Indecomposable Objects – Part 1

An object X in a category C with an initial object is called indecomposable if X is not the initial object and X is not isomorphic to a coproduct of two noninitial objects. A group G is called indecomposable if it cannot be expressed as the internal direct product of two proper normal subgroups of G. This is equivalent to saying that G is not isomorphic to the direct product of two nontrivial groups.

A quiver Q is a directed graph, specified by a set of vertices Q0, a set of arrows Q1, and head and tail maps

h, t : Q1 → Q0

We always assume that Q is finite, i.e., the sets Q0 and Q1 are finite.

Untitled

A (complex) representation of a quiver Q consists of complex vector spaces Vi for i ∈ Qand linear maps

φa : Vt(a) → Vh(a)

for a ∈ Q1. A morphism between such representations (V, φ) and (W, ψ) is a collection of linear maps fi : Vi → Wi for i ∈ Q0 such that the diagram

Untitled

commutes ∀ a ∈ Q1. A representation of Q is finite-dimensional if each vector space Vi is. The dimension vector of such a representation is just the tuple of non-negative integers (dim Vi)i∈Q0.

Rep(Q) is the category of finite-dimensional representations of Q. This category is additive; we can add morphisms by adding the corresponding linear maps fi, the trivial representation in which each Vi = 0 is a zero object, and the direct sum of two representations is obtained by taking the direct sums of the vector spaces associated to each vertex. If Q is the one-arrow quiver, • → •, then the classification of indecomposable objects of Rep(Q), yields the objects E ∈ Rep(Q) which do not have a non-trivial direct sum decomposition E = A ⊕ B. An object of Rep(Q) is just a linear map of finite-dimensional vector spaces f: V1 → V2. If W = im(f) is a nonzero proper subspace of V2, then the splitting V2 = U ⊕ W, and the corresponding object of Rep(Q) splits as a direct sum of the two representations

V1 →ƒ W and 0 → W

Thus if an object f: V1 → V2 of Rep(Q) is indecomposable, the map f must be surjective. Similarly, if ƒ is nonzero, then it must also be injective. Continuing in this way, one sees that Rep(Q) has exactly three indecomposable objects up to isomorphism:

C → 0, 0 → C, C →id C

Every other object of Rep(Q) is a direct sum of copies of these basic representations.

Category-Theoretic Sinks

The concept dual to that of source is called sink. Whereas the concepts of sources and sinks are dual to each other, frequently sources occur more naturally than sinks.

A sink is a pair ((fi)i∈I, A), sometimes denoted by (fi,A)I or (Aifi A)I consisting of an object A (the codomain of the sink) and a family of morphisms fi : Ai → A indexed by some class I. The family (Ai)i∈I is called the domain of the sink. Composition of sinks is defined in the (obvious) way dual to that of composition of sources.

Untitled

In Set, a sink (Aifi A)I is an epi-sink if and only if it is jointly surjective, i.e., iff A = ∪i∈I fi[Ai]. In every construct, all jointly surjective sinks are epi-sinks. The converse implication holds, e.g., in Vec, Pos, Top, and Σ-Seq. A category A is thin if and only if every sink in A is an epi-sink.

Marching Along Categories, Groups and Rings. Part 2

A category C consists of the following data:

A collection Obj(C) of objects. We will write “x ∈ C” to mean that “x ∈ Obj(C)

For each ordered pair x, y ∈ C there is a collection HomC (x, y) of arrows. We will write α∶x→y to mean that α ∈ HomC(x,y). Each collection HomC(x,x) has a special element called the identity arrow idx ∶ x → x. We let Arr(C) denote the collection of all arrows in C.

For each ordered triple of objects x, y, z ∈ C there is a function

○ ∶ HomC (x, y) × HomC(y, z) → HomC (x, z), which is called composition of  arrows. If  α ∶ x → y and β ∶ y → z then we denote the composite arrow by β ○ α ∶ x → z.

