have assumed that they have worldlines (rather than worldtubes). And we have overlooked the fact that ordinary clocks (e.g., the alarm clock on the nightstand) do not do well at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock against the wall.) Again, these concerns are important and raise interesting questions about the role of idealization in the formulation of physical theory. (One might construe an “ideal clock” as a point-size test object that perfectly records the passage of proper time along its worldline, and then take the above principle to assert that real clocks are, under appropriate conditions and to varying degrees of accuracy, approximately ideal.) But they do not have much to do with relativity theory as such. Similar concerns arise when one attempts to formulate corresponding principles about clock behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays. Then one can use clocks, rather than free particles, to determine the conformal factor.

Let g′ab be a second smooth metric on M, with g′ab = Ω2gab. Further suppose that the two metrics assign the same lengths to timelike curves – i.e., ∥γ∥g′ab = ∥γ∥gab ∀ smooth, timelike curves γ: I → M. Then Ω = 1 everywhere. (Here ∥γ∥gab is the length of γ relative to gab.)

Let ξoa be an arbitrary timelike vector at an arbitrary point p in M. We can certainly find a smooth, timelike curve γ: [s1, s2] → M through p whose tangent at p is ξoa. By our hypothesis, ∥γ∥g′ab = ∥γ∥gab. So, if ξa is the tangent field to γ,

s1s2 (g’ab ξaξb)1/2 ds = ∫s1s2 (gabξaξb)1/2 ds

∀ s in [s1, s2]. It follows that g′abξaξb = gabξaξb at every point on the image of γ. In particular, it follows that (g′ab − gab) ξoa ξob = 0 at p. But ξoa was an arbitrary timelike vector at p. So, g′ab = gab at our arbitrary point p. The principle gives the whole story of relativistic clock behavior. In particular, it implies the path dependence of clock readings. If two clocks start at an event p and travel along different trajectories to an event q, then, in general, they will record different elapsed times for the trip. This is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly line.) This is the case because, as the principle asserts, the elapsed time recorded by each of the clocks is just the length of the timelike curve it traverses from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask if there are any that minimize or maximize the recorded elapsed time between the events. The answer to the first question is “no.” Indeed, one then has the following proposition:

Let p and q be events in M such that p ≪ q. Then, for all ε > 0, there exists a smooth, future directed timelike curve γ from p to q with ∥γ ∥ < ε. (But there is no such curve with length 0, since all timelike curves have non-zero length.)

Untitled

If there is a smooth, timelike curve connecting p and q, there is also a jointed, zig-zag null curve connecting them. It has length 0. But we can approximate the jointed null curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of the length function), we should expect that, for all ε > 0, there is an approximating timelike curve that has length less than ε.

The answer to the second question (“Can one maximize recorded elapsed time between p and q?”) is “yes” if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e., ones with signature of form (n, 0) – we know geodesics are locally shortest curves. The corresponding result for Lorentzian metrics is that timelike geodesics are locally longest curves.

Let γ: I → M be a smooth, future-directed, timelike curve. Then γ can be reparametrized so as to be a geodesic iff ∀ s ∈ I there exists an open set O containing γ(s) such that , ∀ s1, s2 ∈ I with s1 ≤ s ≤ s2, if the image of γ′ = γ|[s1, s2] is contained in O, then γ′ (and its reparametrizations) are longer than all other timelike curves in O from γ(s1) to γ(s2). (Here γ|[s1, s2] is the restriction of γ to the interval [s1, s2].)

Of all clocks passing locally from p to q, the one that will record the greatest elapsed time is the one that “falls freely” from p to q. To get a clock to read a smaller elapsed time than the maximal value, one will have to accelerate the clock. Now, acceleration requires fuel, and fuel is not free. So the above proposition has the consequence that (locally) “saving time costs money.” And proposition before that may be taken to imply that “with enough money one can save as much time as one wants.” The restriction here to local regions of spacetime is essential. The connection described between clock behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes, one can find future-directed timelike geodesics connecting two events that have different lengths, and so clocks following the curves will record different elapsed times between the events even though both are in a state of free fall. Furthermore – this follows from the preceding claim by continuity considerations alone – it can be the case that of two clocks passing between the events, the one that undergoes acceleration during the trip records a greater elapsed time than the one that remains in a state of free fall. (A rolled-up version of two-dimensional Minkowski spacetime provides a simple example)

Untitled

Two-dimensional Minkowski spacetime rolledup into a cylindrical spacetime. Three timelike curves are displayed: γ1 and γ3 are geodesics; γ2 is not; γ1 is longer than γ2; and γ2 is longer than γ3.

