# The Case of Morphisms of Representation Corresponding to A-Module Holomorphisms. Part 2 Representations of a quiver can be interpreted as modules over a non-commutative algebra A(Q) whose elements are linear combinations of paths in Q.

Let Q be a quiver. A non-trivial path in Q is a sequence of arrows am…a0 such that h(ai−1) = t(ai) for i = 1,…, m: The path is p = am…a0. Writing t(p) = t(a0) and saying that p starts at t(a0) and, similarly, writing h(p) = h(am) and saying that p finishes at h(am). For each vertex i ∈ Q0, we denote by ei the trivial path which starts and finishes at i. Two paths p and q are compatible if t(p) = h(q) and, in this case, the composition pq can defined by juxtaposition of p and q. The length l(p) of a path is the number of arrows it contains; in particular, a trivial path has length zero.

The path algebra A(Q) of a quiver Q is the complex vector space with basis consisting of all paths in Q, equipped with the multiplication in which the product pq of paths p and q is defined to be the composition pq if t(p) = h(q), and 0 otherwise. Composition of paths is non-commutative; in most cases, if p and q can be composed one way, then they cannot be composed the other way, and even if they can, usually pq ≠ qp. Hence the path algebra is indeed non-commutative.

Let us define Al ⊂ A to be the subspace spanned by paths of length l. Then A = ⊕l≥0Al is a graded C-algebra. The subring A0 ⊂ A spanned by the trivial paths ei is a semisimple ring in which the elements ei are orthogonal idempotents, in other words eiej = ei when i = j, and 0 otherwise. The algebra A is finite-dimensional precisely if Q has no directed cycles.

The category of finite-dimensional representations of a quiver Q is isomorphic to the category of finitely generated left A(Q)-modules. Let (V, φ) be a representation of Q. We can then define a left module V over the algebra A = A(Q) as follows: as a vector space it is

V = ⊕i∈Q0 Vi

and the A-module structure is extended linearly from

eiv = v, v ∈ Mi

= 0, v ∈ Mj for j ≠ i

for i ∈ Qand

av = φa(vt(a)), v ∈ Vt(a)

= 0, v ∈ Vj for j ≠ t(a)

for a ∈ Q1. This construction can be inverted as follows: given a left A-module V, we set Vi = eiV for i ∈ Q0 and define the map φa: Vt(a) → Vh(a) by v ↦ a(v). Morphisms of representations of (Q, V) correspond to A-module homomorphisms.

# Coarse Philosophies of Coarse Embeddabilities: Metric Space Conjectures Act Algorithmically On Manifolds – Thought of the Day 145.0 A coarse structure on a set X is defined to be a collection of subsets of X × X, called the controlled sets or entourages for the coarse structure, which satisfy some simple axioms. The most important of these states that if E and F are controlled then so is

E ◦ F := {(x, z) : ∃y, (x, y) ∈ E, (y, z) ∈ F}

Consider the metric spaces Zn and Rn. Their small-scale structure, their topology is entirely different, but on the large scale they resemble each other closely: any geometric configuration in Rn can be approximated by one in Zn, to within a uniformly bounded error. We think of such spaces as “coarsely equivalent”. The other axioms require that the diagonal should be a controlled set, and that subsets, transposes, and (finite) unions of controlled sets should be controlled. It is accurate to say that a coarse structure is the large-scale counterpart of a uniformity than of a topology.

Coarse structures and coarse spaces enjoy a philosophical advantage over coarse metric spaces, in that, all left invariant bounded geometry metrics on a countable group induce the same metric coarse structure which is therefore transparently uniquely determined by the group. On the other hand, the absence of a natural gauge complicates the notion of a coarse family, while it is natural to speak of sets of uniform size in different metric spaces it is not possible to do so in different coarse spaces without imposing additional structure.

Mikhail Leonidovich Gromov introduced the notion of coarse embedding for metric spaces. Let X and Y be metric spaces.

A map f : X → Y is said to be a coarse embedding if ∃ nondecreasing functions ρ1 and ρ2 from R+ = [0, ∞) to R such that

• ρ1(d(x,y)) ≤ d(f(x),f(y)) ≤ ρ2(d(x,y)) ∀ x, y ∈ X.
• limr→∞ ρi(r) = +∞ (i=1, 2).