If each collection of arrows HomC(x,y) is a set then we say that the category C is locally small. If in addition the collection Obj(C) is a set then we say that C is small.

Identitiy: For each arrow α ∶ x → y the following diagram commutes:

img_20170202_165814

Associative: For all arrows α ∶ x → y, β ∶ y → z, γ ∶ z → w, the following diagram commutes:

img_20170202_165833

We say that C′ ⊆ C is a subcategory if Obj(C′) ⊆ Obj(C) and if ∀ x,y ∈ Obj(C′) we have HomC′(x,y) ⊆ HomC(x,y). We say that the subcategory is full if each inclusion of hom sets is an equality.

Let C be a category. A diagram D ⊆ C is a collection of objects in C with some arrows between them. Repetition of objects and arrows is allowed. OR. Let I be any small category, which we think of as an “index category”. Then any functor D ∶ I → C is called a diagram of shape I in C. In either case, we say that the diagram D commutes if for all pairs of objects x,y in D, any two directed paths in D from x to y yield the same arrow under composition.

Identity arrows generalize the reflexive property of posets, and composition of arrows generalizes the transitive property of posets. But whatever happened to the antisymmetric property? Well, it’s the same issue we had before: we should really define equivalence of objects in terms of antisymmetry.

Isomorphism: Let C be a category. We say that two objects x,y ∈ C are isomorphic in C if there exist arrows α ∶ x → y and β ∶ y → x such that the following diagram commutes:

img_20170202_175924

In this case we write x ≅C y, or just x ≅ y if the category is understood.

If γ ∶ y → x is any other arrow satisfying the same diagram as β, then by the axioms of identity and associativity we must have

γ = γ ○ idy = γ ○ (α ○ β) = (γ ○ α) ○ β = idx ○ β = β

This allows us to refer to β as the inverse of the arrow α. We use the notations β = α−1 and

β−1 = α.

A category with one object is called a monoid. A monoid in which each arrow is invertible is called a group. A small category in which each arrow is invertible is called a groupoid.

Subcategories of Set are called concrete categories. Given a concrete category C ⊆ Set we can think of its objects as special kinds of sets and its arrows as special kinds of functions. Some famous examples of conrete categories are:

• Grp = groups & homomorphisms
• Ab = abelian groups & homomorphisms
• Rng = rings & homomorphisms
• CRng = commutative rings & homomorphisms

Note that Ab ⊆ Grp and CRng ⊆ Rng are both full subcategories. In general, the arrows of a concrete category are called morphisms or homomorphisms. This explains our notation of HomC.

Homotopy: The most famous example of a non-concrete category is the fundamental groupoid π1(X) of a topological space X. Here the objects are points and the arrows are homotopy classes of continuous directed paths. The skeleton is the set π0(X) of path components (really a discrete category, i.e., in which the only arrows are the identities). Categories like this are the reason we prefer the name “arrow” instead of “morphism”.

Limit/Colimit: Let D ∶ I → C be a diagram in a category C (thus D is a functor and I is a small “index” category). A cone under D consists of

• an object c ∈ C,

• a collection of arrows αi ∶ x → D(i), one for each index i ∈ I,

such that for each arrow δ ∶ i → j in I we have αj = D(δ) ○ α

In visualizing this:

img_20170202_182016

The cone (c,(αi)i∈I) is called a limit of the diagram D if, for any cone (z,(βi)i∈I) under D, the following picture holds:

img_20170202_182041

[This picture means that there exists a unique arrow υ ∶ z → c such that, for each arrow δ ∶ i → j in I (including the identity arrows), the following diagram commutes:

img_20170202_182906

When δ = idi this diagram just says that βi = αi ○ υ. We do not assume that D itself is commutative. Dually, a cone over D consists of an object c ∈ C and a set of arrows αi ∶ D(i) → c satisfying αi = αj ○ D(δ) for each arrow δ ∶ i → j in I. This cone is called a colimit of the diagram D if, for any cone (z,(βi)i∈I) over D, the following picture holds:

img_20170202_183619

When the (unique) limit or colimit of the diagram D ∶ I → C exists, we denote it by (limI D, (φi)i∈I) or (colimI D, (φi)i∈I), respectively. Sometimes we omit the canonical arrows φi from the notation and refer to the object limID ∈ C as “the limit of D”. However, we should not forget that the arrows are part of the structure, i.e., the limit is really a cone.

