# Philosophical Equivariance – Sewing Holonomies Towards Equal Trace Endomorphisms.

In d-dimensional topological field theory one begins with a category S whose objects are oriented (d − 1)-manifolds and whose morphisms are oriented cobordisms. Physicists say that a theory admits a group G as a global symmetry group if G acts on the vector space associated to each (d−1)-manifold, and the linear operator associated to each cobordism is a G-equivariant map. When we have such a “global” symmetry group G we can ask whether the symmetry can be “gauged”, i.e., whether elements of G can be applied “independently” – in some sense – at each point of space-time. Mathematically the process of “gauging” has a very elegant description: it amounts to extending the field theory functor from the category S to the category SG whose objects are (d − 1)-manifolds equipped with a principal G-bundle, and whose morphisms are cobordisms with a G-bundle. We regard S as a subcategory of SG by equipping each (d − 1)-manifold S with the trivial G-bundle S × G. In SG the group of automorphisms of the trivial bundle S × G contains G, and so in a gauged theory G acts on the state space H(S): this should be the original “global” action of G. But the gauged theory has a state space H(S,P) for each G-bundle P on S: if P is non-trivial one calls H(S,P) a “twisted sector” of the theory. In the case d = 2, when S = S1 we have the bundle Pg → S1 obtained by attaching the ends of [0,2π] × G via multiplication by g. Any bundle is isomorphic to one of these, and Pg is isomorphic to Pg iff g′ is conjugate to g. But note that the state space depends on the bundle and not just its isomorphism class, so we have a twisted sector state space Cg = H(S,Pg) labelled by a group element g rather than by a conjugacy class.

We shall call a theory defined on the category SG a G-equivariant Topological Field Theory (TFT). It is important to distinguish the equivariant theory from the corresponding “gauged theory”. In physics, the equivariant theory is obtained by coupling to nondynamical background gauge fields, while the gauged theory is obtained by “summing” over those gauge fields in the path integral.

An alternative and equivalent viewpoint which is especially useful in the two-dimensional case is that SG is the category whose objects are oriented (d − 1)-manifolds S equipped with a map p : S → BG, where BG is the classifying space of G. In this viewpoint we have a bundle over the space Map(S,BG) whose fibre at p is Hp. To say that Hp depends only on the G-bundle pEG on S pulled back from the universal G-bundle EG on BG by p is the same as to say that the bundle on Map(S,BG) is equipped with a flat connection allowing us to identify the fibres at points in the same connected component by parallel transport; for the set of bundle isomorphisms p0EG → p1EG is the same as the set of homotopy classes of paths from p0 to p1. When S = S1 the connected components of the space of maps correspond to the conjugacy classes in G: each bundle Pg corresponds to a specific point pg in the mapping space, and a group element h defines a specific path from pg to phgh−1 .

G-equivariant topological field theories are examples of “homotopy topological field theories”. Using Vladimir Turaev‘s two main results: first, an attractive generalization of the theorem that a two-dimensional TFT “is” a commutative Frobenius algebra, and, secondly, a classification of the ways of gauging a given global G-symmetry of a semisimple TFT.

Definition of the product in the G-equivariant closed theory. The heavy dot is the basepoint on S1. To specify the morphism unambiguously we must indicate consistent holonomies along a set of curves whose complement consists of simply connected pieces. These holonomies are always along paths between points where by definition the fibre is G. This means that the product is not commutative. We need to fix a convention for holonomies of a composition of curves, i.e., whether we are using left or right path-ordering. We will take h(γ1 ◦ γ2) = h(γ1) · h(γ2).

A G-equivariant TFT gives us for each element g ∈ G a vector space Cg, associated to the circle equipped with the bundle pg whose holonomy is g. The usual pair-of-pants cobordism, equipped with the evident G-bundle which restricts to pg1 and pg2 on the two incoming circles, and to pg1g2 on the outgoing circle, induces a product

Cg1 ⊗ Cg2 → Cg1g2 —– (1)

making C := ⊕g∈GCg into a G-graded algebra. Also there is a trace θ: C1  → C defined by the disk diagram with one ingoing circle. The holonomy around the boundary of the disk must be 1. Making the standard assumption that the cylinder corresponds to the unit operator we obtain a non-degenerate pairing

Cg ⊗ Cg−1 → C

A new element in the equivariant theory is that G acts as an automorphism group on C. That is, there is a homomorphism α : G → Aut(C) such that

αh : Cg → Chgh−1 —– (2)

Diagramatically, αh is defined by the surface in the immediately above figure. Now let us note some properties of α. First, if φ ∈ Ch then αh(φ) = φ. The reason for this is diagrammatically in the below figure.

If the holonomy along path P2 is h then the holonomy along path P1 is 1. However, a Dehn twist around the inner circle maps P1 into P2. Therefore, αh(φ) = α1(φ) = φ, if φ ∈ Ch.

Next, while C is not commutative, it is “twisted-commutative” in the following sense. If φ1 ∈ Cg1 and φ2 ∈ Cg2 then

αg212 = φ2φ1 —– (3)

The necessity of this condition is illustrated in the figure below.

