The Third Trichotomy. Thought of the Day 121.0


The decisive logical role is played by continuity in the third trichotomy which is Peirce’s generalization of the old distinction between term, proposition and argument in logic. In him, the technical notions are rhema, dicent and argument, and all of them may be represented by symbols. A crucial step in Peirce’s logic of relations (parallel to Frege) is the extension of the predicate from having only one possible subject in a proposition – to the possibility for a predicate to take potentially infinitely many subjects. Predicates so complicated may be reduced, however, to combination of (at most) three-subject predicates, according to Peirce’s reduction hypothesis. Let us consider the definitions from ‘Syllabus (The Essential Peirce Selected Philosophical Writings, Volume 2)’ in continuation of the earlier trichotomies:

According to the third trichotomy, a Sign may be termed a Rheme, a Dicisign or Dicent Sign (that is, a proposition or quasi-proposition), or an Argument.

A Rheme is a Sign which, for its Interpretant, is a Sign of qualitative possibility, that is, is understood as representing such and such a kind of possible Object. Any Rheme, perhaps, will afford some information; but it is not interpreted as doing so.

A Dicent Sign is a Sign, which, for its Interpretant, is a Sign of actual existence. It cannot, therefore, be an Icon, which affords no ground for an interpretation of it as referring to actual existence. A Dicisign necessarily involves, as a part of it, a Rheme, to describe the fact which it is interpreted as indicating. But this is a peculiar kind of Rheme; and while it is essential to the Dicisign, it by no means constitutes it.

An Argument is a Sign which, for its Interpretant, is a Sign of a law. Or we may say that a Rheme is a sign which is understood to represent its object in its characters merely; that a Dicisign is a sign which is understood to represent its object in respect to actual existence; and that an Argument is a Sign which is understood to represent its Object in its character as Sign. ( ) The proposition need not be asserted or judged. It may be contemplated as a sign capable of being asserted or denied. This sign itself retains its full meaning whether it be actually asserted or not. ( ) The proposition professes to be really affected by the actual existent or real law to which it refers. The argument makes the same pretension, but that is not the principal pretension of the argument. The rheme makes no such pretension.

The interpretant of the Argument represents it as an instance of a general class of Arguments, which class on the whole will always tend to the truth. It is this law, in some shape, which the argument urges; and this ‘urging’ is the mode of representation proper to Arguments.

Predicates being general is of course a standard logical notion; in Peirce’s version this generality is further emphasized by the fact that the simple predicate is seen as relational and containing up to three subject slots to be filled in; each of them may be occupied by a continuum of possible subjects. The predicate itself refers to a possible property, a possible relation between subjects; the empty – or partly satiated – predicate does not in itself constitute any claim that this relation does in fact hold. The information it contains is potential, because no single or general indication has yet been chosen to indicate which subjects among the continuum of possible subjects it refers to. The proposition, on the contrary, the dicisign, is a predicate where some of the empty slots have been filled in with indices (proper names, demonstrative pronomina, deixis, gesture, etc.), and is, in fact, asserted. It thus consists of an indexical part and an iconical part, corresponding to the usual distinction between subject and predicate, with its indexical part connecting it to some level of reference reality. This reality needs not, of course, be actual reality; the subject slots may be filled in with general subjects thus importing pieces of continuity into it – but the reality status of such subjects may vary, so it may equally be filled in with fictitious references of all sorts. Even if the dicisign, the proposition, is not an icon, it contains, via its rhematic core, iconical properties. Elsewhere, Peirce simply defines the dicisign as a sign making explicit its reference. Thus a portrait equipped with a sign indicating the portraitee will be a dicisign, just like a charicature draft with a pointing gesture towards the person it depicts will be a dicisign. Even such dicisigns may be general; the pointing gesture could single out a group or a representative for a whole class of objects. While the dicisign specifies its object, the argument is a sign specifying its interpretant – which is what is normally called the conclusion. The argument thus consists of two dicisigns, a premiss (which may be, in turn, composed of several dicisigns and is traditionally seen as consisting of two dicisigns) and a conclusion – a dicisign represented as ensuing from the premiss due to the power of some law. The argument is thus – just like the other thirdness signs in the trichotomies – in itself general. It is a legisign and a symbol – but adds to them the explicit specification of a general, lawlike interpretant. In the full-blown sign, the argument, the more primitive degenerate sign types are orchestrated together in a threefold generality where no less than three continua are evoked: first, the argument itself is a legisign with a halo of possible instantions of itself as a sign; second, it is a symbol referring to a general object, in turn with a halo of possible instantiations around it; third, the argument implies a general law which is represented by one instantiation (the premiss and the rule of inference) but which has a halo of other, related inferences as possible instantiations. As Peirce says, the argument persuades us that this lawlike connection holds for all other cases being of the same type.

