Reductionism of Numerical Complexity: A Wittgensteinian Excursion

boyle10

Wittgenstein’s criticism of Russell’s logicist foundation of mathematics contained in (Remarks on the Foundation of Mathematics) consists in saying that it is not the formalized version of mathematical deduction which vouches for the validity of the intuitive version but conversely.

If someone tries to shew that mathematics is not logic, what is he trying to shew? He is surely trying to say something like: If tables, chairs, cupboards, etc. are swathed in enough paper, certainly they will look spherical in the end.

He is not trying to shew that it is impossible that, for every mathematical proof, a Russellian proof can be constructed which (somehow) ‘corresponds’ to it, but rather that the acceptance of such a correspondence does not lean on logic.

Taking up Wittgenstein’s criticism, Hao Wang (Computation, Logic, Philosophy) discusses the view that mathematics “is” axiomatic set theory as one of several possible answers to the question “What is mathematics?”. Wang points out that this view is epistemologically worthless, at least as far as the task of understanding the feature of cognition guiding is concerned:

Mathematics is axiomatic set theory. In a definite sense, all mathematics can be derived from axiomatic set theory. [ . . . ] There are several objections to this identification. [ . . . ] This view leaves unexplained why, of all the possible consequences of set theory, we select only those which happen to be our mathematics today, and why certain mathematical concepts are more interesting than others. It does not help to give us an intuitive grasp of mathematics such as that possessed by a powerful mathematician. By burying, e.g., the individuality of natural numbers, it seeks to explain the more basic and the clearer by the more obscure. It is a little analogous to asserting that all physical objects, such as tables, chairs, etc., are spherical if we swathe them with enough stuff.

Reductionism is an age-old project; a close forerunner of its incarnation in set theory was the arithmetization program of the 19th century. It is interesting that one of its prominent representatives, Richard Dedekind (Essays on the Theory of Numbers), exhibited a quite distanced attitude towards a consequent carrying out of the program:

It appears as something self-evident and not new that every theorem of algebra and higher analysis, no matter how remote, can be expressed as a theorem about natural numbers [ . . . ] But I see nothing meritorious [ . . . ] in actually performing this wearisome circumlocution and insisting on the use and recognition of no other than rational numbers.

Perec wrote a detective novel without using the letter ‘e’ (La disparition, English A void), thus proving not only that such an enormous enterprise is indeed possible but also that formal constraints sometimes have great aesthetic appeal. The translation of mathematical propositions into a poorer linguistic framework can easily be compared with such painful lipogrammatical exercises. In principle all logical connectives can be simulated in a framework exclusively using Sheffer’s stroke, and all cuts (in Gentzen’s sense) can be eliminated; one can do without common language at all in mathematics and formalize everything and so on: in principle, one could leave out a whole lot of things. However, in doing so one would depart from the true way of thinking employed by the mathematician (who really uses “and” and “not” and cuts and who does not reduce many things to formal systems). Obviously, it is the proof theorist as a working mathematician who is interested in things like the reduction to Sheffer’s stroke since they allow for more concise proofs by induction in the analysis of a logical calculus. Hence this proof theorist has much the same motives as a mathematician working on other problems who avoids a completely formalized treatment of these problems since he is not interested in the proof-theoretical aspect.

There might be quite similar reasons for the interest of some set theorists in expressing usual mathematical constructions exclusively with the expressive means of ZF (i.e., in terms of ∈). But beyond this, is there any philosophical interpretation of such a reduction? In the last analysis, mathematicians always transform (and that means: change) their objects of study in order to make them accessible to certain mathematical treatments. If one considers a mathematical concept as a tool, one does not only use it in a way different from the one in which it would be used if it were considered as an object; moreover, in semiotical representation of it, it is given a form which is different in both cases. In this sense, the proof theorist has to “change” the mathematical proof (which is his or her object of study to be treated with mathematical tools). When stating that something is used as object or as tool, we have always to ask: in which situation, or: by whom.