The trace of the identity map of Cg is the partition function of the theory on a torus with the bundle with holonomy (g,1). Cutting the torus the other way, we see that this is the trace of αg on C1. Similarly, by considering the torus with a bundle with holonomy (g,h), where g and h are two commuting elements of G, we see that the trace of αg on Ch is the trace of αh on Cg−1. But we need a strengthening of this property. Even when g and h do not commute we can form a bundle with holonomy (g,h) on a torus with one hole, around which the holonomy will be c = hgh−1g−1. We can cut this torus along either of its generating circles to get a cobordism operator from Cc ⊗ Ch to Ch or from Cg−1 ⊗ Cc to Cg−1. If ψ ∈ Chgh−1g−1. Let us introduce two linear transformations Lψ, Rψ associated to left- and right-multiplication by ψ. On the one hand, Lψαg : φ􏰀 ↦ ψαg(φ) is a map Ch → Ch. On the other hand Rψαh : φ ↦ αh(φ)ψ is a map Cg−1 → Cg−1. The last sewing condition states that these two endomorphisms must have equal traces:

TrCh 􏰌Lψαg􏰍 = TrCg−1 􏰌Rψαh􏰍 —– (4)

(4) was taken by Turaev as one of his axioms. It can, however, be reexpressed in a way that we shall find more convenient. Let ∆g ∈ Cg ⊗ Cg−1 be the “duality” element corresponding to the identity cobordism of (S1,Pg) with both ends regarded as outgoing. We have ∆g = ∑ξi ⊗ ξi, where ξi and ξi ru􏰟n through dual bases of Cg and Cg−1. Let us also write

h = ∑ηi ⊗ ηi ∈ Ch ⊗ Ch−1. Then (4) is easily seen to be equivalent to

∑αhii = 􏰟 ∑ηiαgi) —– (5)

in which both sides are elements of Chgh−1g−1.

# Hochschild Cohomology Tethers to Closed String Algebra by way of Cyclicity.

When we have an open and closed Topological Field Theory (TFT) each element ξ of the closed algebra C defines an endomorphism ξa = ia(ξ) ∈ Oaa of each object a of B, and η ◦ ξa = ξb ◦ η for each morphism η ∈ Oba from a to b. The family {ξa} thus constitutes a natural transformation from the identity functor 1B : B → B to itself.

For any C-linear category B we can consider the ring E of natural transformations of 1B. It is automatically commutative, for if {ξa}, {ηa} ∈ E then ξa ◦ ηa = ηa ◦ ξa by the definition of naturality. (A natural transformation from 1B to 1B is a collection of elements {ξa ∈ Oaa} such that ξa ◦ f = f ◦ ξb for each morphism f ∈ Oab from b to a. But we can take a = b and f = ηa.) If B is a Frobenius category then there is a map πab : Obb → Oaa for each pair of objects a, b, and we can define jb : Obb → E by jb(η)a = πab(η) for η ∈ Obb. In other words, jb is defined so that the Cardy condition ιa ◦ jb = πab holds. But the question arises whether we can define a trace θ : E → C to make E into a Frobenius algebra, and with the property that

θaa(ξ)η) = θ(ξja(η)) —– (1)

∀ ξ ∈ E and η ∈ Oaa. This is certainly true if B is a semisimple Frobenius category with finitely many simple objects, for then E is just the ring of complex-valued functions on the set of classes of these simple elements, and we can readily define θ : E → C by θ(εa) = θa(1a)2, where a is an irreducible object, and εa ∈ E is the characteristic function of the point a in the spectrum of E. Nevertheless, a Frobenius category need not be semisimple, and we cannot, unfortunately, take E as the closed string algebra in the general case. If, for example, B has just one object a, and Oaa is a commutative local ring of dimension greater than 1, then E = Oaa, and so ιa : E → Oaa is an isomorphism, and its adjoint map ja ought to be an isomorphism too. But that contradicts the Cardy condition, as πaa is multiplication by ∑ψiψi, which must be nilpotent.

The commutative algebra E of natural endomorphisms of the identity functor of a linear category B is called the Hochschild cohomology HH0(B) of B in degree 0. The groups HHp(B) for p > 0, vanish if B is semisimple, but in the general case they appear to be relevant to the construction of a closed string algebra from B. For any Frobenius category B there is a natural homomorphism K(B) → HH0(B) from the Grothendieck group of B, which assigns to an object a the transformation whose value on b is πba(1a) ∈ Obb. In the semisimple case this homomorphism induces an isomorphism K(B) ⊗ C → HH0(B).

For any additive category B the Hochschild cohomology is defined as the cohomology of the cochain complex in which a k-cochain F is a rule that to each composable k-tuple of morphisms

Y0φ1 Y1φ2 ··· →φk Yk —– (2)

assigns F(φ1,…,φk) ∈ Hom(Y0,Yk). The differential in the complex is defined by

(dF)(φ1,…,φk+1) = F(φ2,…,φk+1) ◦ φ1 + ∑i=1k(−1)i F(φ1,…,φi+1 ◦ φi,…,φk+1) + (−1)k+1φk+1 ◦ F(φ1,…,φk) —– (3)

(Notice, in particular, that a 0-cochain assigns an endomorphism FY to each object Y, and is a cocycle if the endomorphisms form a natural transformation. Similarly, a 2-cochain F gives a possible infinitesimal deformation F(φ1, φ2) of the composition law (φ1, φ2) ↦ φ2 ◦ φ1 of the category, and the deformation preserves the associativity of composition iff F is a cocycle.)