Husserl’s Flip-Flop on Arithmetic Axiomatics. Thought of the Day 118.0


Husserl’s position in his Philosophy of Arithmetic (Psychological and Logical Investigations with Supplementary Texts) was resolutely anti-axiomatic. He attacked those who fell into remote, artificial constructions which, with the intent of building the elementary arithmetic concepts out of their ultimate definitional properties, interpret and change their meaning so much that totally strange, practically and scientifically useless conceptual formations finally result. Especially targeted was Frege’s ideal of the

founding of arithmetic on a sequence of formal definitions, out of which all the theorems of that science could be deduced purely syllogistically.

As soon as one comes to the ultimate, elemental concepts, Husserl reasoned, all defining has to come to an end. All one can then do is to point to the concrete phenomena from or through which the concepts are abstracted and show the nature of the abstractive process. A verbal explanation should place us in the proper state of mind for picking out, in inner or outer intuition, the abstract moments intended and for reproducing in ourselves the mental processes required for the formation of the concept. He said that his analyses had shown with incontestable clarity that the concepts of multiplicity and unity rest directly upon ultimate, elemental psychical data, and so belong among the indefinable concepts. Since the concept of number was so closely joined to them, one could scarcely speak of defining it either. All these points are made on the only pages of Philosophy of Arithmetic that Husserl ever explicitly retracted.

In On the Concept of Number, Husserl had set out to anchor arithmetical concepts in direct experience by analyzing the actual psychological processes to which he thought the concept of number owed its genesis. To obtain the concept of number of a concrete set of objects, say A, A, and A, he explained, one abstracts from the particular characteristics of the individual contents collected, only considering and retaining each one insofar as it is a something or a one. Regarding their collective combination, one thus obtains the general form of the set belonging to the set in question: one and one, etc. and. . . and one, to which a number name is assigned.

The enthusiastic espousal of psychologism of On the Concept of Number is not found in Philosophy of Arithmetic. Husserl later confessed that doubts about basic differences between the concept of number and the concept of collecting, which was all that could be obtained from reflection on acts, had troubled and tormented him from the very beginning and had eventually extended to all categorial concepts and to concepts of objectivities of any sort whatsoever, ultimately to include modern analysis and the theory of manifolds, and simultaneously to mathematical logic and the entire field of logic in general. He did not see how one could reconcile the objectivity of mathematics with psychological foundations for logic.

In sharp contrast to Brouwer who denounced logic as a source of truth, from the mid-1890s on, Husserl defended the view, which he attributed to Frege’s teacher Hermann Lotze, that pure arithmetic was basically no more than a branch of logic that had undergone independent development. He bid students not to be “scared” by that thought and to grow used to Lotze’s initially strange idea that arithmetic was only a particularly highly developed piece of logic.

Years later, Husserl would explain in Formal and Transcendental Logic that his

war against logical psychologism was meant to serve no other end than the supremely important one of making the specific province of analytic logic visible in its purity and ideal particularity, freeing it from the psychologizing confusions and misinterpretations in which it had remained enmeshed from the beginning.

He had come to see arithmetic truths as being analytic, as grounded in meanings independently of matters of fact. He had come to believe that the entire overthrowing of psychologism through phenomenology showed that his analyses in On the Concept of Number and Philosophy of Arithmetic had to be considered a pure a priori analysis of essence. For him, pure arithmetic, pure mathematics, and pure logic were a priori disciplines entirely grounded in conceptual essentialities, where truth was nothing other than the analysis of essences or concepts. Pure mathematics as pure arithmetic investigated what is grounded in the essence of number. Pure mathematical laws were laws of essence.