The connection we have been considering between clock behavior and acceleration was once thought to be paradoxical. Recall the so-called “clock paradox.” Suppose two clocks, A and B, pass from one event to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall but B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed time for the trip than B. This was thought paradoxical because it was believed that relativity theory denies the possibility of distinguishing “absolutely” between free-fall motion and accelerated motion. (If we are equally well entitled to think that it is clock B that is in a state of free fall and A that undergoes acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The situations of A and B here are not symmetric. The distinction between accelerated motion and free fall makes every bit as much sense in relativity theory as it does in Newtonian physics.

A “timelike curve” should be understood to be a smooth, future-directed, timelike curve parametrized by elapsed proper time – i.e., by arc length. In that case, the tangent field ξa of the curve has unit length (ξaξa = 1). And if a particle happens to have the image of the curve as its worldline, then, at any point, ξa is called the particle’s four-velocity there.

Dialectics of God: Lautman’s Mathematical Ascent to the Absolute. Paper.

centurionrage

Figure and Translation, visit Fractal Ontology

The first of Lautman’s two theses (On the unity of the mathematical sciences) takes as its starting point a distinction that Hermann Weyl made on group theory and quantum mechanics. Weyl distinguished between ‘classical’ mathematics, which found its highest flowering in the theory of functions of complex variables, and the ‘new’ mathematics represented by (for example) the theory of groups and abstract algebras, set theory and topology. For Lautman, the ‘classical’ mathematics of Weyl’s distinction is essentially analysis, that is, the mathematics that depends on some variable tending towards zero: convergent series, limits, continuity, differentiation and integration. It is the mathematics of arbitrarily small neighbourhoods, and it reached maturity in the nineteenth century. On the other hand, the ‘new’ mathematics of Weyl’s distinction is ‘global’; it studies the structures of ‘wholes’. Algebraic topology, for example, considers the properties of an entire surface rather than aggregations of neighbourhoods. Lautman re-draws the distinction:

In contrast to the analysis of the continuous and the infinite, algebraic structures clearly have a finite and discontinuous aspect. Though the elements of a group, field or algebra (in the restricted sense of the word) may be infinite, the methods of modern algebra usually consist in dividing these elements into equivalence classes, the number of which is, in most applications, finite.

In his other major thesis, (Essay on the notions of structure and existence in mathematics), Lautman gives his dialectical thought a more philosophical and polemical expression. His thesis is composed of ‘structural schemas’ and ‘origination schemas’ The three structural schemas are: local/global, intrinsic properties/induced properties and the ‘ascent to the absolute’. The first two of these three schemas close to Lautman’s ‘unity’ thesis. The ‘ascent to the absolute’ is a different sort of pattern; it involves a progress from mathematical objects that are in some sense ‘imperfect’, towards an object that is ‘perfect’ or ‘absolute’. His two mathematical examples of this ‘ascent’ are: class field theory, which ‘ascends’ towards the absolute class field, and the covering surfaces of a given surface, which ‘ascend’ towards a simply-connected universal covering surface. In each case, there is a corresponding sequence of nested subgroups, which induces a ‘stepladder’ structure on the ‘ascent’. This dialectical pattern is rather different to the others. The earlier examples were of pairs of notions (finite/infinite, local/global, etc.) and neither member of any pair was inferior to the other. Lautman argues that on some occasions, finite mathematics offers insight into infinite mathematics. In mathematics, the finite is not a somehow imperfect version of the infinite. Similarly, the ‘local’ mathematics of analysis may depend for its foundations on ‘global’ topology, but the former is not a botched or somehow inadequate version of the latter. Lautman introduces the section on the ‘ascent to the absolute’ by rehearsing Descartes’s argument that his own imperfections lead him to recognise the existence of a perfect being (God). Man (for Descartes) is not the dialectical opposite of or alternative to God; rather, man is an imperfect image of his creator. In a similar movement of thought, according to Lautman, reflection on ‘imperfect’ class fields and covering surfaces leads mathematicians up to ‘perfect’, ‘absolute’ class fields and covering surfaces respectively.