In the case of a category B with a single object whose algebra of endomorphisms is O the cohomology just described is usually called the Hochschild cohomology of the algebra O with coefficients in O regarded as a O-bimodule. This must be carefully distinguished from the Hochschild cohomology with coefficients in the dual O-bimodule O. But if O is a Frobenius algebra it is isomorphic as a bimodule to O, and the two notions of Hochschild cohomology need not be distinguished. The same applies to a Frobenius category B: because Hom(Yk, Y0) is the dual space of Hom(Y0, Yk) we can think of a k-cochain as a rule which associates to each composable k-tuple of morphisms a linear function of an element φ0 ∈ Hom(Yk, Y0). In other words, a k-cochain is a rule which to each “circle” of k + 1 morphisms

···→φ0 Y0φ1 Y1 →φ2···→φk Ykφ0··· —– (4)

assigns a complex number F(φ01,…,φk).

If in this description we restrict ourselves to cochains which are cyclically invariant under rotating the circle of morphisms (φ01,…,φk) then we obtain a sub-cochain complex of the Hochschild complex whose cohomology is called the cyclic cohomology HC(B) of the category B. The cyclic cohomology, which evidently maps to the Hochschild cohomology is a more natural candidate for the closed string algebra associated to B than is the Hochschild cohomology. A very natural Frobenius category on which to test these ideas is the category of holomorphic vector bundles on a compact Calabi-Yau manifold.

# Morphism of Complexes Induces Corresponding Morphisms on Cohomology Objects – Thought of the Day 146.0

Let A = Mod(R) be an abelian category. A complex in A is a sequence of objects and morphisms in A

… → Mi-1 →di-1 Mi →di → Mi+1 → …

such that di ◦ di-1 = 0 ∀ i. We denote such a complex by M.

A morphism of complexes f : M → N is a sequence of morphisms fi : Mi → Ni in A, making the following diagram commute, where diM, diN denote the respective differentials:

We let C(A) denote the category whose objects are complexes in A and whose morphisms are morphisms of complexes.

Given a complex M of objects of A, the ith cohomology object is the quotient

Hi(M) = ker(di)/im(di−1)

This operation of taking cohomology at the ith place defines a functor

Hi(−) : C(A) → A,

since a morphism of complexes induces corresponding morphisms on cohomology objects.

Put another way, an object of C(A) is a Z-graded object

M = ⊕i Mi

of A, equipped with a differential, in other words an endomorphism d: M → M satisfying d2 = 0. The occurrence of differential graded objects in physics is well-known. In mathematics they are also extremely common. In topology one associates to a space X a complex of free abelian groups whose cohomology objects are the cohomology groups of X. In algebra it is often convenient to replace a module over a ring by resolutions of various kinds.

A topological space X may have many triangulations and these lead to different chain complexes. Associating to X a unique equivalence class of complexes, resolutions of a fixed module of a given type will not usually be unique and one would like to consider all these resolutions on an equal footing.

A morphism of complexes f: M → N is a quasi-isomorphism if the induced morphisms on cohomology

Hi(f): Hi(M) → Hi(N) are isomorphisms ∀ i.

Two complexes M and N are said to be quasi-isomorphic if they are related by a chain of quasi-isomorphisms. In fact, it is sufficient to consider chains of length one, so that two complexes M and N are quasi-isomorphic iff there are quasi-isomorphisms

M ← P → N

For example, the chain complex of a topological space is well-defined up to quasi-isomorphism because any two triangulations have a common resolution. Similarly, all possible resolutions of a given module are quasi-isomorphic. Indeed, if

0 → S →f M0 →d0 M1 →d1 M2 → …

is a resolution of a module S, then by definition the morphism of complexes

is a quasi-isomorphism.

The objects of the derived category D(A) of our abelian category A will just be complexes of objects of A, but morphisms will be such that quasi-isomorphic complexes become isomorphic in D(A). In fact we can formally invert the quasi-isomorphisms in C(A) as follows:

There is a category D(A) and a functor Q: C(A) → D(A)

with the following two properties:

(a) Q inverts quasi-isomorphisms: if s: a → b is a quasi-isomorphism, then Q(s): Q(a) → Q(b) is an isomorphism.

(b) Q is universal with this property: if Q′ : C(A) → D′ is another functor which inverts quasi-isomorphisms, then there is a functor F : D(A) → D′ and an isomorphism of functors Q′ ≅ F ◦ Q.

First, consider the category C(A) as an oriented graph Γ, with the objects lying at the vertices and the morphisms being directed edges. Let Γ∗ be the graph obtained from Γ by adding in one extra edge s−1: b → a for each quasi-isomorphism s: a → b. Thus a finite path in Γ∗ is a sequence of the form f1 · f2 ·· · ·· fr−1 · fr where each fi is either a morphism of C(A), or is of the form s−1 for some quasi-isomorphism s of C(A). There is a unique minimal equivalence relation ∼ on the set of finite paths in Γ∗ generated by the following relations:

(a) s · s−1 ∼ idb and s−1 · s ∼ ida for each quasi-isomorphism s: a → b in C(A).

(b) g · f ∼ g ◦ f for composable morphisms f: a → b and g: b → c of C(A).

Define D(A) to be the category whose objects are the vertices of Γ∗ (these are the same as the objects of C(A)) and whose morphisms are given by equivalence classes of finite paths in Γ∗. Define a functor Q: C(A) → D(A) by using the identity morphism on objects, and by sending a morphism f of C(A) to the length one path in Γ∗ defined by f. The resulting functor Q satisfies the conditions of the above lemma.