He is said to have told his students that it was to be stressed repeatedly and emphatically that the ideal entities so unpleasant for empiricistic logic, and so consistently disregarded by it, had not been artificially devised either by himself, or by Bolzano, but were given beforehand by the meaning of the universal talk of propositions and truths indispensable in all the sciences. This, he said, was an indubitable fact that had to be the starting point of all logic. All purely mathematical propositions, he taught, express something about the essence of what is mathematical. Their denial is consequently an absurdity. Denying a proposition of the natural sciences, a proposition about real matters of fact, never means an absurdity, a contradiction in terms. In denying the law of gravity, I cast experience to the wind. I violate the evident, extremely valuable probability that experience has established for the laws. But, I do not say anything “unthinkable,” absurd, something that nullifies the meaning of the word as I do when I say that 2 × 2 is not 4, but 5.

Husserl taught that every judgment either is a truth or cannot be a truth, that every presentation either accorded with a possible experience adequately redeeming it, or was in conflict with the experience, and that grounded in the essence of agreement was the fact that it was incompatible with the conflict, and grounded in the essence of conflict that it was incompatible with agreement. For him, that meant that truth ruled out falsehood and falsehood ruled out truth. And, likewise, existence and non-existence, correctness and incorrectness cancelled one another out in every sense. He believed that that became immediately apparent as soon as one had clarified the essence of existence and truth, of correctness and incorrectness, of Evidenz as consciousness of givenness, of being and not-being in fully redeeming intuition.

At the same time, Husserl contended, one grasps the “ultimate meaning” of the basic logical law of contradiction and of the excluded middle. When we state the law of validity that of any two contradictory propositions one holds and the other does not hold, when we say that for every proposition there is a contradictory one, Husserl explained, then we are continually speaking of the proposition in its ideal unity and not at all about mental experiences of individuals, not even in the most general way. With talk of truth it is always a matter of propositions in their ideal unity, of the meaning of statements, a matter of something identical and atemporal. What lies in the identically-ideal meaning of one’s words, what one cannot deny without invalidating the fixed meaning of one’s words has nothing at all to do with experience and induction. It has only to do with concepts. In sharp contrast to this, Brouwer saw intuitionistic mathematics as deviating from classical mathematics because the latter uses logic to generate theorems and in particular applies the principle of the excluded middle. He believed that Intuitionism had proven that no mathematical reality corresponds to the affirmation of the principle of the excluded middle and to conclusions derived by means of it. He reasoned that “since logic is based on mathematics – and not vice versa – the use of the Principle of the Excluded Middle is not permissible as part of a mathematical proof.”

Individuation. Thought of the Day 91.0


The first distinction is between two senses of the word “individuation” – one semantic, the other metaphysical. In the semantic sense of the word, to individuate an object is to single it out for reference in language or in thought. By contrast, in the metaphysical sense of the word, the individuation of objects has to do with “what grounds their identity and distinctness.” Sets are often used to illustrate the intended notion of “grounding.” The identity or distinctness of sets is said to be “grounded” in accordance with the principle of extensionality, which says that two sets are identical iff they have precisely the same elements:

SET(x) ∧ SET(y) → [x = y ↔ ∀u(u ∈ x ↔ u ∈ y)]

The metaphysical and semantic senses of individuation are quite different notions, neither of which appears to be reducible to or fully explicable in terms of the other. Since sufficient sense cannot be made of the notion of “grounding of identity” on which the metaphysical notion of individuation is based, focusing on the semantic notion of individuation is an easy way out. This choice of focus means that our investigation is a broadly empirical one drawn on empirical linguistics and psychology.

What is the relation between the semantic notion of individuation and the notion of a criterion of identity? It is by means of criteria of identity that semantic individuation is effected. Singling out an object for reference involves being able to distinguish this object from other possible referents with which one is directly presented. The final distinction is between two types of criteria of identity. A one-level criterion of identity says that two objects of some sort F are identical iff they stand in some relation RF:

Fx ∧ Fy → [x = y ↔ RF(x,y)]

Criteria of this form operate at just one level in the sense that the condition for two objects to be identical is given by a relation on these objects themselves. An example is the set-theoretic principle of extensionality.