A second observation is that the translation of propositional formulæ in terms of Sheffer’s stroke in general yields quite complicated new formulæ. What is “simple” here is the particularly small number of symbols needed; but neither the semantics becomes clearer (p|q means “not both p and q”; cognitively, this looks more complex than “p and q” and so on), nor are the formulæ you get “short”. What is looked for in this case, hence, is a reduction of numerical complexity, while the primitive basis attained by the reduction cognitively looks less “natural” than the original situation (or, as Peirce expressed it, “the consciousness in the determined cognition is more lively than in the cognition which determines it”); similarly in the case of cut elimination. In contrast to this, many philosophers are convinced that the primitive basis of operating with sets constitutes really a “natural” basis of mathematical thinking, i.e., such operations are seen as the “standard bricks” of which this thinking is actually made – while no one will reasonably claim that expressions of the type p|q play a similar role for propositional logic. And yet: reduction to set theory does not really have the task of “explanation”. It is true, one thus reduces propositions about “complex” objects to propositions about “simple” objects; the propositions themselves, however, thus become in general more complex. Couched in Fregean terms, one can perhaps more easily grasp their denotation (since the denotation of a proposition is its truth value) but not their meaning. A more involved conceptual framework, however, might lead to simpler propositions (and in most cases has actually just been introduced in order to do so). A parallel argument concerns deductions: in its totality, a deduction becomes more complex (and less intelligible) by a decomposition into elementary steps.

Now, it will be subject to discussion whether in the case of some set operations it is admissible at all to claim that they are basic for thinking (which is certainly true in the case of the connectives of propositional logic). It is perfectly possible that the common sense which organizes the acceptance of certain operations as a natural basis relies on something different, not having the character of some eternal laws of thought: it relies on training.

Is it possible to observe that a surface is coloured red and blue; and not to observe that it is red? Imagine a kind of colour adjective were used for things that are half red and half blue: they are said to be ‘bu’. Now might not someone to be trained to observe whether something is bu; and not to observe whether it is also red? Such a man would then only know how to report: “bu” or “not bu”. And from the first report we could draw the conclusion that the thing was partly red.

Mathematical Reductionism: As Case Via C. S. Peirce’s Hypothetical Realism.

mathematical-beauty

During the 20th century, the following epistemology of mathematics was predominant: a sufficient condition for the possibility of the cognition of objects is that these objects can be reduced to set theory. The conditions for the possibility of the cognition of the objects of set theory (the sets), in turn, can be given in various manners; in any event, the objects reduced to sets do not need an additional epistemological discussion – they “are” sets. Hence, such an epistemology relies ultimately on ontology. Frege conceived the axioms as descriptions of how we actually manipulate extensions of concepts in our thinking (and in this sense as inevitable and intuitive “laws of thought”). Hilbert admitted the use of intuition exclusively in metamathematics where the consistency proof is to be done (by which the appropriateness of the axioms would be established); Bourbaki takes the axioms as mere hypotheses. Hence, Bourbaki’s concept of justification is the weakest of the three: “it works as long as we encounter no contradiction”; nevertheless, it is still epistemology, because from this hypothetical-deductive point of view, one insists that at least a proof of relative consistency (i.e., a proof that the hypotheses are consistent with the frequently tested and approved framework of set theory) should be available.

Doing mathematics, one tries to give proofs for propositions, i.e., to deduce the propositions logically from other propositions (premisses). Now, in the reductionist perspective, a proof of a mathematical proposition yields an insight into the truth of the proposition, if the premisses are already established (if one has already an insight into their truth); this can be done by giving in turn proofs for them (in which new premisses will occur which ask again for an insight into their truth), or by agreeing to put them at the beginning (to consider them as axioms or postulates). The philosopher tries to understand how the decision about what propositions to take as axioms is arrived at, because he or she is dissatisfied with the reductionist claim that it is on these axioms that the insight into the truth of the deduced propositions rests. Actually, this epistemology might contain a short-coming since Poincaré (and Wittgenstein) stressed that to have a proof of a proposition is by no means the same as to have an insight into its truth.

Attempts to disclose the ontology of mathematical objects reveal the following tendency in epistemology of mathematics: Mathematics is seen as suffering from a lack of ontological “determinateness”, namely that this science (contrarily to many others) does not concern material data such that the concept of material truth is not available (especially in the case of the infinite). This tendency is embarrassing since on the other hand mathematical cognition is very often presented as cognition of the “greatest possible certainty” just because it seems not to be bound to material evidence, let alone experimental check.