The second property ensures that the category D(A) of the Lemma is unique up to equivalence of categories. We define the derived category of A to be any of these equivalent categories. The functor Q: C(A) → D(A) is called the localisation functor. Observe that there is a fully faithful functor

J: A → C(A)

which sends an object M to the trivial complex with M in the zeroth position, and a morphism F: M → N to the morphism of complexes

Composing with Q we obtain a functor A → D(A) which we denote by J. This functor J is fully faithful, and so defines an embedding A → D(A). By definition the functor Hi(−): C(A) → A inverts quasi-isomorphisms and so descends to a functor

Hi(−): D(A) → A

establishing that composite functor H0(−) ◦ J is isomorphic to the identity functor on A.

# Embedding Branes in Minkowski Space-Time Dimensions To Decipher Them As Particles Or Otherwise

The physics treatment of Dirichlet branes in terms of boundary conditions is very analogous to that of the “bulk” quantum field theory, and the next step is again to study the renormalization group. This leads to equations of motion for the fields which arise from the open string, namely the data (M, E, ∇). In the supergravity limit, these equations are solved by taking the submanifold M to be volume minimizing in the metric on X, and the connection ∇ to satisfy the Yang-Mills equations.

Like the Einstein equations, the equations governing a submanifold of minimal volume are highly nonlinear, and their general theory is difficult. This is one motivation to look for special classes of solutions; the physical arguments favoring supersymmetry are another. Just as supersymmetric compactification manifolds correspond to a special class of Ricci-flat manifolds, those admitting a covariantly constant spinor, supersymmetry for a Dirichlet brane will correspond to embedding it into a special class of minimal volume submanifolds. Since the physical analysis is based on a covariantly constant spinor, this special class should be defined using the spinor, or else the covariantly constant forms which are bilinear in the spinor.

The standard physical arguments leading to this class are based on the kappa symmetry of the Green-Schwarz world-volume action, in which one finds that the subset of supersymmetry parameters ε which preserve supersymmetry, both of the metric and of the brane, must satisfy

φ ≡ Re εt Γε|M = Vol|M —– (1)

In words, the real part of one of the covariantly constant forms on M must equal the volume form when restricted to the brane.

Clearly dφ = 0, since it is covariantly constant. Thus,

Z(M) ≡ ∫φ —– (2)

depends only on the homology class of M. Thus, it is what physicists would call a “topological charge”, or a “central charge”.

If in addition the p-form φ is dominated by the volume form Vol upon restriction to any p-dimensional subspace V ⊂ Tx X, i.e.,

φ|V ≤ Vol|V —– (3)

then φ will be a calibration in the sense of implying the global statement

φ ≤ ∫Vol —– (4)

for any submanifold M . Thus, the central charge |Z (M)| is an absolute lower bound for Vol(M).

A calibrated submanifold M is now one satisfying (1), thereby attaining the lower bound and thus of minimal volume. Physically these are usually called “BPS branes,” after a prototypical argument of this type due, for magnetic monopole solutions in nonabelian gauge theory.

For a Calabi-Yau X, all of the forms ωp can be calibrations, and the corresponding calibrated submanifolds are p-dimensional holomorphic submanifolds. Furthermore, the n-form Re eΩ for any choice of real parameter θ is a calibration, and the corresponding calibrated submanifolds are called special Lagrangian.

This generalizes to the presence of a general connection on M, and leads to the following two types of BPS branes for a Calabi-Yau X. Let n = dimR M, and let F be the (End(E)-valued) curvature two-form of ∇.

The first kind of BPS D-brane, based on the ωp calibrations, is (for historical reasons) called a “B-type brane”. Here the BPS constraint is equivalent to the following three requirements:

1. M is a p-dimensional complex submanifold of X.
2. The 2-form F is of type (1, 1), i.e., (E, ∇) is a holomorphic vector bundle on M.
3. In the supergravity limit, F satisfies the Hermitian Yang-Mills equation:ω|p−1M ∧ F = c · ω|pMfor some real constant c.
4. F satisfies Im e(ω|M + ils2F)p = 0 for some real constant φ, where ls is the correction.

The second kind of BPS D-brane, based on the Re eΩ calibration, is called an “A-type” brane. The simplest examples of A-branes are the so-called special Lagrangian submanifolds (SLAGs), satisfying

(1) M is a Lagrangian submanifold of X with respect to ω.

(2) F = 0, i.e., the vector bundle E is flat.

(3) Im e Ω|M = 0 for some real constant α.

More generally, one also has the “coisotropic branes”. In the case when E is a line bundle, such A-branes satisfy the following four requirements:

(1)  M is a coisotropic submanifold of X with respect to ω, i.e., for any x ∈ M the skew-orthogonal complement of TxM ⊂ TxX is contained in TxM. Equivalently, one requires ker ωM to be an integrable distribution on M.

(2)  The 2-form F annihilates ker ωM.

(3)  Let F M be the vector bundle T M/ ker ωM. It follows from the first two conditions that ωM and F descend to a pair of skew-symmetric forms on FM, denoted by σ and f. Clearly, σ is nondegenerate. One requires the endomorphism σ−1f : FM → FM to be a complex structure on FM.

(4)  Let r be the complex dimension of FM. r is even and that r + n = dimR M. Let Ω be the holomorphic trivialization of KX. One requires that Im eΩ|M ∧ Fr/2 = 0 for some real constant α.