A two-level criterion of identity relates the identity of objects of one sort to some condition on entities of another sort. The former sort of objects are typically given as functions of items of the latter sort, in which case the criterion takes the following form:

f(α) = f(β) ↔ α ≈ β

where the variables α and β range over the latter sort of item and ≈ is an equivalence relation on such items. An example is Frege’s famous criterion of identity for directions:

d(l1) = d(l2) ↔ l1 || l2

where the variables l1 and l2 range over lines or other directed items. An analogous two-level criterion relates the identity of geometrical shapes to the congruence of things or figures having the shapes in question. The decision to focus on the semantic notion of individuation makes it natural to focus on two-level criteria. For two-level criteria of identity are much more useful than one-level criteria when we are studying how objects are singled out for reference. A one-level criterion provides little assistance in the task of singling out objects for reference. In order to apply a one-level criterion, one must already be capable of referring to objects of the sort in question. By contrast, a two-level criterion promises a way of singling out an object of one sort in terms of an item of another and less problematic sort. For instance, when Frege investigated how directions and other abstract objects “are given to us”, although “we cannot have any ideas or intuitions of them”, he proposed that we relate the identity of two directions to the parallelism of the two lines in terms of which these directions are presented. This would be explanatory progress since reference to lines is less puzzling than reference to directions.

Platonist Assertory Mathematics. Thought of the Day 88.0


Traditional Platonism, according to which our mathematical theories are bodies of truths about a realm of mathematical objects, assumes that only some amongst consistent theory candidates succeed in correctly describing the mathematical realm. For platonists, while mathematicians may contemplate alternative consistent extensions of the axioms for ZF (Zermelo–Fraenkel) set theory, for example, at most one such extension can correctly describe how things really are with the universe of sets. Thus, according to Platonists such as Kurt Gödel, intuition together with quasi-empirical methods (such as the justification of axioms by appeal to their intuitively acceptable consequences) can guide us in discovering which amongst alternative axiom candidates for set theory has things right about set theoretic reality. Alternatively, according to empiricists such as Quine, who hold that our belief in the truth of mathematical theories is justified by their role in empirical science, empirical evidence can choose between alternative consistent set theories. In Quine’s view, we are justified in believing the truth of the minimal amount of set theory required by our most attractive scientific account of the world.

Despite their differences at the level of detail, both of these versions of Platonism share the assumption that mere consistency is not enough for a mathematical theory: For such a theory to be true, it must correctly describe a realm of objects, where the existence of these objects is not guaranteed by consistency alone. Such a view of mathematical theories requires that we must have some grasp of the intended interpretation of an axiomatic theory that is independent of our axiomatization – otherwise inquiry into whether our axioms “get things right” about this intended interpretation would be futile. Hence, it is natural to see these Platonist views of mathematics as following Frege in holding that axioms

. . . must not contain a word or sign whose sense and meaning, or whose contribution to the expression of a thought, was not already completely laid down, so that there is no doubt about the sense of the proposition and the thought it expresses. The only question can be whether this thought is true and what its truth rests on. (Frege to Hilbert Gottlob Frege The Philosophical and Mathematical Correspondence)

On such an account, our mathematical axioms express genuine assertions (thoughts), which may or may not succeed in asserting truths about their subject matter. These Platonist views are “assertory” views of mathematics. Assertory views of mathematics make room for a gap between our mathematical theories and their intended subject matter, and the possibility of such a gap leads to at least two difficulties for traditional Platonism. These difficulties are articulated by Paul Benacerraf (here and here) in his aforementioned papers. The first difficulty comes from the realization that our mathematical theories, even when axioms are supplemented with less formal characterizations of their subject matter, may be insufficient to choose between alternative interpretations. For example, assertory views hold that the Peano axioms for arithmetic aim to assert truths about the natural numbers. But there are many candidate interpretations of these axioms, and nothing in the axioms, or in our wider mathematical practices, seems to suffice to pin down one interpretation over any other as the correct one. The view of mathematical theories as assertions about a specific realm of objects seems to force there to be facts about the correct interpretation of our theories even if, so far as our mathematical practice goes (for example, in the case of arithmetic), any ω-sequence would do.