Albert Lautman Dialectics in mathematics

Rhizomatic Topology and Global Politics. A Flirtatious Relationship.

 

rhizome

Deleuze and Guattari see concepts as rhizomes, biological entities endowed with unique properties. They see concepts as spatially representable, where the representation contains principles of connection and heterogeneity: any point of a rhizome must be connected to any other. Deleuze and Guattari list the possible benefits of spatial representation of concepts, including the ability to represent complex multiplicity, the potential to free a concept from foundationalism, and the ability to show both breadth and depth. In this view, geometric interpretations move away from the insidious understanding of the world in terms of dualisms, dichotomies, and lines, to understand conceptual relations in terms of space and shapes. The ontology of concepts is thus, in their view, appropriately geometric, a multiplicity defined not by its elements, nor by a center of unification and comprehension and instead measured by its dimensionality and its heterogeneity. The conceptual multiplicity, is already composed of heterogeneous terms in symbiosis, and is continually transforming itself such that it is possible to follow, and map, not only the relationships between ideas but how they change over time. In fact, the authors claim that there are further benefits to geometric interpretations of understanding concepts which are unavailable in other frames of reference. They outline the unique contribution of geometric models to the understanding of contingent structure:

Principle of cartography and decalcomania: a rhizome is not amenable to any structural or generative model. It is a stranger to any idea of genetic axis or deep structure. A genetic axis is like an objective pivotal unity upon which successive stages are organized; deep structure is more like a base sequence that can be broken down into immediate constituents, while the unity of the product passes into another, transformational and subjective, dimension. (Deleuze and Guattari)

The word that Deleuze and Guattari use for ‘multiplicities’ can also be translated to the topological term ‘manifold.’ If we thought about their multiplicities as manifolds, there are a virtually unlimited number of things one could come to know, in geometric terms, about (and with) our object of study, abstractly speaking. Among those unlimited things we could learn are properties of groups (homological, cohomological, and homeomorphic), complex directionality (maps, morphisms, isomorphisms, and orientability), dimensionality (codimensionality, structure, embeddedness), partiality (differentiation, commutativity, simultaneity), and shifting representation (factorization, ideal classes, reciprocity). Each of these functions allows for a different, creative, and potentially critical representation of global political concepts, events, groupings, and relationships. This is how concepts are to be looked at: as manifolds. With such a dimensional understanding of concept-formation, it is possible to deal with complex interactions of like entities, and interactions of unlike entities. Critical theorists have emphasized the importance of such complexity in representation a number of times, speaking about it in terms compatible with mathematical methods if not mathematically. For example, Foucault’s declaration that: practicing criticism is a matter of making facile gestures difficult both reflects and is reflected in many critical theorists projects of revealing the complexity in (apparently simple) concepts deployed both in global politics.  This leads to a shift in the concept of danger as well, where danger is not an objective condition but “an effect of interpretation”. Critical thinking about how-possible questions reveals a complexity to the concept of the state which is often overlooked in traditional analyses, sending a wave of added complexity through other concepts as well. This work seeking complexity serves one of the major underlying functions of critical theorizing: finding invisible injustices in (modernist, linear, structuralist) givens in the operation and analysis of global politics.

In a geometric sense, this complexity could be thought about as multidimensional mapping. In theoretical geometry, the process of mapping conceptual spaces is not primarily empirical, but for the purpose of representing and reading the relationships between information, including identification, similarity, differentiation, and distance. The reason for defining topological spaces in math, the essence of the definition, is that there is no absolute scale for describing the distance or relation between certain points, yet it makes sense to say that an (infinite) sequence of points approaches some other (but again, no way to describe how quickly or from what direction one might be approaching). This seemingly weak relationship, which is defined purely ‘locally’, i.e., in a small locale around each point, is often surprisingly powerful: using only the relationship of approaching parts, one can distinguish between, say, a balloon, a sheet of paper, a circle, and a dot.