Coisotropic A-branes carrying vector bundles of higher rank are still not fully understood. Physically, one must also specify the embedding of the Dirichlet brane in the remaining (Minkowski) dimensions of space-time. The simplest possibility is to take this to be a time-like geodesic, so that the brane appears as a particle in the visible four dimensions. This is possible only for a subset of the branes, which depends on which string theory one is considering. Somewhat confusingly, in the type IIA theory, the B-branes are BPS particles, while in IIB theory, the A-branes are BPS particles.

# Contact Geometry and Manifolds

Let M be a manifold of dimension 2n + 1. A contact structure on M is a distribution ξ ⊂ TM of dimension 2n, such that the defining 1-form α satisfies

α ∧ (dα)n ≠ 0 —– (1)

A 1-form α satisfying (1) is said to be a contact form on M. Let α be a contact form on M; then there exists a unique vector field Rα on M such that

α(Rα) = 1, ιRα dα = 0,

where ιRα dα denotes the contraction of dα along Rα. By definition Rα is called the Reeb vector field of the contact form α. A contact manifold is a pair (M, ξ) where M is a 2n + 1-dimensional manifold and ξ is a contact structure. Let (M, ξ) be a contact manifold and fix a defining (contact) form α. Then the 2-form κ = 1/2 dα defines a symplectic form on the contact structure ξ; therefore the pair (ξ, κ) is a symplectic vector bundle over M. A complex structure on ξ is the datum of J ∈ End(ξ) such that J2 = −Iξ.

Let α be a contact form on M, with ξ = ker α and let κ = 1/2 dα. A complex structure J on ξ is said to be κ-calibrated if gJ [x](·, ·) := κ[x](·, Jx ·) is a JxHermitian inner product on ξx for any x ∈ M.

The set of κ-calibrated complex structures on ξ will be denoted by Cα(M). If J is a complex structure on ξ = ker α, then we extend it to an endomorphism of TM by setting

J(Rα) = 0.

Note that such a J satisfies

J2 =−I + α ⊗ Rα

If J is κ-calibrated, then it induces a Riemannian metric g on M given by

g := gJ + α ⊗ α —– (2)

Furthermore the Nijenhuis tensor of J is defined by

NJ (X, Y) = [JX, JY] − J[X, JY] − J[Y, JX] + J2[X, Y] for any X, Y ∈ TM

A Sasakian structure on a 2n + 1-dimensional manifold M is a pair (α, J), where

• α is a contact form;

• J ∈ Cα(M) satisfies NJ = −dα ⊗ Rα

The triple (M, α, J) is said to be a Sasakian manifold. Let (M, ξ) be a contact manifold. A differential r-form γ on M is said to be basic if

ιRα γ = 0, LRα γ = 0,

where L denotes the Lie derivative and Rα is the Reeb vector field of an arbitrary contact form defining ξ. We will denote by ΛrB(M) the set of basic r-forms on (M, ξ). Note that

rB(M) ⊂ Λr+1B(M)

The cohomology HB(M) of this complex is called the basic cohomology of (M, ξ). If (M, α, J) is a Sasakian manifold, then

J(ΛrB(M)) = ΛrB(M), where, as usual, the action of J on r-forms is defined by

Jφ(X1,…, Xr) = φ(JX1,…, JXr)

Consequently ΛrB(M) ⊗ C splits as

ΛrB(M) ⊗ C = ⊕p+q=r Λp,qJ(ξ)

and, according with this gradation, it is possible to define the cohomology groups Hp,qB(M). The r-forms belonging to Λp,qJ(ξ) are said to be of type (p, q) with respect to J. Note that κ = 1/2 dα ∈ Λ1,1J(ξ) and it determines a non-vanishing cohomology class in H1,1B(M). The Sasakian structure (α, J) also induces a natural connection ∇ξ on ξ given by

ξX Y = (∇X Y)ξ if X ∈ ξ

= [Rα, Y] if X = Rα

where the subscript ξ denotes the projection onto ξ. One easily gets

ξX J = 0, ∇ξXgJ = 0, ∇ξX dα = 0, ∇ξX Y − ∇ξY X = [X,Y]ξ,

for any X, Y ∈ TM. Consequently we have Hol(∇ξ) ⊆ U(n).

The basic cohomology class

cB1(M) = 1/2π [ρT] ∈ H1,1B(M)

is called the first basic Chern class of (M, α, J) and, if it vanishes, then (M, α, J) is said to be null-Sasakian.

Furthermore a Sasakian manifold is called α-Einstein if there exist λ, ν ∈ C(M, R) such that

Ric = λg + να ⊗ α, where Ric is the Ricci Tensor.

A submanifold p: L ֒→ M of a 2n + 1-dimensional contact manifold (M, ξ) is said to be Legendrian if :

1) dimRL = n,

2) p(TL) ⊂ ξ

Observe that, if α is a defining form of the contact structure ξ, then condition 2) is equivalent to say that p(α) = 0. Hence Legendrian submanifolds are the analogue of Lagrangian submanifolds in contact geometry.

# Philosophical Isomorphism of Category Theory. Note Quote.

One philosophical reason for categorification is that it refines our concept of ‘sameness’ by allowing us to distinguish between isomorphism and equality. In a set, two elements are either the same or different. In a category, two objects can be ‘the same in a way’ while still being different. In other words, they can be isomorphic but not equal. Even more importantly, two objects can be the same in more than one way, since there can be different isomorphisms between them. This gives rise to the notion of the ‘symmetry group’ of an object: its group of automorphisms.