Intuitively, coarse embeddability of a metric space X into Y means that we can draw a picture of X in Y which reflects the large scale geometry of X. In early 90’s, Gromov suggested that coarse embeddability of a discrete group into Hilbert space or some Banach spaces should be relevant to solving the Novikov conjecture. The connection between large scale geometry and differential topology and differential geometry, such as the Novikov conjecture, is built by index theory. Recall that an elliptic differential operator D on a compact manifold M is Fredholm in the sense that the kernel and cokernel of D are finite dimensional. The Fredholm index of D, which is defined by

index(D) = dim(kerD) − dim(cokerD),

has the following fundamental properties:

(1) it is an obstruction to invertibility of D;

(2) it is invariant under homotopy equivalence.

The celebrated Atiyah-Singer index theorem computes the Fredholm index of elliptic differential operators on compact manifolds and has important applications. However, an elliptic differential operator on a noncompact manifold is in general not Fredholm in the usual sense, but Fredholm in a generalized sense. The generalized Fredholm index for such an operator is called the higher index. In particular, on a general noncompact complete Riemannian manifold M, John Roe (Coarse Cohomology and Index Theory on Complete Riemannian Manifolds) introduced a higher index theory for elliptic differential operators on M.

The coarse Baum-Connes conjecture is an algorithm to compute the higher index of an elliptic differential operator on noncompact complete Riemannian manifolds. By the descent principal, the coarse Baum-Connes conjecture implies the Novikov higher signature conjecture. Guoliang Yu has proved the coarse Baum-Connes conjecture for bounded geometry metric spaces which are coarsely embeddable into Hilbert space. The metric spaces which admit coarse embeddings into Hilbert space are a large class, including e.g. all amenable groups and hyperbolic groups. In general, however, there are counterexamples to the coarse Baum-Connes conjecture. A notorious one is expander graphs. On the other hand, the coarse Novikov conjecture (i.e. the injectivity part of the coarse Baum-Connes conjecture) is an algorithm of determining non-vanishing of the higher index. Kasparov-Yu have proved the coarse Novikov conjecture for spaces which admit coarse embeddings into a uniformly convex Banach space.

# Categories of Pointwise Convergence Topology: Theory(ies) of Bundles.

Let H be a fixed, separable Hilbert space of dimension ≥ 1. Lets denote the associated projective space of H by P = P(H). It is compact iff H is finite-dimensional. Let PU = PU(H) = U(H)/U(1) be the projective unitary group of H equipped with the compact-open topology. A projective bundle over X is a locally trivial bundle of projective spaces, i.e., a fibre bundle P → X with fibre P(H) and structure group PU(H). An application of the Banach-Steinhaus theorem shows that we may identify projective bundles with principal PU(H)-bundles and the pointwise convergence topology on PU(H).

If G is a topological group, let GX denote the sheaf of germs of continuous functions G → X, i.e., the sheaf associated to the constant presheaf given by U → F(U) = G. Given a projective bundle P → X and a sufficiently fine good open cover {Ui}i∈I of X, the transition functions between trivializations P|Ui can be lifted to bundle isomorphisms gij on double intersections Uij = Ui ∩ Uj which are projectively coherent, i.e., over each of the triple intersections Uijk = Ui ∩ Uj ∩ Uk the composition gki gjk gij is given as multiplication by a U(1)-valued function fijk : Uijk → U(1). The collection {(Uij, fijk)} defines a U(1)-valued two-cocycle called a B-field on X,which represents a class BP in the sheaf cohomology group H2(X, U(1)X). On the other hand, the sheaf cohomology H1(X, PU(H)X) consists of isomorphism classes of principal PU(H)-bundles, and we can consider the isomorphism class [P] ∈ H1(X,PU(H)X).

There is an isomorphism

H1(X, PU(H)X) → H2(X, U(1)X) provided by the

boundary map [P] ↦ BP. There is also an isomorphism

H2(X, U(1)X) → H3(X, ZX) ≅ H3(X, Z)

The image δ(P) ∈ H3(X, Z) of BP is called the Dixmier-Douady invariant of P. When δ(P) = [H] is represented in H3(X, R) by a closed three-form H on X, called the H-flux of the given B-field BP, we will write P = PH. One has δ(P) = 0 iff the projective bundle P comes from a vector bundle E → X, i.e., P = P(E). By Serre’s theorem every torsion element of H3(X,Z) arises from a finite-dimensional bundle P. Explicitly, consider the commutative diagram of exact sequences of groups given by where we identify the cyclic group Zn with the group of n-th roots of unity. Let P be a projective bundle with structure group PU(n), i.e., with fibres P(Cn). Then the commutative diagram of long exact sequences of sheaf cohomology groups associated to the above commutative diagram of groups implies that the element BP ∈ H2(X, U(1)X) comes from H2(X, (Zn)X), and therefore its order divides n.