The technical apparatus developed by the reductionist and set-theoretical approach nowadays serves other purposes, partly for the reason that tacit beliefs about sets were challenged; the explanations of the science which it provides are considered as irrelevant by the practitioners of this science. There is doubt that the above mentioned sufficient condition is also necessary; it is not even accepted throughout as a sufficient one. But what happens if some objects, as in the case of category theory, do not fulfill the condition? It seems that the reductionist approach, so to say, has been undocked from the historical development of the discipline in several respects; an alternative is required.

Anterior to Peirce, epistemology was dominated by the idea of a grasp of objects; since Descartes, intuition was considered throughout as a particular, innate capacity of cognition (even if idealists thought that it concerns the general, and empiricists that it concerns the particular). The task of this particular capacity was the foundation of epistemology; already from Aristotle’s first premisses of syllogism, what was aimed at was to go back to something first. In this traditional approach, it is by the ontology of the objects that one hopes to answer the fundamental question concerning the conditions for the possibility of the cognition of these objects. One hopes that there are simple “basic objects” to which the more complex objects can be reduced and whose cognition is possible by common sense – be this an innate or otherwise distinguished capacity of cognition common to all human beings. Here, epistemology is “wrapped up” in (or rests on) ontology; to do epistemology one has to do ontology first.

Peirce shares Kant’s opinion according to which the object depends on the subject; however, he does not agree that reason is the crucial means of cognition to be criticised. In his paper “Questions concerning certain faculties claimed for man”, he points out the basic assumption of pragmatist philosophy: every cognition is semiotically mediated. He says that there is no immediate cognition (a cognition which “refers immediately to its object”), but that every cognition “has been determined by a previous cognition” of the same object. Correspondingly, Peirce replaces critique of reason by critique of signs. He thinks that Kant’s distinction between the world of things per se (Dinge an sich) and the world of apparition (Erscheinungswelt) is not fruitful; he rather distinguishes the world of the subject and the world of the object, connected by signs; his position consequently is a “hypothetical realism” in which all cognitions are only valid with reservations. This position does not negate (nor assert) that the object per se (with the semiotical mediation stripped off) exists, since such assertions of “pure” existence are seen as necessarily hypothetical (that means, not withstanding philosophical criticism).

By his basic assumption, Peirce was led to reveal a problem concerning the subject matter of epistemology, since this assumption means in particular that there is no intuitive cognition in the classical sense (which is synonymous to “immediate”). Hence, one could no longer consider cognitions as objects; there is no intuitive cognition of an intuitive cognition. Intuition can be no more than a relation. “All the cognitive faculties we know of are relative, and consequently their products are relations”. According to this new point of view, intuition cannot any longer serve to found epistemology, in departure from the former reductionist attitude. A central argument of Peirce against reductionism or, as he puts it,

the reply to the argument that there must be a first is as follows: In retracing our way from our conclusions to premisses, or from determined cognitions to those which determine them, we finally reach, in all cases, a point beyond which the consciousness in the determined cognition is more lively than in the cognition which determines it.

Peirce gives some examples derived from physiological observations about perception, like the fact that the third dimension of space is inferred, and the blind spot of the retina. In this situation, the process of reduction loses its legitimacy since it no longer fulfills the function of cognition justification. At such a place, something happens which I would like to call an “exchange of levels”: the process of reduction is interrupted in that the things exchange the roles performed in the determination of a cognition: what was originally considered as determining is now determined by what was originally considered as asking for determination.

The idea that contents of cognition are necessarily provisional has an effect on the very concept of conditions for the possibility of cognitions. It seems that one can infer from Peirce’s words that what vouches for a cognition is not necessarily the cognition which determines it but the livelyness of our consciousness in the cognition. Here, “to vouch for a cognition” means no longer what it meant before (which was much the same as “to determine a cognition”), but it still means that the cognition is (provisionally) reliable. This conception of the livelyness of our consciousness roughly might be seen as a substitute for the capacity of intuition in Peirce’s epistemology – but only roughly, since it has a different coverage.