Consider, for example, the fundamental groupoid Π1(X) of a topological space X: the category with points of X as objects and homotopy classes of paths with fixed endpoints as morphisms. This category captures all the homotopy-theoretic information about X in dimensions ≤ 1. The group of automorphisms of an object x in this category is just the fundamental group π1(X,x). If we decategorify the fundamental groupoid of X, we forget how points in X are connected by paths, remembering only whether they are, and we obtain the set of components of X. This captures only the homotopy 0-type of X.

This example shows how decategorification eliminates ‘higher-dimensional information’ about a situation. Categorification is an attempt to recover this information. This example also suggests that we can keep track of the homotopy 2-type of X if we categorify further and distinguish between paths that are equal and paths that are merely isomorphic (i.e., homotopic). For this we should work with a ‘2-category’ having points of X as objects, paths as morphisms, and certain equivalence classes of homotopies between paths as 2-morphisms. In a marvelous self-referential twist, the definition of ‘2-category’ is simply the categorification of the definition of ‘category’. Like a category, a 2-category has a class of objects, but now for any pair x,y of objects there is no longer a set hom(x,y); instead, there is a category hom(x,y). Objects of hom(x,y) are called morphisms of C, and morphisms between them are called 2-morphisms of C. Composition is no longer a function, but rather a functor:

◦: hom(x, y) × hom(y, z) → hom(x, z)

For any object x there is an identity 1x ∈ hom(x,x). And now we have a choice. On the one hand, we can impose associativity and the left and right unit laws strictly, as equational laws. If we do this, we obtain the definition of ‘strict 2-category’. On the other hand, we can impose them only up to natural isomorphism, with these natural isomorphisms satisfying the coherence. This is clearly more compatible with the spirit of categorification. If we do this, we obtain the definition of ‘weak 2-category’. (Strict 2-categories are traditionally known as ‘2-categories’, while weak 2-categories are known as ‘bicategories’.)

The classic example of a 2-category is Cat, which has categories as objects, functors as morphisms, and natural transformations as 2-morphisms. The presence of 2-morphisms gives Cat much of its distinctive flavor, which we would miss if we treated it as a mere category. Indeed, Mac Lane has said that categories were originally invented, not to study functors, but to study natural transformations! A good example of two functors that are not equal, but only naturally isomorphic, are the identity functor and the ‘double dual’ functor on the category of finite-dimensional vector spaces. Given a topological space X, we can form a 2-category Π>sub>2(X) called the ‘fundamental 2-groupoid’ of X. The objects of this 2-category are the points of X. Given x, y ∈ X, the morphisms from x to y are the paths f: [0,1] → X starting at x and ending at y. Finally, given f, g ∈ hom(x, y), the 2-morphisms from f to g are the homotopy classes of paths in hom(x, y) starting at f and ending at g. Since the associative law for composition of paths holds only up to homotopy, this 2-category is a weak 2-category. If we decategorify the fundamental 2-groupoid of X, we obtain its fundamental groupoid.

From 2-categories it is a short step to dreaming of n-categories and even ω-categories — but it is not so easy to make these dreams into smoothly functioning mathematical tools. Roughly speaking, an n-category should be some sort of algebraic structure having objects, 1-morphisms between objects, 2-morphisms between 1-morphisms, and so on up to n-morphisms. There should be various ways of composing j-morphisms for 1 ≤ j ≤ n, and these should satisfy various laws. As with 2-categories, we can try to impose these laws either strictly or weakly.

Other approaches to n-categories use j-morphisms with other shapes, such as simplices, or opetopes. We believe that there is basically a single notion of weak n-category lurking behind these different approaches. If this is true, they will eventually be shown to be equivalent, and choosing among them will be merely a matter of convenience. However, the precise meaning of ‘equivalence’ here is itself rather subtle and n-categorical in flavor.

The first challenge to any theory of n-categories is to give an adequate treatment of coherence laws. Composition in an n-category should satisfy equational laws only at the top level, between n-morphisms. Any law concerning j-morphisms for j < n should hold only ‘up to equivalence’. Here a n-morphism is defined to be an ‘equivalence’ if it is invertible, while for j < n a j-morphism is recursively defined to be an equivalence if it is invertible up to equivalence. Equivalence is generally the correct substitute for the notion of equality in n-categorical mathematics. When laws are formulated as equivalences, these equivalences should in turn satisfy coherence laws of their own, but again only up to equivalence, and so on. This becomes ever more complicated and unmanageable with increasing n unless one takes a systematic approach to coherence laws.

The second challenge to any theory of n-categories is to handle certain key examples. First, for any n, there should be an (n + 1)-category nCat, whose objects are (small) n-categories, whose morphisms are suitably weakened functors between these, whose 2-morphisms are suitably weakened natural transformations, and so on. Here by ‘suitably weakened’ we refer to the fact that all laws should hold only up to equivalence. Second, for any topological space X, there should be an n-category Πn(X) whose objects are points of X, whose morphisms are paths, whose 2-morphisms are paths of paths, and so on, where we take homotopy classes only at the top level. Πn(X) should be an ‘n-groupoid’, meaning that all its j-morphisms are equivalences for 0 ≤ j ≤ n. We call Πn(X) the ‘fundamental n-groupoid of X’. Conversely, any n-groupoid should determine a topological space, its ‘geometric realization’.