To each delineated concept, one should distinguish and associate a topological space, in a (necessarily) non-explicit yet definite manner. Whenever one has a relationship between concepts (here we think of the primary relationship as being that of constitution, but not restrictively, we ‘specify’ a function (or inclusion, or relation) between the topological spaces associated to the concepts). In these terms, a conceptual space is in essence a multidimensional space in which the dimensions represent qualities or features of that which is being represented. Such an approach can be leveraged for thinking about conceptual components, dimensionality, and structure. In these terms, dimensions can be thought of as properties or qualities, each with their own (often-multidimensional) properties or qualities. A key goal of the modeling of conceptual space being representation means that a key (mathematical and theoretical) goal of concept space mapping is

associationism, where associations between different kinds of information elements carry the main burden of representation. (Conceptual_Spaces_as_a_Framework_for_Knowledge_Representation)

To this end,

objects in conceptual space are represented by points, in each domain, that characterize their dimensional values. A concept geometry for conceptual spaces

These dimensional values can be arranged in relation to each other, as Gardenfors explains that

distances represent degrees of similarity between objects represented in space and therefore conceptual spaces are “suitable for representing different kinds of similarity relation. Concept

These similarity relationships can be explored across ideas of a concept and across contexts, but also over time, since “with the aid of a topological structure, we can speak about continuity, e.g., a continuous change” a possibility which can be found only in treating concepts as topological structures and not in linguistic descriptions or set theoretic representations.

Sobolev Spaces

newtype

For any integer n ≥ 0, the Sobolev space Hn(R) is defined to be the set of functions f which are square-integrable together with all their derivatives of order up to n:

f ∈ Hn(R) ⇐⇒ ∫-∞ [f2 + ∑k=1n (dkf/dxk)2 dx ≤ ∞

This is a linear space, and in fact a Hilbert space with norm given by:

∥f∥Hn = ∫-∞ [f2 + ∑k=1n (dkf/dxk)2) dx]1/2

It is a standard fact that this norm of f can be expressed in terms of the Fourier transform fˆ (appropriately normalized) of f by:

∥f∥2Hn = ∫-∞ [(1 + y2)n |fˆ(y)|2 dy

The advantage of that new definition is that it can be extended to non-integral and non-positive values. For any real number s, not necessarily an integer nor positive, we define the Sobolev space Hs(R) to be the Hilbert space of functions associated with the following norm:

∥f∥2Hs = ∫-∞ [(1 + y2)s |fˆ(y)|2 dy —– (1)

Clearly, H0(R) = L2(R) and Hs(R) ⊂ Hs′(R) for s ≥ s′ and in particular Hs(R) ⊂ L2(R) ⊂ H−s(R), for s ≥ 0. Hs(R) is, for general s ∈ R, a space of (tempered) distributions. For example δ(k), the k-th derivative of a delta Dirac distribution, is in H−k−1/2</sup−ε(R) for ε > 0.

In the case when s > 1/2, there are two classical results.

Continuity of Multiplicity:

If s > 1/2, if f and g belong to Hs(R), then fg belongs to Hs(R), and the map (f,g) → fg from Hs × Hs to Hs is continuous.

Denote by Cbn(R) the space of n times continuously differentiable real-valued functions which are bounded together with all their n first derivatives. Let Cnb0(R) be the closed subspace of Cbn(R) of functions which converges to 0 at ±∞ together with all their n first derivatives. These are Banach spaces for the norm:

∥f∥Cbn = max0≤k≤n supx |f(k)(x)| = max0≤k≤n ∥f(k)∥ C0b

Sobolev embedding:

If s > n + 1/2 and if f ∈ Hs(R), then there is a function g in Cnb0(R) which is equal to f almost everywhere. In addition, there is a constant cs, depending only on s, such that:

∥g∥Cbn ≤ c∥f∥Hs

From now on we shall always take the continuous representative of any function in Hs(R). As a consequence of the Sobolev embedding theorem, if s > 1/2, then any function f in Hs(R) is continuous and bounded on the real line and converges to zero at ±∞, so that its value is defined everywhere.