Posets: Let P be a poset. We have already seen that the product/coproduct in P (if they exist) are the meet/join, respectively, and that the final/initial objects in P (if they exist) are the top/bottom elements, respectively. The only poset with a zero object is the one element poset.

Sets: The empty set ∅ ∈ Set is an initial object and the one point set ∗ ∈ Set is a final object. Note that two sets are isomorphic in Set precisely when there is a bijection between them, i.e., when they have the same cardinality. Since initial/final objects are unique up to isomorphism, we can identify the initial object with the cardinal number 0 and the final object with the cardinal number 1. There is no zero object in Set.

Products and coproducts exist in Set. The product of S,T ∈ Set consists of the Cartesian product S × T together with the canonical projections πS ∶ S × T → S and πT ∶ S × T → T. The coproduct of S, T ∈ Set consists of the disjoint union S ∐ T together with the canonical injections ιS ∶ S → S ∐ T and ιT ∶ T → S ∐ T. After passing to the skeleton, the product and coproduct of sets become the product and sum of cardinal numbers.

[Note: The “external disjoint union” S ∐ T is a formal concept. The familiar “internal disjoint union” S ⊔ T is only defined when there exists a set U containing both S and T as subsets. Then the union S ∪ T is the join operation in the Boolean lattice 2U ; we call the union “disjoint” when S ∩ T = ∅.]

Groups: The trivial group 1 ∈ Grp is a zero object, and for any groups G, H ∈ Grp the zero homomorphism 1 ∶ G → H sends all elements of G to the identity element 1H ∈ H. The product of groups G, H ∈ Grp is their direct product G × H and the coproduct is their free product G ∗ H, along with the usual canonical morphisms.

Let Ab ⊆ Grp be the full subcategory of abelian groups. The zero object and product are inherited from Grp, but we give them new names: we denote the zero object by 0 ∈ Ab and for any A, B ∈ Ab we denote the zero arrow by 0 ∶ A → B. We denote the Cartesian product by A ⊕ B and we rename it the direct sum. The big difference between Grp and Ab appears when we consider coproducts: it turns out that the product group A ⊕ B is also the coproduct group. We emphasize this fact by calling A ⊕ B the biproduct in Ab. It comes equipped with four canonical homomorphisms πA, πB, ιA, ιB satisfying the usual properties, as well as the following commutative diagram:

img_20170202_185619

This diagram is the ultimate reason for matrix notation. The universal properties of product and coproduct tell us that each endomorphism φ ∶ A ⊕ B → A ⊕ B is uniquely determined by its four components φij ∶= πi ○ φ ○ ιj for i, j ∈ {A,B},so we can represent it as a matrix:

img_20170202_185557

Then the composition of endomorphisms becomes matrix multiplication.

Rings. We let Rng denote the category of rings with unity, together with their homomorphisms. The initial object is the ring of integers Z ∈ Rng and the final object is the zero ring 0 ∈ Rng, i.e., the unique ring in which 0R = 1R. There is no zero object. The product of two rings R, S ∈ Rng is the direct product R × S ∈ Rng with component wise addition and multiplication. Let CRng ⊆ Rng be the full subcategory of commutative rings. The initial/final objects and product in CRng are inherited from Rng. The difference between Rng and CRng again appears when considering coproducts. The coproduct of R,S ∈ CRng is denoted by R ⊗Z S and is called the tensor product over Z…..