In fact, these constructions should render the study of n-groupoids equivalent to that of homotopy n-types. A bit of the richness inherent in the concept of n-category becomes apparent when we make the following observation: an (n + 1)-category with only one object can be regarded as special sort of n-category. Suppose that C is an (n+1)-category with one object x. Then we can form the n-category C ̃ by re-indexing: the objects of C ̃ are the morphisms of C, the morphisms of C ̃ are the 2-morphisms of C, and so on. The n-categories we obtain this way have extra structure. In particular, since the objects of C ̃ are really morphisms in C from x to itself, we can ‘multiply’ (that is, compose) them.

The simplest example is this: if C is a category with a single object x, C ̃ is the set of endomorphisms of x. This set is actually a monoid. Conversely, any monoid can be regarded as the monoid of endomorphisms of x for some category with one object x. We summarize this situation by saying that ‘a one-object category is a monoid’. Similarly, a one-object 2-category is a monoidal category. It is natural to expect this pattern to continue in all higher dimensions; in fact, it is probably easiest to cheat and define a monoidal n-category to be an (n + 1)-category with one object.

Things get even more interesting when we iterate this process. Given an (n + k)-category C with only one object, one morphism, and so on up to one (k − 1)-morphism, we can form an n-category whose j-morphisms are the (j + k)-morphisms of C. In doing so we obtain a particular sort of n-category with extra structure and properties, which we call a ‘k-tuply monoidal’ n-category. Table below shows what we expect these to be like for low values of n and k. For example, the Eckmann-Hilton argument shows that a 2-category with one object and one morphism is a commutative monoid. Categorifying this argument, one can show that a 3-category with one object and one morphism is a braided monoidal category. Similarly, we expect that a 4-category with one object, one morphism and one 2-morphism is a symmetric monoidal category, though this has not been worked out in full detail, because of our poor understanding of 4-categories. The fact that both braided and symmetric monoidal categories appear in this table seems to explain why both are natural concepts.

In any reasonable approach to n-categories there should be an n-category nCatk whose objects are k-tuply monoidal weak n-categories. One should also be able to treat nCatk as a full sub-(n + k)-category of (n + k)Cat, though even for low n, k this is perhaps not as well known as it should be. Consider for example n = 0, k = 1. The objects of 0Cat1 are one-object categories, or monoids. The morphisms of 0Cat1 are functors between one-object categories, or monoid homomorphisms. But 0Cat1 also has 2-morphisms corresponding to natural transformations.

• Decategorification: (n, k) → (n − 1, k). Let C be a k-tuply monoidal n-category C. Then there should be a k-tuply monoidal (n − 1)-category DecatC whose j-morphisms are the same as those of C for j < n − 1, but whose (n − 1)-morphisms are isomorphism classes of (n − 1)-morphisms of C.

• Discrete categorification: (n, k) → (n + 1, k). There should be a ‘discrete’ k-tuply monoidal (n + 1)-category DiscC having the j-morphisms of C as its j-morphisms for j ≤ n, and only identity (n + 1)-morphisms. The decategorification of DiscC should be C.

• Delooping: (n, k) → (n + 1, k − 1). There should be a (k − 1)-tuply monoidal (n + 1)-category BC with one object obtained by reindexing, the j-morphisms of BC being the (j + 1)-morphisms of C. We use the notation ‘B’ and call BC the ‘delooping’ of C because of its relation to the classifying space construction in topology.

• Looping: (n, k) → (n − 1, k + 1). Given objects x, y in an n-category, there should be an (n − 1)-category hom(x, y). If x = y this should be a monoidal (n−1)-category, and we denote it as end(x). For k > 0, if 1 denotes the unit object of the k-tuply monoidal n-category C, end(1) should be a (k + 1)-tuply monoidal (n − 1)-category. We call this process ‘looping’, and denote the result as ΩC, because of its relation to loop space construction in topology. For k > 0, looping should extend to an (n + k)-functor Ω: nCatk → (n − 1)Catk+1. The case k = 0 is a bit different: we should be able to loop a ‘pointed’ n-category, one having a distinguished object x, by letting ΩC = end(x). In either case, the j-morphisms of ΩC correspond to certain (j − 1)-morphisms of C.

• Forgetting monoidal structure: (n, k) → (n, k−1). By forgetting the kth level of monoidal structure, we should be able to think of C as a (k−1)-tuply monoidal n-category FC. This should extend to an n-functor F: nCatk → nCatk−1.

• Stabilization: (n, k) → (n, k + 1). Though adjoint n-functors are still poorly understood, there should be a left adjoint to forgetting monoidal structure, which is called ‘stabilization’ and denoted by S: nCatk → nCatk+1.

• Forming the generalized center: (n,k) → (n,k+1). Thinking of C as an object of the (n+k)-category nCatk, there should be a (k+1)-tuply monoidal n-category ZC, the ‘generalized center’ of C, given by Ωk(end(C)). In other words, ZC is the largest sub-(n + k + 1)-category of (n + k)Cat having C as its only object, 1C as its only morphism, 11C as its only 2-morphism, and so on up to dimension k. This construction gets its name from the case n = 0, k = 1, where ZC is the usual center of the monoid C. Categorifying leads to the case n = 1, k = 1, which gives a very important construction of braided monoidal categories from monoidal categories. In particular, when C is the monoidal category of representations of a Hopf algebra H, ZC is the braided monoidal category of representations of the quantum double D(H).