Benacerraf’s second worry is perhaps even more pressing for assertory views. The possibility of a gap between our mathematical theories and their intended subject matter raises the question, “How do we know that our mathematical theories have things right about their subject matter?”. To answer this, we need to consider the nature of the purported objects about which our theories are supposed to assert truths. It seems that our best characterization of mathematical objects is negative: to account for the extent of our mathematical theories, and the timelessness of mathematical truths, it seems reasonable to suppose that mathematical objects are non-physical, non- spatiotemporal (and, it is sometimes added, mind- and language-independent) objects – in short, mathematical objects are abstract. But this negative characterization makes it difficult to say anything positive about how we could know anything about how things are with these objects. Assertory, Platonist views of mathematics are thus challenged to explain just how we are meant to evaluate our mathematical assertions – just how do the kinds of evidence these Platonists present in support of their theories succeed in ensuring that these theories track the truth?

The Mystery of Modality. Thought of the Day 78.0


The ‘metaphysical’ notion of what would have been no matter what (the necessary) was conflated with the epistemological notion of what independently of sense-experience can be known to be (the a priori), which in turn was identified with the semantical notion of what is true by virtue of meaning (the analytic), which in turn was reduced to a mere product of human convention. And what motivated these reductions?

The mystery of modality, for early modern philosophers, was how we can have any knowledge of it. Here is how the question arises. We think that when things are some way, in some cases they could have been otherwise, and in other cases they couldn’t. That is the modal distinction between the contingent and the necessary.

How do we know that the examples are examples of that of which they are supposed to be examples? And why should this question be considered a difficult problem, a kind of mystery? Well, that is because, on the one hand, when we ask about most other items of purported knowledge how it is we can know them, sense-experience seems to be the source, or anyhow the chief source of our knowledge, but, on the other hand, sense-experience seems able only to provide knowledge about what is or isn’t, not what could have been or couldn’t have been. How do we bridge the gap between ‘is’ and ‘could’? The classic statement of the problem was given by Immanuel Kant, in the introduction to the second or B edition of his first critique, The Critique of Pure Reason: ‘Experience teaches us that a thing is so, but not that it cannot be otherwise.’

Note that this formulation allows that experience can teach us that a necessary truth is true; what it is not supposed to be able to teach is that it is necessary. The problem becomes more vivid if one adopts the language that was once used by Leibniz, and much later re-popularized by Saul Kripke in his famous work on model theory for formal modal systems, the usage according to which the necessary is that which is ‘true in all possible worlds’. In these terms the problem is that the senses only show us this world, the world we live in, the actual world as it is called, whereas when we claim to know about what could or couldn’t have been, we are claiming knowledge of what is going on in some or all other worlds. For that kind of knowledge, it seems, we would need a kind of sixth sense, or extrasensory perception, or nonperceptual mode of apprehension, to see beyond the world in which we live to these various other worlds.

Kant concludes, that our knowledge of necessity must be what he calls a priori knowledge or knowledge that is ‘prior to’ or before or independent of experience, rather than what he calls a posteriori knowledge or knowledge that is ‘posterior to’ or after or dependant on experience. And so the problem of the origin of our knowledge of necessity becomes for Kant the problem of the origin of our a priori knowledge.

Well, that is not quite the right way to describe Kant’s position, since there is one special class of cases where Kant thinks it isn’t really so hard to understand how we can have a priori knowledge. He doesn’t think all of our a priori knowledge is mysterious, but only most of it. He distinguishes what he calls analytic from what he calls synthetic judgments, and holds that a priori knowledge of the former is unproblematic, since it is not really knowledge of external objects, but only knowledge of the content of our own concepts, a form of self-knowledge.