Rants of the Undead God: Instrumentalism. Thought of the Day 68.1

math-mathematics-monochrome-hd-wallpaper-71796

Hilbert’s program has often been interpreted as an instrumentalist account of mathematics. This reading relies on the distinction Hilbert makes between the finitary part of mathematics and the non-finitary rest which is in need of grounding (via finitary meta-mathematics). The finitary part Hilbert calls “contentual,” i.e., its propositions and proofs have content. The infinitary part, on the other hand, is “not meaningful from a finitary point of view.” This distinction corresponds to a distinction between formulas of the axiomatic systems of mathematics for which consistency proofs are being sought. Some of the formulas correspond to contentual, finitary propositions: they are the “real” formulas. The rest are called “ideal.” They are added to the real part of our mathematical theories in order to preserve classical inferences such as the principle of the excluded middle for infinite totalities, i.e., the principle that either all numbers have a given property or there is a number which does not have it.

It is the extension of the real part of the theory by the ideal, infinitary part that is in need of justification by a consistency proof – for there is a condition, a single but absolutely necessary one, to which the use of the method of ideal elements is subject, and that is the proof of consistency; for, extension by the addition of ideals is legitimate only if no contradiction is thereby brought about in the old, narrower domain, that is, if the relations that result for the old objects whenever the ideal objects are eliminated are valid in the old domain. Weyl described Hilbert’s project as replacing meaningful mathematics by a meaningless game of formulas. He noted that Hilbert wanted to “secure not truth, but the consistency of analysis” and suggested a criticism that echoes an earlier one by Frege – why should we take consistency of a formal system of mathematics as a reason to believe in the truth of the pre-formal mathematics it codifies? Is Hilbert’s meaningless inventory of formulas not just “the bloodless ghost of analysis? Weyl suggested that if mathematics is to remain a serious cultural concern, then some sense must be attached to Hilbert’s game of formulae. In theoretical physics we have before us the great example of a [kind of] knowledge of completely different character than the common or phenomenal knowledge that expresses purely what is given in intuition. While in this case every judgment has its own sense that is completely realizable within intuition, this is by no means the case for the statements of theoretical physics. Hilbert suggested that consistency is not the only virtue ideal mathematics has –  transfinite inference simplifies and abbreviates proofs, brevity and economy of thought are the raison d’être of existence proofs.

Hilbert’s treatment of philosophical questions is not meant as a kind of instrumentalist agnosticism about existence and truth and so forth. On the contrary, it is meant to provide a non-skeptical and positive solution to such problems, a solution couched in cognitively accessible terms. And, it appears, the same solution holds for both mathematical and physical theories. Once new concepts or “ideal elements” or new theoretical terms have been accepted, then they exist in the sense in which any theoretical entities exist. When Weyl eventually turned away from intuitionism, he emphasized the purpose of Hilbert’s proof theory, not to turn mathematics into a meaningless game of symbols, but to turn it into a theoretical science which codifies scientific (mathematical) practice. The reading of Hilbert as an instrumentalist goes hand in hand with a reading of the proof-theoretic program as a reductionist project. The instrumentalist reading interprets ideal mathematics as a meaningless formalism, which simplifies and “rounds out” mathematical reasoning. But a consistency proof of ideal mathematics by itself does not explain what ideal mathematics is an instrument for.

On this picture, classical mathematics is to be formalized in a system which includes formalizations of all the directly verifiable (by calculation) propositions of contentual finite number theory. The consistency proof should show that all real propositions which can be proved by ideal methods are true, i.e., can be directly verified by finite calculation. Actual proofs such as the ε-substitution procedure are of such a kind: they provide finitary procedures which eliminate transfinite elements from proofs of real statements. In particular, they turn putative ideal derivations of 0 = 1 into derivations in the real part of the theory; the impossibility of such a derivation establishes consistency of the theory. Indeed, Hilbert saw that something stronger is true: not only does a consistency proof establish truth of real formulas provable by ideal methods, but it yields finitary proofs of finitary general propositions if the corresponding free-variable formula is derivable by ideal methods.