One also has δ(P1 ⊗ P2) = δ(P1) + δ(P2) and δ(P) = −δ(P). This follows from the commutative diagram and the fact that P ⊗ P = P(E) where E is the vector bundle of Hilbert-Schmidt endomorphisms of P . Putting everything together, it follows that the cohomology group H3(X, Z) is isomorphic to the group of stable equivalence classes of principal PU(H)-bundles P → X with the operation of tensor product.

We are now ready to define the twisted K-theory of the manifold X equipped with a projective bundle P → X, such that Px = P(H) ∀ x ∈ X. We will first give a definition in terms of Fredholm operators, and then provide some equivalent, but more geometric definitions. Let H be a Z2-graded Hilbert space. We define Fred0(H) to be the space of self-adjoint degree 1 Fredholm operators T on H such that T2 − 1 ∈ K(H), together with the subspace topology induced by the embedding Fred0(H) ֒→ B(H) × K(H) given by T → (T, T2 − 1) where the algebra of bounded linear operators B(H) is given the compact-open topology and the Banach algebra of compact operators K = K(H) is given the norm topology.

Let P = PH → X be a projective Hilbert bundle. Then we can construct an associated bundle Fred0(P) whose fibres are Fred0(H). We define the twisted K-theory group of the pair (X, P) to be the group of homotopy classes of maps

K0(X, H) = [X, Fred0(PH)]

The group K0(X, H) depends functorially on the pair (X, PH), and an isomorphism of projective bundles ρ : P → P′ induces a group isomorphism ρ∗ : K0(X, H) → K0(X, H′). Addition in K0(X, H) is defined by fibre-wise direct sum, so that the sum of two elements lies in K0(X, H2) with [H2] = δ(P ⊗ P(C2)) = δ(P) = [H]. Under the isomorphism H ⊗ C2 ≅ H, there is a projective bundle isomorphism P → P ⊗ P(C2) for any projective bundle P and so K0(X, H2) is canonically isomorphic to K0(X, H). When [H] is a non-torsion element of H3(X, Z), so that P = PH is an infinite-dimensional bundle of projective spaces, then the index map K0(X, H) → Z is zero, i.e., any section of Fred0(P) takes values in the index zero component of Fred0(H).

Let us now describe some other models for twisted K-theory which will be useful in our physical applications later on. A definition in algebraic K-theory may given as follows. A bundle of projective spaces P yields a bundle End(P) of algebras. However, if H is an infinite-dimensional Hilbert space, then one has natural isomorphisms H ≅ H ⊕ H and

End(H) ≅ Hom(H ⊕ H, H) ≅ End(H) ⊕ End(H)

as left End(H)-modules, and so the algebraic K-theory of the algebra End(H) is trivial. Instead, we will work with the Banach algebra K(H) of compact operators on H with the norm topology. Given that the unitary group U(H) with the compact-open topology acts continuously on K(H) by conjugation, to a given projective bundle PH we can associate a bundle of compact operators EH → X given by

EH = PH ×PU K

with δ(EH) = [H]. The Banach algebra AH := C0(X, EH) of continuous sections of EH vanishing at infinity is the continuous trace C∗-algebra CT(X, H). Then the twisted K-theory group K(X, H) of X is canonically isomorphic to the algebraic K-theory group K(AH).

We will also need a smooth version of this definition. Let AH be the smooth subalgebra of AH given by the algebra CT(X, H) = C(X, L1PH),

where L1PH = PH ×PUL1. Then the inclusion CT(X, H) → CT(X, H) induces an isomorphism KCT(X, H) → KCT(X, H) of algebraic K-theory groups. Upon choosing a bundle gerbe connection, one has an isomorphism KCT(X, H) ≅ K(X, H) with the twisted K-theory defined in terms of projective Hilbert bundles P = PH over X.