We can generate any number of examples of analytic truths by the following three-step process. First, take a simple logical truth of the form ‘Anything that is both an A and a B is a B’, for instance, ‘Anyone who is both a man and unmarried is unmarried’. Second, find a synonym C for the phrase ‘thing that is both an A and a B’, for instance, ‘bachelor’ for ‘one who is both a man and unmarried’. Third, substitute the shorter synonym for the longer phrase in the original logical truth to get the truth ‘Any C is a B’, or in our example, the truth ‘Any bachelor is unmarried’. Our knowledge of such a truth seems unproblematic because it seems to reduce to our knowledge of the meanings of our own words.

So the problem for Kant is not exactly how knowledge a priori is possible, but more precisely how synthetic knowledge a priori is possible. Kant thought we do have examples of such knowledge. Arithmetic, according to Kant, was supposed to be synthetic a priori, and geometry, too – all of pure mathematics. In his Prolegomena to Any Future Metaphysics, Kant listed ‘How is pure mathematics possible?’ as the first question for metaphysics, for the branch of philosophy concerned with space, time, substance, cause, and other grand general concepts – including modality.

Kant offered an elaborate explanation of how synthetic a priori knowledge is supposed to be possible, an explanation reducing it to a form of self-knowledge, but later philosophers questioned whether there really were any examples of the synthetic a priori. Geometry, so far as it is about the physical space in which we live and move – and that was the original conception, and the one still prevailing in Kant’s day – came to be seen as, not synthetic a priori, but rather a posteriori. The mathematician Carl Friedrich Gauß had already come to suspect that geometry is a posteriori, like the rest of physics. Since the time of Einstein in the early twentieth century the a posteriori character of physical geometry has been the received view (whence the need for border-crossing from mathematics into physics if one is to pursue the original aim of geometry).

As for arithmetic, the logician Gottlob Frege in the late nineteenth century claimed that it was not synthetic a priori, but analytic – of the same status as ‘Any bachelor is unmarried’, except that to obtain something like ‘29 is a prime number’ one needs to substitute synonyms in a logical truth of a form much more complicated than ‘Anything that is both an A and a B is a B’. This view was subsequently adopted by many philosophers in the analytic tradition of which Frege was a forerunner, whether or not they immersed themselves in the details of Frege’s program for the reduction of arithmetic to logic.

Once Kant’s synthetic a priori has been rejected, the question of how we have knowledge of necessity reduces to the question of how we have knowledge of analyticity, which in turn resolves into a pair of questions: On the one hand, how do we have knowledge of synonymy, which is to say, how do we have knowledge of meaning? On the other hand how do we have knowledge of logical truths? As to the first question, presumably we acquire knowledge, explicit or implicit, conscious or unconscious, of meaning as we learn to speak, by the time we are able to ask the question whether this is a synonym of that, we have the answer. But what about knowledge of logic? That question didn’t loom large in Kant’s day, when only a very rudimentary logic existed, but after Frege vastly expanded the realm of logic – only by doing so could he find any prospect of reducing arithmetic to logic – the question loomed larger.

Many philosophers, however, convinced themselves that knowledge of logic also reduces to knowledge of meaning, namely, of the meanings of logical particles, words like ‘not’ and ‘and’ and ‘or’ and ‘all’ and ‘some’. To be sure, there are infinitely many logical truths, in Frege’s expanded logic. But they all follow from or are generated by a finite list of logical rules, and philosophers were tempted to identify knowledge of the meanings of logical particles with knowledge of rules for using them: Knowing the meaning of ‘or’, for instance, would be knowing that ‘A or B’ follows from A and follows from B, and that anything that follows both from A and from B follows from ‘A or B’. So in the end, knowledge of necessity reduces to conscious or unconscious knowledge of explicit or implicit semantical rules or linguistics conventions or whatever.