Meillassoux’s Principle of Unreason Towards an Intuition of the Absolute In-itself. Note Quote.

geotime_usgs

The principle of reason such as it appears in philosophy is a principle of contingent reason: not only how philosophical reason concerns difference instead of identity, we but also why the Principle of Sufficient Reason can no longer be understood in terms of absolute necessity. In other words, Deleuze disconnects the Principle of Sufficient Reason from the ontotheological tradition no less than from its Heideggerian deconstruction. What remains then of Meillassoux’s criticism in After finitude: An Essay on the Necessity of Contigency that Deleuze no less than Hegel hypostatizes or absolutizes the correlation between thinking and being and thus brings back a vitalist version of speculative idealism through the back door?

At stake in Meillassoux’s criticism of the Principle of Sufficient Reason is a double problem: the conditions of possibility of thinking and knowing an absolute and subsequently the conditions of possibility of rational ideology critique. The first problem is primarily epistemological: how can philosophy justify scientific knowledge claims about a reality that is anterior to our relation to it and that is hence not given in the transcendental object of possible experience (the arche-fossil )? This is a problem for all post-Kantian epistemologies that hold that we can only ever know the correlate of being and thought. Instead of confronting this weak correlationist position head on, however, Meillassoux seeks a solution in the even stronger correlationist position that denies not only the knowability of the in itself, but also its very thinkability or imaginability. Simplified: if strong correlationists such as Heidegger or Wittgenstein insist on the historicity or facticity (non-necessity) of the correlation of reason and ground in order to demonstrate the impossibility of thought’s self-absolutization, then the very force of their argument, if it is not to contradict itself, implies more than they are willing to accept: the necessity of the contingency of the transcendental structure of the for itself. As a consequence, correlationism is incapable of demonstrating itself to be necessary. This is what Meillassoux calls the principle of factiality or the principle of unreason. It says that it is possible to think of two things that exist independently of thought’s relation to it: contingency as such and the principle of non-contradiction. The principle of unreason thus enables the intellectual intuition of something that is absolutely in itself, namely the absolute impossibility of a necessary being. And this in turn implies the real possibility of the completely random and unpredictable transformation of all things from one moment to the next. Logically speaking, the absolute is thus a hyperchaos or something akin to Time in which nothing is impossible, except it be necessary beings or necessary temporal experiences such as the laws of physics.

There is, moreover, nothing mysterious about this chaos. Contingency, and Meillassoux consistently refers to this as Hume’s discovery, is a purely logical and rational necessity, since without the principle of non-contradiction not even the principle of factiality would be absolute. It is thus a rational necessity that puts the Principle of Sufficient Reason out of action, since it would be irrational to claim that it is a real necessity as everything that is is devoid of any reason to be as it is. This leads Meillassoux to the surprising conclusion that [t]he Principle of Sufficient Reason is thus another name for the irrational… The refusal of the Principle of Sufficient Reason is not the refusal of reason, but the discovery of the power of chaos harboured by its fundamental principle (non-contradiction). (Meillassoux 2007: 61) The principle of factiality thus legitimates or founds the rationalist requirement that reality be perfectly amenable to conceptual comprehension at the same time that it opens up [a] world emancipated from the Principle of Sufficient Reason (Meillassoux) but founded only on that of non-contradiction.

This emancipation brings us to the practical problem Meillassoux tries to solve, namely the possibility of ideology critique. Correlationism is essentially a discourse on the limits of thought for which the deabsolutization of the Principle of Sufficient Reason marks reason’s discovery of its own essential inability to uncover an absolute. Thus if the Galilean-Copernican revolution of modern science meant the paradoxical unveiling of thought’s capacity to think what there is regardless of whether thought exists or not, then Kant’s correlationist version of the Copernican revolution was in fact a Ptolemaic counterrevolution. Since Kant and even more since Heidegger, philosophy has been adverse precisely to the speculative import of modern science as a formal, mathematical knowledge of nature. Its unintended consequence is therefore that questions of ultimate reasons have been dislocated from the domain of metaphysics into that of non-rational, fideist discourse. Philosophy has thus made the contemporary end of metaphysics complicit with the religious belief in the Principle of Sufficient Reason beyond its very thinkability. Whence Meillassoux’s counter-intuitive conclusion that the refusal of the Principle of Sufficient Reason furnishes the minimal condition for every critique of ideology, insofar as ideology cannot be identified with just any variety of deceptive representation, but is rather any form of pseudo-rationality whose aim is to establish that what exists as a matter of fact exists necessarily. In this way a speculative critique pushes skeptical rationalism’s relinquishment of the Principle of Sufficient Reason to the point where it affirms that there is nothing beneath or beyond the manifest gratuitousness of the given nothing, but the limitless and lawless power of its destruction, emergence, or persistence. Such an absolutizing even though no longer absolutist approach would be the minimal condition for every critique of ideology: to reject dogmatic metaphysics means to reject all real necessity, and a fortiori to reject the Principle of Sufficient Reason, as well as the ontological argument.