Finally, we propose a general definition based on K-theory with coefficients in a sheaf of rings. It parallels the bundle gerbe approach to twisted K-theory. Let B be a Banach algebra over C. Let E(B, X) be the category of continuous B-bundles over X, and let C(X, B) be the sheaf of continuous maps X → B. The ring structure in B equips C(X, B) with the structure of a sheaf of rings over X. We can therefore consider left (or right) C(X, B)-modules, and in particular the category LF C(X, B) of locally free C(X, B)-modules. Using the functor in the usual way, for X an equivalence of additive categories

E(B, X) ≅ LF (C(X, B))

Since these are both additive categories, we can apply the Grothendieck functor to each of them and obtain the abelian groups K(LF(C(X, B))) and K(E(B, X)). The equivalence of categories ensures that there is a natural isomorphism of groups

K(LF (C(X, B))) ≅ K(E(B, X))

This motivates the following general definition. If A is a sheaf of rings over X, then we define the K-theory of X with coefficients in A to be the abelian group

K(X, A) := K LF(A)

For example, consider the case B = C. Then C(X, C) is just the sheaf of continuous functions X → C, while E(C, X) is the category of complex vector bundles over X. Using the isomorphism of K-theory groups we then have

K(X, C(X,C)) := K(LF (C(X, C))) ≅ K (E(C, X)) = K0(X)

The definition of twisted K-theory uses another special instance of this general construction. For this, we define an Azumaya algebra over X of rank m to be a locally trivial algebra bundle over X with fibre isomorphic to the algebra of m × m complex matrices over C, Mm(C). An example is the algebra End(E) of endomorphisms of a complex vector bundle E → X. We can define an equivalence relation on the set A(X) of Azumaya algebras over X in the following way. Two Azumaya algebras A, A′ are called equivalent if there are vector bundles E, E′ over X such that the algebras A ⊗ End(E), A′ ⊗ End(E′) are isomorphic. Then every Azumaya algebra of the form End(E) is equivalent to the algebra of functions C(X) on X. The set of all equivalence classes is a group under the tensor product of algebras, called the Brauer group of X and denoted Br(X). By Serre’s theorem there is an isomorphism

δ : Br(X) → tor(H3(X, Z))

where tor(H3(X, Z)) is the torsion subgroup of H3(X, Z).

If A is an Azumaya algebra bundle, then the space of continuous sections C(X, A) of X is a ring and we can consider the algebraic K-theory group K(A) := K0(C(X,A)) of equivalence classes of projective C(X, A)-modules, which depends only on the equivalence class of A in the Brauer group. Under the equivalence, we can represent the Brauer group Br(X) as the set of isomorphism classes of sheaves of Azumaya algebras. Let A be a sheaf of Azumaya algebras, and LF(A) the category of locally free A-modules. Then as above there is an isomorphism

K(X, C(X, A)) ≅ K Proj (C(X, A))

where Proj (C(X, A)) is the category of finitely-generated projective C(X, A)-modules. The group on the right-hand side is the group K(A). For given [H] ∈ tor(H3(X, Z)) and A ∈ Br(X) such that δ(A) = [H], this group can be identified as the twisted K-theory group K0(X, H) of X with twisting A. This definition is equivalent to the description in terms of bundle gerbe modules, and from this construction it follows that K0(X, H) is a subgroup of the ordinary K-theory of X. If δ(A) = 0, then A is equivalent to C(X) and we have K(A) := K0(C(X)) = K0(X). The projective C(X, A)-modules over a rank m Azumaya algebra A are vector bundles E → X with fibre Cnm ≅ (Cm)⊕n, which is naturally an Mm(C)-module.

# Category of a Quantum Groupoid For a quantum groupoid H let Rep(H) be the category of representations of H, whose objects are finite-dimensional left H -modules and whose morphisms are H -linear homomorphisms. We shall show that Rep(H) has a natural structure of a monoidal category with duality.

For objects V, W of Rep(H) set

V ⊗ W = x ∈ V ⊗k W|x = ∆(1) · x ⊂ V ⊗k W —– (1)

with the obvious action of H via the comultiplication ∆ (here ⊗k denotes the usual tensor product of vector spaces). Note that ∆(1) is an idempotent and therefore V ⊗ W = ∆(1) × (V ⊗k W). The tensor product of morphisms is the restriction of usual tensor product of homomorphisms. The standard associativity isomorphisms (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W ) are functorial and satisfy the pentagon condition, since ∆ is coassociative. We will suppress these isomorphisms and write simply U ⊗ V ⊗ W.