We define, for s ∈ R, a continuous bilinear form on H−s(R) × Hs(R) by:

〈f, g〉= ∫-∞ (fˆ(y))’ gˆ(y)dy —– (2)

where z’ is the complex conjugate of z. Schwarz inequality and (1) give that

|< f , g >| ≤ ∥f∥H−s∥g∥Hs —– (3)

which indeed shows that the bilinear form in (2) is continuous. We note that formally the bilinear form (2) can be written as

〈f, g〉= ∫-∞ f(x) g(x) dx

where, if s ≥ 0, f is in a space of distributions H−s(R) and g is in a space of “test functions” Hs(R).

Any continuous linear form g → u(g) on Hs(R) is, due to (1), of the form u(g) = 〈f, g〉 for some f ∈ H−s(R), with ∥f∥H−s = ∥u∥(Hs)′, so that henceforth we can identify the dual (Hs(R))′ of Hs(R) with H−s(R). In particular, if s > 1/2 then Hs(R) ⊂ C0b0 (R), so H−s(R) contains all bounded Radon measures.

Conjuncted: Gadamer’s Dasein

OLYMPUS DIGITAL CAMERA

There is a temporal continuity in Dasein. This is required for the revelation of a work of art through interpretation, both as understanding which already was, and as the way in which understanding was. Understanding is possible only in the temporal revision of one’s standpoint through the mutual relations of author and interpreter which allow the subject-matter to emerge. Here, the prejudices held by the interpreter play an important part in opening an horizon of possible questions.

Subsequent understanding that is superior to the original production, does depend on the conscious realization, historical or not, that places the interpreter on the same level as the author (as Schleiermacher pointed out). But even more, it denotes and depends upon an inseparable difference between the interpreter and the text and this precisely in the temporal field provided by historical distance.

It may be argued that the historian tries to curb this historical distance by getting beyond the temporal text in order to force it to yield information that it does not intend and of itself is unable to give. With regard to the particular text in application, this would seem to be the case. For example, what makes the true historian is an understanding of the significance of what he finds. Thus, the testimony of history is like that given before a court. In the German language, and based on this reason, the same word is used for both in general, Zeugnis (testimony; witness).

Referring to Gadamer’s position, we can see that it is in view of the historical distance that understanding must reconcile itself with itself and that one recognize oneself in the other being. The body of this argument becomes completely firm through the idea of historical Bildung, since, for example, to have a theoretical stance is, as such, already alienation; namely, dealing with something that is not immediate, but is other, belonging to memory and to thought. Moreover, theoretical Bildung leads beyond what man knows and experiences immediately. It consists in learning to affirm what is different from oneself and to find universal viewpoints from which one can grasp the thing as “the objective thing in its freedom,” without selfish interest. This indicates that an aesthetic discovery of a thing is conditioned primarily on assuming the thing where it is no longer, i.e., from a distance.

In this connection, we can extend critically Gadamer’s concept of the dynamism of distanciation from the object of understanding which is bounded by the frame of effective consciousness. This is based on the fact that in spite of the general contrast between belonging and alienating distance, the consciousness of effective history itself contains an element of distance. The history of effects, for Ricoeur, contains what occurs under the condition of historical distance. Whether this is either the nearness of the remote or efficacy at a distance, there is a paradox in otherness, a tension between proximity and distance which is essential to historical consciousness.

The possibility of effective historical consciousness is grounded in the possibility of any specific present understanding of being futural; in contrast, the first principle of hermeneutics is the Being of Dasein, which is historicity (Geschichtlichkeit) itself. In Gadamer’s view, Dasein’s temporality, which is the basis for its historicity, grounds the tradition. The last sections of Being and Time claimed to indicate that the embodiment of temporality can be found in Dasein’s historicality. As a result of this, the tradition is circularly grounded in Dasein’s temporality, while also surpassing its borders in order to be provided by a hermeneutical reference in distance.