On the one hand, Deleuze’s criticism of Heidegger bears many similarities to that of Meillassoux when he redefines the Principle of Sufficient Reason in terms of contingent reason or with Nietzsche and Mallarmé: nothing rather than something such that whatever exists is a fiat in itself. His Principle of Sufficient Reason is the plastic, anarchic and nomadic principle of a superior or transcendental empiricism that teaches us a strange reason, that of the multiple, chaos and difference. On the other hand, however, the fact that Deleuze still speaks of reason should make us wary. For whereas Deleuze seeks to reunite chaotic being with systematic thought, Meillassoux revives the classical opposition between empiricism and rationalism precisely in order to attack the pre-Kantian, absolute validity of the Principle of Sufficient Reason. His argument implies a return to a non-correlationist version of Kantianism insofar as it relies on the gap between being and thought and thus upon a logic of representation that renders Deleuze’s Principle of Sufficient Reason unrecognizable, either through a concept of time, or through materialism.

Role and Nature of Religion in Thomas Hobbes

Latimer_Ridley_Foxe_burning-845x321

Hobbes’ three presentations of political philosophy may be with less justice called theological-political treatises. Hobbes with dual intentions becomes an interpreter of the Bible, in the first place in order to make use of the Scriptures for his own theory, and in the second place in order to shake the authority of the Scriptures. When Hobbes grants the theological motivation of political philosophy a last refuge in the discussion, which treats of the natural State, he indicates the connection between theology and the natural State in particular. As the natural State becomes less and less important to Hobbes, the theological arguments also become less and less important. Originally, when he had not yet conceived the idea of an artificial State, he was incomparably more under the spell of the theological tradition.

The space devoted to the criticism of religion increases considerably on the way from the Elements of Law to Leviathan and is accompanied by the deepening of the criticism. The fundamental question: On what authority does one believe that Scripture is the word of God? Is answered differently in different presentations. In the Elements of Law: On the authority of the Church, the successors of the Apostles. In De Cive: Not on the authority of the Church, but on that of Jesus. In the Leviathan: On the authority of the teachers whose teaching is permitted and organized by the sovereign power, i.e. one confesses verbally, for thoughts are free, that Scripture is the word of God, because secular authority commands this confession. But in all three presentations, Hobbes contends that all that is needed for salvation is the belief in Jesus as Christ. In earlier presentations, the belief in the immortality of soul belongs to these premises; whereas in the later works, the resurrection of the body is tacitly substituted for the immortality of the soul. The Leviathan finally openly opposes the resurrection of the body to the immortality of the soul and admits only the first as grounded in the Scriptures. Hobbes declares that unconditional obedience to the secular power is the bounden duty of every Christian. His question: is the Christian obliged to obey the secular power when that power forbids him the profession of his faith? is answered in the earlier presentations with the finding that the right and duty of the Christian in such a case is only passive resistance and martyrdom, while the Leviathan denies the obligation and even the right of martyrdom to the ordinary Christian who has not the special vocation of preaching the Gospel. In the De Cive it is a Christian dogma that Christ’s Kingdom is not of Earth but that of Heaven; in the Leviathan on the other hand, the Kingdom of God under the Old and also under the New Covenant is to be understood as a purely earthly Kingdom. In the Elements of Law, Hobbes defends the Episcopal constitution of the Church, whose rightness is proved by the fact that Christ in virtue of his sovereignty enthroned his Apostles. He also denies that in the Christian hierarchy there was a high priest to whom the individual bishops were subordinate. In the later presentations he rejects the Episcopal constitution, even the view that officials of the Church can be instituted by any ecclesiastical authority which is not in every respect dependent on the secular authority. The apparent contradiction of the general tendency of the Elements of Law on the one hand and of the later presentations on the other, is explicated by the fact that in the later writings, Hobbes attaches much less value to conformity with the teachings of the Scriptures. That Scripture vouches for priestly rule is from now on not an argument for priestly rule, but an argument against Scripture. Thus the single apparent exception is in reality the strongest corroboration of the assertion that on the path from the elements of Law via De Cive to the Leviathan Hobbes drew farther and farther away from the religious tradition. One may say, that Hobbes kept pace in his way, which was not very edifying, with the development from Anglican Episcopalianism to Independentism.