The target counital subalgebra Ht ⊂ H has an H-module structure given by h · z = εt(hz),where h ∈ H, z ∈ Ht.

Ht is the unit object of Rep(H).

Define a k-linear homomorphism lV : Ht ⊗ V → V by lV(1(1) · z ⊗ 1(2) · v) = z · v, z ∈ Ht, v ∈ V.

This map is H-linear, since

lV h · (1(1) · z ⊗ 1(2) · v) = lV(h(1) · z ⊗ h(2) · v) = εt(h(1)z)h(2) · v = hz · v = h · lV (1(1) · z ⊗ 1(2) · v),

∀ h ∈ H. The inverse map l−1V: → Ht ⊗ V is given by V

l−1V(v) = S(1(1)) ⊗ (1(2) · v) = (1(1) · 1) ⊗ (1(2) · v)

The collection {lV}V gives a natural equivalence between the functor Ht ⊗ (·) and the identity functor. Indeed, for any H -linear homomorphism f : V → U we have:

lU ◦ (id ⊗ f)(1(1) · z ⊗ 1(2) · v) = lU 1(1) · z ⊗ 1(2) · f(v) = z · f(v) = f(z·v) = f ◦ lV(1(1) · z ⊗ 1(2) · v)

Similarly, the k-linear homomorphism rV : V ⊗ Ht → V defined by rV(1(1) · v ⊗ 1(2) · z) = S(z) · v, z ∈ Ht, v ∈ V, has the inverse r−1V(v) = 1(1) · v ⊗ 1(2) and satisfies the necessary properties.

Finally, we can check the triangle axiom idV ⊗ lW = rV ⊗ idW : V ⊗ Ht ⊗ W → V ⊗ W ∀ objects V, W of Rep(H). For v ∈ V, w ∈ W we have

(idV ⊗ lW)(1(1) · v ⊗ 1′(1)1(2) · z ⊗ 1′(2) · w)

= 1(1) · v ⊗ 1′(2)z · w) = 1(1)S(z) · v ⊗ 1(2) · w

=(rV ⊗ idW) (1′(1) · v ⊗ 1′(2) 1(1) · z ⊗ 1(2) · w),

therefore, idV ⊗ lW = rV ⊗ idW

Using the antipode S of H, we can provide Rep(H) with a duality. For any object V of Rep(H), define the action of H on V = Homk(V, k) by

(h · φ)(v) = φ S(h) · v —– (2)

where h ∈ H , v ∈ V , φ ∈ V. For any morphism f : V → W , let f: W → V be the morphism dual to f. For any V in Rep(H), we define the duality morphisms dV : V ⊗ V → Ht, bV : Ht → V ⊗ V∗ as follows. For ∑j φj ⊗ vj ∈ V* ⊗ V, set

dV(∑j φj ⊗ vj)  = ∑j φj (1(1) · vj) 1(2) —– (3)

Let {fi}i and {ξi}i be bases of V and V, respectively, dual to each other. The element ∑i fi ⊗ ξi does not depend on choice of these bases; moreover, ∀ v ∈ V, φ ∈ V one has φ = ∑i φ(fi) ξi and v = ∑i fi ξi (v). Set

bV(z) = z · (∑i fi ⊗ ξi) —– (4)

The category Rep(H) is a monoidal category with duality. We know already that Rep(H) is monoidal, it remains to prove that dV and bV are H-linear and satisfy the identities

(idV ⊗ dV)(bV ⊗ idV) = idV, (dV ⊗ idV)(idV ⊗ bV) = idV.

Take ∑j φj ⊗ vj ∈ V ⊗ V, z ∈ Ht, h ∈ H. Using the axioms of a quantum groupoid, we have

h · dV(∑j φj ⊗ vj) = ((∑j φj (1(1) · vj) εt(h1(2))

= (∑j φj ⊗ εs(1(1)h) · vj 1(2)j φj S(h(1))1(1)h(2) · vj 1(2)

= (∑j h(1) · φj )(1(1) · (h(2) · vj))1(2)

= (∑j dV(h(1) · φj  ⊗ h(2) · vj) = dV(h · ∑j φj ⊗ vj)

therefore, dV is H-linear. To check the H-linearity of bV we have to show that h · bV(z) =

bV (h · z), i.e., that

i h(1)z · fi ⊗ h(2) · ξi = ∑i 1(1) εt(hz) · fi ⊗ 1(2) · ξi

Since both sides of the above equality are elements of V ⊗k V, evaluating the second factor on v ∈ V, we get the equivalent condition

h(1)zS(h(2)) · v = 1(1)εt (hz)S(1(2)) · v, which is easy to check. Thus, bV is H-linear.

