# Incomplete Markets and Calibrations for Coherence with Hedged Portfolios. Thought of the Day 154.0

In complete market models such as the Black-Scholes model, probability does not really matter: the “objective” evolution of the asset is only there to define the set of “impossible” events and serves to specify the class of equivalent measures. Thus, two statistical models P1 ∼ P2 with equivalent measures lead to the same option prices in a complete market setting.

This is not true anymore in incomplete markets: probabilities matter and model specification has to be taken seriously since it will affect hedging decisions. This situation is more realistic but also more challenging and calls for an integrated approach between option pricing methods and statistical modeling. In incomplete markets, not only does probability matter but attitudes to risk also matter: utility based methods explicitly incorporate these into the hedging problem via utility functions. While these methods are focused on hedging with the underlying asset, common practice is to use liquid call/put options to hedge exotic options. In incomplete markets, options are not redundant assets; therefore, if options are available as hedging instruments they can and should be used to improve hedging performance.

While the lack of liquidity in the options market prevents in practice from using dynamic hedges involving options, options are commonly used for static hedging: call options are frequently used for dealing with volatility or convexity exposures and for hedging barrier options.

What are the implications of hedging with options for the choice of a pricing rule? Consider a contingent claim H and assume that we have as hedging instruments a set of benchmark options with prices Ci, i = 1 . . . n and terminal payoffs Hi, i = 1 . . . n. A static hedge of H is a portfolio composed from the options Hi, i = 1 . . . n and the numeraire, in order to match as closely as possible the terminal payoff of H:

H = V0 + ∑i=1n xiHi + ∫0T φdS + ε —– (1)

where ε is an hedging error representing the nonhedgeable risk. Typically Hi are payoffs of call or put options and are not possible to replicate using the underlying so adding them to the hedge portfolio increases the span of hedgeable claims and reduces residual risk.

Consider a pricing rule Q. Assume that EQ[ε] = 0 (otherwise EQ[ε] can be added to V0). Then the claim H is valued under Q as:

e-rTEQ[H] = V0 ∑i=1n xe-rTEQ[Hi] —– (2)

since the stochastic integral term, being a Q-martingale, has zero expectation. On the other hand, the cost of setting up the hedging portfolio is:

V0 + ∑i=1n xCi —– (3)

So the value of the claim given by the pricing rule Q corresponds to the cost of the hedging portfolio if the model prices of the benchmark options Hi correspond to their market prices Ci:

∀i = 1, …, n

e-rTEQ[Hi] = Ci∗ —– (4)

This condition is called calibration, where a pricing rule verifies the calibration of the option prices Ci, i = 1, . . . , n. This condition is necessary to guarantee the coherence between model prices and the cost of hedging with portfolios and if the model is not calibrated then the model price for a claim H may have no relation with the effective cost of hedging it using the available options Hi. If a pricing rule Q is specified in an ad hoc way, the calibration conditions will not be verified, and thus one way to ensure them is to incorporate them as constraints in the choice of the pricing measure Q.

# Topological Drifts in Deleuze. Note Quote.

Brion Gysin: How do you get in… get into these paintings?

William Burroughs: Usually I get in by a port of entry, as I call it. It is often a face through whose eyes the picture opens into a landscape and I go literally right through that eye into that landscape. Sometimes it is rather like an archway… a number of little details or a special spot of colours makes the port of entry and then the entire picture will suddenly become a three-dimensional frieze in plaster or jade or some other precious material.

The word fornix means “an archway” or “vault” (in Rome, prostitutes could be solicited there). More directly, fornicatio means “done in the archway”; thus a euphemism for prostitution.

Diagrammatic praxis proposes a contractual (push, pull) approach in which the movement between abstract machine, biogram (embodied, inflected diagram), formal diagram (drawing of, drawing off) and artaffect (realized thing) is topologically immanent. It imagines the practice of writing, of this writing, interleaved with the mapping processes with which it folds and unfolds – forming, deforming and reforming both processes. The relations of non-relations that power the diagram, the thought intensities that resonate between fragments, between content ad expression, the seeable and the sayable, the discursive and the non-discursive, mark entry points; portals of entry through which all points of the diagram pass – push, pull, fold, unfold – without the designation of arrival and departure, without the input/output connotations of a black boxed confection. Ports, as focal points of passage, attract lines of resistance or lines of flight through which the diagram may become both an effectuating concrete assemblage (thing) and remain outside the stratified zone of the audiovisual. It’s as if the port itself is a bifurcating point, a figural inflected archway. The port, as a bifurcation point of resistance (contra black box), modulates and changes the unstable, turbulent interplay between pure Matter and pure Function of the abstract machine. These ports are marked out, localized, situated, by the continuous movement of power-relations:

These power-relations … simultaneously local, unstable and diffuse, do not emanate from a central point or unique locus of sovereignty, but at each moment move from one point to another in a field of forces, marking inflections, resistances, twists and turns when one changes direction or retraces one’s steps… (Gilles Deleuze, Sean Hand-Foucault)

An inflection point, marked out by the diagram, is not a symmetrical form but the difference between concavity and convexity, a pure temporality, a “true atom of form, the true object of geography.” (Bernard Cache)

Cache’s absolute exteriority is equivalent to Deleuze’s description of the Outside “more distant than any exterior […] ‘twisted’, folded and doubled by an Inside that is deeper than any interior, and alone creates the possibility of the derived relation between the interior and the exterior”. This folded and doubled interior is diagrammed by Deleuze in the folds chapter of Foucault.

Thinking does not depend on a beautiful interiority that reunites the visible ad articulable elements, but is carried under the intrusion of an outside that eats into the interval and forces or dismembers the internal […] when there are only environments and whatever lies betwen them, when words and things are opened up by the environment without ever coinciding, there is a liberation of forces which come from the outside and exist only in a mixed up state of agitation, modification and mutation. In truth they are dice throws, for thinking involves throwing the dice. If the outside, farther away than any external world, is also closer than any internal world, is this not a sign that thought affects itself, by revealing the outside to be its own unthought element?

“It cannot discover the unthought […] without immediately bringing the unthought nearer to itself – or even, perhaps, without pushing it farther away, and in any case without causing man’s own being to undergo a change by the very fact, since it is deployed in the distance between them” (Gilles Deleuze, Sean Hand-Foucault)

Figure: Left: a simulation of Deleuze’s central marking in his diagram of the Foucaultian diagram. This is the line of the Outside as Fold. Right: To best express the relations of diagrammatic praxis between content and expression (theory and practice) the Fold figure needs to be drawn as a double Fold (“twice twice” as Massumi might say) – a folded möbius strip. Here the superinflections between inside/outside and content/expression provide transversal vectors.

A topology or topological becoming-shapeshift retains its connectivity, its interconnectedness to preserve its autonomy as a singularity. All the points of all its matter reshape as difference in itself. A topology does not resemble itself. The möbius strip and the infamous torus-to-coffe cup are examples of 2d and 3d topologies. technically a topological surface is totalized, it can not comprise fragments cut or glued to produce a whole. Its change is continuous. It is not cut-copy-pasted. But the cut and its interval are requisite to an emergent new.

For Deleuze, the essence of meaning, the essence of essence, is best expressed in two infinitives; ‘to cut ” and “to die” […] Definite tenses keeping company in time. In the slash between their future and their past: “to cut” as always timeless and alone (Massumi).

Add the individuating “to shift” to the infinitives that reside in the timeless zone of indetermination of future-past. Given the paradigm of the topological-becoming, how might we address writing in the age of copy-paste and hypertext? The seamless and the stitched? As potential is it diagram? A linguistic multiplicity whose virtual immanence is the metalanguage potentiality between the phonemes that gives rise to all language?

An overview diagram of diagrammatic praxis based on Deleuze’s diagram of the Foucaultian model shown below. The main modification is to the representation of the Fold. In the top figure, the Fold or zone of subjectification becomes a double-folded möbius strip.

Four folds of subjectification:

1. material part of ourselves which is to be surrounded and folded

2. the fold of the relation between forces always according to a particular rule that the relation between forces is bent back in order to become a relation to oneself (rule ; natural, divine, rational, aesthetic, etc)

3. fold of knowledge constitutes the relation of truth to our being and our being to truth which will serve as the formal condition for any kind of knowledge

4. the fold of the outside itself is the ultimate fold: an ‘interiority of expectation’ from which the subject, in different ways, hopes for immortality, eternity, salvation, freedom or death or detachment.