In the earlier presentation of his political philosophy, Hobbes is relatively close to Anglican Episcopalianism. Hobbes’ personal attitude to positive religion was at all times the same: religion must serve the Sate and is to be esteemed or despised according to the services or disservices rendered to the State. This view may be seen as early as the introduction to the translation of Thucydides where Hobbes defends his author:

In some places of his History he noteth the equivocation of the oracles; and yet he confirmeth an assertion of his own, touching the time this war lasted, by the oracle’s prediction. He taxeth Nicias for being too punctual in the observation of the ceremonies of their religion, when he overthrew himself and his army, and indeed the whole dominion and liberty of his country, by it. Yet he commandeth him in another place for his worshipping of the gods…So that in his writings, our author appeareth to be, on the one side not superstitious on the other side not an atheist’.

The fact that Hobbes accommodated utterances of his unbelief to what was permissible in a good, prudent subject justifies the assumption that in the decades before the Civil war, Hobbes for political reasons hid his true opinions and was mindful of the maintenance of theological convention. He says:

‘I long infinitely to see those books of the Sabbaoth, an am of your mind they will put such thoughts into the heads of the vulgar people, as will confer little to their good life. For when they see one of the Ten Commandments to be jus humanum merely, (as it must be if the Church can alter it), they will hope also that the other nine may be so too. For every man hitherto did believe that the Ten Commandments were the moral, that is, the eternal law’. It is noteworthy that Elements of Law defend a much more conservative ecclesiastical policy than do other writings.

As for the natural religion, he was skeptical originally and throughout which is more than the maintained its skeptical outlook. He considered any natural knowledge of God, which is more than the knowledge that a First Cause exists, completely impossible. Thus he systematically excluded revealed and natural theology from philosophy. To keep up an appearance that he attacked only scholastic theology and not the religion of the Scripture itself, Hobbes fought his battle against natural theology in the name of strict belief in the Scriptures and at the same time undermining that belief by his historical and philosophical criticism of the authority of the Scriptures. An apparent progress in his Biblicism indicated of his real progress in his criticism of natural theology, and thus was a proof that he originally judged natural theology more favourable than revealed theology. According to the Elements of Law, the binding force of natural law is based on natural knowledge of God; according to the later presentations it is based on revelation. The Elements of Law bring forward the proofs of the existence of God more emphatically and in more detail than does the Leviathan; for if one compares the formulation of these two works, one positively begins to suspect that in the Leviathan the argument is not seriously meant. The connecting link in this case as so often is in De Cive, where Hobbes says that without revelation atheism is almost inevitable. The traditional arguments for the supremacy of the monarchy, which are atleast mentioned in the earlier presentations, rest on assumptions of natural theology. Finally: in the elements of Law, there is a remark countering the ‘supernaturalists’ hostility to reason, to, which there is practically no parallel in the later works. Hobbes also fought his battle against supernaturalism with his weapons of materialism. At all events, as early as in 1641 in his correspondence with Descartes he defends the conclusions of his materialism with reference to God and the Soul. Before the complete elaboration of his materialism and particularly during his humanist period, when he had not yet freed himself from the authority of Aristotle, he in principle recognized natural theology.