Using the isomorphisms lV and rV identifying Ht ⊗ V, V ⊗ Ht, and V, ∀ v ∈ V and φ ∈ V we have:

(idV ⊗ dV)(bV ⊗ idV)(v)

=(idV ⊗ dV)bV(1(1) · 1) ⊗ 1(2) · v

= (idV ⊗ dV)bV(1(2)) ⊗ S−1(1(1)) · v

= ∑i (idV ⊗ dV) 1(2) · fi ⊗ 1(3) · ξi ⊗ S−1 (1(1)) · v

= ∑1(2) · fi ⊗ 1(3) · ξi (1′(1)S-1 (1(1)) · v) 1′(2)

= 1(2) S(1(3)) 1′(1) S-1 (1(1)) · v ⊗ 1′(2) = v

(dV ⊗ idV)(idV ⊗ bV)(φ)

= (dV ⊗ idV) 1(1) · φ ⊗ bV(1(2))

= ∑i (dV ⊗ idV)(1(1) · φ ⊗ 1(2) · 1(2) · 1(3) · ξi )

= ∑i (1(1) · φ (1′(1)1(2) · fi)1′(2) ⊗ 1(3) · ξi

= 1′(2) ⊗ 1(3)1(1) S(1′(1)1(2)) · φ = φ,

QED.

# Emancipating Microlinearity from within a Well-adapted Model of Synthetic Differential Geometry towards an Adequately Restricted Cartesian Closed Category of Frölicher Spaces. Thought of the Day 15.0 Differential geometry of finite-dimensional smooth manifolds has been generalized by many authors to the infinite-dimensional case by replacing finite-dimensional vector spaces by Hilbert spaces, Banach spaces, Fréchet spaces or, more generally, convenient vector spaces as the local prototype. We know well that the category of smooth manifolds of any kind, whether finite-dimensional or infinite-dimensional, is not cartesian closed, while Frölicher spaces, introduced by Frölicher, do form a cartesian closed category. It seems that Frölicher and his followers do not know what a kind of Frölicher space, besides convenient vector spaces, should become the basic object of research for infinite-dimensional differential geometry. The category of Frölicher spaces and smooth mappings should be restricted adequately to a cartesian closed subcategory. Synthetic differential geometry is differential geometry with a cornucopia of nilpotent infinitesimals. Roughly speaking, a space of nilpotent infinitesimals of some kind, which exists only within an imaginary world, corresponds to a Weil algebra, which is an entity of the real world. The central object of study in synthetic differential geometry is microlinear spaces. Although the notion of a manifold (=a pasting of copies of a certain linear space) is defined on the local level, the notion of microlinearity is defined absolutely on the genuinely infinitesimal level. What we should do so as to get an adequately restricted cartesian closed category of Frölicher spaces is to emancipate microlinearity from within a well-adapted model of synthetic differential geometry.

Although nilpotent infinitesimals exist only within a well-adapted model of synthetic differential geometry, the notion of Weil functor was formulated for finite-dimensional manifolds and for infinite-dimensional manifolds. This is the first step towards microlinearity for Frölicher spaces. Therein all Frölicher spaces which believe in fantasy that all Weil functors are really exponentiations by some adequate infinitesimal objects in imagination form a cartesian closed category. This is the second step towards microlinearity for Frölicher spaces. Introducing the notion of “transversal limit diagram of Frölicher spaces” after the manner of that of “transversal pullback” is the third and final step towards microlinearity for Frölicher spaces. Just as microlinearity is closed under arbitrary limits within a well-adapted model of synthetic differential geometry, microlinearity for Frölicher spaces is closed under arbitrary transversal limits.

# Frobenius Algebras Theorem:

To give an open string theory is equivalent to giving a Frobenius algebra A inside Vect. To give a closed string theory is equivalent to giving a commutative Frobenius algebra B inside Vect.

The algebra A (B) is defined on the vector space which is the image under Z of the interval I (circle S1). To prove that a open/closed string theory defines a Frobenius algebra on these vector spaces is easy, especially after one reformulates the definition of a Frobenius algebra in a categorical or ‘topological’ way. To prove the converse, that every Frobenius algebra arises as Z(I) or Z(S1) for some open/closed Topological Quantum Field Theory (TQFT) Z is the more interesting result. There are three different ways of proving this fact.