# Quantum Groupoid

A (finite) quantum groupoid over k is a finite-dimensional k-vector space H with the structures of an associative algebra (H, m, 1) with multiplication m : H ⊗k H → H and unit 1 ∈ H and a coassociative coalgebra (H, ∆, ε) with comultiplication ∆ : H → H ⊗k H and counit ε : H → k such that:

1. The comultiplication ∆ is a (not necessarily unit-preserving) homomorphism of algebras such that

(∆ ⊗ id)∆(1) = (∆(1) ⊗ 1) (1 ⊗ ∆(1)) = (1 ⊗ ∆(1)) (∆(1) ⊗ 1) —– (1)

2.  The counit is a k-linear map satisfying the identity:

ε(fgh) = ε(fg(1))ε(g(2)h) = ε(fg(2))ε(g(1)h), (2) ∀ f, g, h ∈ H —– (2)

3.   There is an algebra and coalgebra anti-homomorphism S : H → H, called an antipode, such that, ∀ h ∈ H ,

m(id ⊗ S) ∆(h) = (ε ⊗ id) ∆(1)(h ⊗ 1) —– (3)

m(S ⊗ id) ∆(h) = (id ⊗ ε)(1 ⊗ h) ∆(1) —– (4)

A quantum groupoid is a Hopf algebra iff one of the following equivalent conditions holds: (i) the comultiplication is unit preserving or (ii) the counit is a homomorphism of algebras.

A morphism of quantum groupoids is a map between them which is both an algebra and a coalgebra morphism preserving unit and counit and commuting with the antipode. The image of such a morphism is clearly a quantum groupoid. The tensor product of two quantum groupoids is defined in an obvious way.

The set of axioms is self-dual. This allows to define a natural quantum groupoid  structure on the dual vector space H’ = Homk (H, k) by “reversing the arrows”:

⟨h,φ ψ⟩ = ∆(h), φ ⊗ ψ —– (5)

⟨g ⊗ h, ∆'(φ)⟩ = ⟨gh, φ⟩ —– (6)

⟨h, S'(φ)⟩ = ⟨S(h), φ⟩ —– (7)

∀ φ, ψ ∈ H’, g, h ∈ H. The unit 1ˆ ∈ H’ is ε and counit ε’ is φ → ⟨φ,1⟩. The linear endomorphisms of H defined by

h → m(id ⊗ S) ∆(h), h → m(S ⊗ id) ∆(h) —– (8)

are called the target and source counital maps and denoted εt and εs, respectively.

From axioms (3) and (4),

εt(h) = (ε ⊗ id) ∆(1)(h ⊗ 1), εs(h) = (id ⊗ ε) (1 ⊗ h)∆(1) . (9)

In the Hopf algebra case εt(h) = εs(h) = ε(h)1.

We have S ◦ εs = εt ◦ S and εs ◦ S = S ◦ εt. The images of these maps εt and εs

Ht = εt (H) = {h ∈ H | ∆(h) =∆(1)(h ⊗ 1)} —– (10)

Hs = εs (H) = {h ∈ H | ∆(h) = (1⊗h) ∆(1)} —– (11)

are subalgebras of H, called the target (respectively source) counital subalgebras. They play the role of ground algebras for H. They commute with each other and

Ht = {(φ ⊗ id) ∆(1)|φ ∈ H’,

Hs = (id ⊗ φ) ∆(1)| φ ∈ H’,

i.e., Ht (respectively Hs) is generated by the right (respectively left) tensorands of ∆(1). The restriction of S defines an algebra anti-isomorphism between Ht and Hs. Any morphism H → K of quantum groupoids preserves counital subalgebras, i.e., Ht ≅ Kt and Hs ≅ Ks.

In what follows we will use the Sweedler arrows, writing ∀ h ∈ H , φ ∈ H’:

h ⇀ φ = φ(1)⟨h, φ(2)⟩,

φ ↼ h = ⟨h, φ(1)⟩φ(2) —– (12)

∀ h ∈ H, φ ∈ H’. Then the map z → (z ⇀ ε) is an algebra isomorphism between Ht and H. Similarly, the map y → (ε ↼ y) is an algebra isomorphism between H and H’t. Thus, the counital subalgebras of H’ are canonically anti-isomorphic to those of H. A quantum groupoid H is called connected if Hs ∩ Z(H) = k, or, equivalently, Ht ∩ Z(H ) = k, where Z(H) denotes the center of H. A k-algebra A is separable if the multiplication epimorphism m : A ⊗k A → A has a right inverse as an A − A bimodule homomorphism. When the characteristic of k is 0, this is equivalent to the existence of a separability element e ∈ A ⊗k A such that m(e) = 1 and (a ⊗ 1)e = e(1 ⊗ a), (1 ⊗ a)e = e(a ⊗ 1) ∀ a ∈ A. The counital subalgebras Ht and Hs are separable, with separability elements et = (S ⊗ id)∆(1) and es = (id ⊗S)∆(1), respectively. Observe that the adjoint actions of 1 ∈ H give rise to non-trivial maps

H → H : h → 1(1)hS(1(2)) = Adl1(h), h → S(1(1))h1(2) = Adr1(h), h ∈ H —– (13) …….