We must study the root of this dilemma in so far as it is related to the sense of time. This is presupposed by historical consciousness, which in turn is preceded essentially by temporality. This inherent enigma in the hermeneutics of Dasein’s time led Heidegger to distinguish between authenticity and inauthenticity in our relation to time. The current concept of time can never totally fulfill the hermeneutical requirements. Ricoeur considered that time can be understood only if grasped within its limit, namely, eternity, but because eternity escapes the totalization and closure of any particular time, it remains inscrutable.

On the other hand, a text can be seen as temporal with regard to historical consciousness since it speaks only in the present. The text cannot be made present totally within an historical moment fully present-to-itself. It is in its a venir that the presence of the text transpires, which can be thematized as revenir (or) return.

Based on this aspect, each word is absolutely complete in itself, yet, because of its temporality, its meaning is realized only in its historical application. Nevertheless, historical interpretation can serve as a means to understand a given and present text even when, from another perspective, it sees the text simply as a source which is part of the totality of an historical tradition.

For Heidegger, the past character of time, i.e., the ‘pastness’ (passétité) belongs to a world which no longer exists, while a world is always world for a Dasein. It is clear that the past would remain closed off from any present were present Dasein not itself to be historical. Dasein, however, is in itself historical insofar as it is a possibility of interpreting. In being futural Dasein is its past, which comes back to it in the ‘how’. This is the ontological question of a thing in contrast to the question of the ‘what.’ The manner of its coming back is, among other processes, conscience. This makes clear why only the ‘how’ can be repeated. According to Ricoeur, history presents a past that has been as if it were present, as a function of poetic imagination. On the other hand, fictive narration imitates history in that it presents events as if they had happened, i.e., as if they occurred in the past. This intersection between history and fiction constitutes human time (le temps humain) whence an historical consciousness develops, where time can be understood as a singular totality.

Since the text can be viewed temporally, interpretation, as the work of art, is temporal and the best model for hermeneutical understanding is the one most adequate to the experience of time. Nevertheless, against Ricoeur, Gadamer found the identity of understanding not to be fixed in eternity. Instead, it is the continuity of our becoming-other in every response and in every application of pre-understanding that we have of ourselves in new and unpredictable situations. On this issue, it can be asked whether there is a way to reconcile Gadamer and Ricoeur on the issue of hermeneutical temporality.

The authentic source in the eternal return to Being can be discovered in Heidegger’s position: the eternal repetition of that which is known as that which is unknown, the familiar as the unfamiliar. The eternal return introduces difference which is disruptive to our conceptions of temporal movement. However, identity and difference must be destabilised in favor of the performance of a new concept of hermeneutics. In this a temporal event requires that one cross over to another hermeneutics of time that cannot be thought restricted only in temporalization since it is beyond when one begins. This concept is called by Heidegger the nearness of what lies after.

In addition, understanding is to be taken not as reconstruction, but as mediation in so far as it conveys the past into the present. Even when we grasp the past “in itself,” understanding remains essentially a mediation or translation of past meaning into the present situation. As Gadamer states, understanding itself is not to be thought of so much as an action of subjectivity, but rather as the entering into an event of transmission in which past and present are constantly mediated. This requires not detaching temporality from the ontological preconception of the present-at-hand, but trying to distinguish that from the simple horizon phenomenon of temporal consciousness. The event of hermeneutics never takes place if understanding is considered to be defined in the arena of the temporalization of time in the past in itself. 

Gadamer sees one of the most fundamental experiences of time as that of discontinuity or becoming-other. This stands in contrast to the “flowing” nature of time. According to Gadamer, there are at least three “epochal” experiences that introduce temporal discontinuity into our self-understanding: first, the experience of old age; second, the transition from one generation to another; and finally, the “absolute epoch” or the new age occasioned by the advent of Christianity, where history is understood in a new sense. 

The Greek understanding of history as deviation from the order of things was changed in medieval philosophy to accept that there is no recognizable order within history except temporality itself. (Nonetheless, the absolute epoch is not to be taken merely as similar to a Christian understanding of time, which would result in a technological conception of time in terms of which the future is unable to be planned or controlled.) The new in temporality comes to be as the old is recalled in dissolution. In recollection, the dissolution of the old becomes provocative, i.e., an opening of possibilities for the new. The dissolution of the old is not a non-temporal characteristic of temporalization.