The first and perhaps most modern way (elegantly set forth in Kock’s work) is to express 2Cob and OCob using generators and relations, and to use a result of Abrams work, which formulates the axioms for a Frobenius algebra in exactly the same way. The second way is to use the Atiyah-style definition of a TQFT, where the burden of proof is to show that, given a Frobenius algebra A, one can define the vectors Z(M) ∈ Z(∂M) in a consistent way, i.e. the definition is independent of the cutting of M into smaller pieces (this is called consistency of the sewing in conformal field theory). The third way has been implicitly suggested by Moore is to take advantage of the fact that it is relatively harmless to consider 2d cobordisms as embedded inside R3.

Definition:

Frobenius algebras are classical algebras that were once, shamefully, called ‘Frobeniusean algebras’ in honour of the Prussian mathematician Georg Frobenius. They have many equivalent definitions; but before we list them it is worthwhile to record the following fact.

Lemma:

Suppose A is an arbitrary vector space equipped with a bilinear pairing ( , ) : A ⊗ A → C. Then the following are equivalent:

1. (a)  A is finite dimensional and the pairing is nondegenerate; i.e. A is finite dimensional and the map A → A∗ which sends v → (v, ·) is an isomorphism.
2. (b)  A is self dual in the rigid monoidal sense; i.e. there exists a copairing i : C → A ⊗ A which is dual to the pairing e : A ⊗ A → C given by e(a, b) = ε(ab).

Proof:

(a) ⇒ (b). Choose a basis (e1, . . . , en) of A. Then by assumption the functionals (ei, ·) are a basis for A∗. Then there exist vectors e1,…en in A such that (ei, ej) = δji. Define the copairing i by setting

1 →  ∑i ei ⊗ ei

Then a general vector v = λiei goes through the composite V →i⊗id V ⊗ V ⊗ V →e⊗id V – as:

v = λiei → λiej ⊗ ej ⊗ ei → λiej(ej, ei) = λiei = v —– (1)

Similarly, w = λiei goes through the composite V →id⊗i V ⊗ V ⊗ V →e⊗id V as:

w = λiei → λiei ⊗ ej ⊗ ej → λi(ei, ej)ej = λiei = w —– (2)

(b) ⇒ (a) . The  copairing  i  singles out a vector in A ⊗ A b y 1 → ∑ni ei ⊗ ei for some vectors ei, ei ∈ A and some number n (note that we have not used finite dimensionality here). Now take an arbitrary v ∈ A and send it through the composite V →i⊗id V ⊗ V ⊗ V →e⊗id V:

v → ei ⊗ ei ⊗ v → ei(ei, v) —– (3)

By assumption this must be equal to v. This shows that (e1, . . . , en) spans A, so A is finite dimensional. Now we show that v → (v, ·) is injective, and hence an isomorphism. Suppose (v, ·) is the zero functional. Then in particular (v, ei) = 0 ∀ i. But these scalars are exactly the coordinates in the ‘basis’ (e1, . . . , en), so that v = 0.

This lemma translates the algebraic notion of nondegeneracy into category language, and from now on we shall use the two meanings interchangeably. It also makes explicit that a nondegenerate pairing allows one to construct, from a basis (e1, . . . , en) for A, a corresponding dual basis (e1, . . . , en), which satisfies e(ei, ej) = δij,and which can be recovered from the decomposition  i(1) = ∑iei ⊗ ei

A Frobenius algebra is

(a)  A finite dimensional algebra A equipped with a nondegenerate form (also called trace) ε : A → C.

(b)  A finite dimensional algebra (A, β) equipped with a pairing β : A ⊗ A → C which is nondegenerate and associative.

(c)  A finite dimensional algebra (A, γ) equipped with a left algebra isomorphism to its dual γ : A → A∗.

Observe that if A is an algebra, then there is a one-to-one correspondence between forms ε : A → C and associative bilinear pairings (·, ·) : A ⊗ A → C. Given a form, define the pairing by (a, b) = ε(ab), this is obviously associative. Given the pairing, define a form by ε(a) = (1,a) = (a,1); these are equal since the pairing is associative. This establishes the equivalence of (a) and (b).