Such is the sort of picture that had become the received wisdom in philosophy departments in the English speaking world by the middle decades of the last century. For instance, A. J. Ayer, the notorious logical positivist, and P. F. Strawson, the notorious ordinary-language philosopher, disagreed with each other across a whole range of issues, and for many mid-century analytic philosophers such disagreements were considered the main issues in philosophy (though some observers would speak of the ‘narcissism of small differences’ here). And people like Ayer and Strawson in the 1920s through 1960s would sometimes go on to speak as if linguistic convention were the source not only of our knowledge of modality, but of modality itself, and go on further to speak of the source of language lying in ourselves. Individually, as children growing up in a linguistic community, or foreigners seeking to enter one, we must consciously or unconsciously learn the explicit or implicit rules of the communal language as something with a source outside us to which we must conform. But by contrast, collectively, as a speech community, we do not so much learn as create the language with its rules. And so if the origin of modality, of necessity and its distinction from contingency, lies in language, it therefore lies in a creation of ours, and so in us. ‘We, the makers and users of language’ are the ground and source and origin of necessity. Well, this is not a literal quotation from any one philosophical writer of the last century, but a pastiche of paraphrases of several.

Reductionism of Numerical Complexity: A Wittgensteinian Excursion


Wittgenstein’s criticism of Russell’s logicist foundation of mathematics contained in (Remarks on the Foundation of Mathematics) consists in saying that it is not the formalized version of mathematical deduction which vouches for the validity of the intuitive version but conversely.

If someone tries to shew that mathematics is not logic, what is he trying to shew? He is surely trying to say something like: If tables, chairs, cupboards, etc. are swathed in enough paper, certainly they will look spherical in the end.

He is not trying to shew that it is impossible that, for every mathematical proof, a Russellian proof can be constructed which (somehow) ‘corresponds’ to it, but rather that the acceptance of such a correspondence does not lean on logic.

Taking up Wittgenstein’s criticism, Hao Wang (Computation, Logic, Philosophy) discusses the view that mathematics “is” axiomatic set theory as one of several possible answers to the question “What is mathematics?”. Wang points out that this view is epistemologically worthless, at least as far as the task of understanding the feature of cognition guiding is concerned:

Mathematics is axiomatic set theory. In a definite sense, all mathematics can be derived from axiomatic set theory. [ . . . ] There are several objections to this identification. [ . . . ] This view leaves unexplained why, of all the possible consequences of set theory, we select only those which happen to be our mathematics today, and why certain mathematical concepts are more interesting than others. It does not help to give us an intuitive grasp of mathematics such as that possessed by a powerful mathematician. By burying, e.g., the individuality of natural numbers, it seeks to explain the more basic and the clearer by the more obscure. It is a little analogous to asserting that all physical objects, such as tables, chairs, etc., are spherical if we swathe them with enough stuff.

Reductionism is an age-old project; a close forerunner of its incarnation in set theory was the arithmetization program of the 19th century. It is interesting that one of its prominent representatives, Richard Dedekind (Essays on the Theory of Numbers), exhibited a quite distanced attitude towards a consequent carrying out of the program:

It appears as something self-evident and not new that every theorem of algebra and higher analysis, no matter how remote, can be expressed as a theorem about natural numbers [ . . . ] But I see nothing meritorious [ . . . ] in actually performing this wearisome circumlocution and insisting on the use and recognition of no other than rational numbers.

Perec wrote a detective novel without using the letter ‘e’ (La disparition, English A void), thus proving not only that such an enormous enterprise is indeed possible but also that formal constraints sometimes have great aesthetic appeal. The translation of mathematical propositions into a poorer linguistic framework can easily be compared with such painful lipogrammatical exercises. In principle all logical connectives can be simulated in a framework exclusively using Sheffer’s stroke, and all cuts (in Gentzen’s sense) can be eliminated; one can do without common language at all in mathematics and formalize everything and so on: in principle, one could leave out a whole lot of things. However, in doing so one would depart from the true way of thinking employed by the mathematician (who really uses “and” and “not” and cuts and who does not reduce many things to formal systems). Obviously, it is the proof theorist as a working mathematician who is interested in things like the reduction to Sheffer’s stroke since they allow for more concise proofs by induction in the analysis of a logical calculus. Hence this proof theorist has much the same motives as a mathematician working on other problems who avoids a completely formalized treatment of these problems since he is not interested in the proof-theoretical aspect.

There might be quite similar reasons for the interest of some set theorists in expressing usual mathematical constructions exclusively with the expressive means of ZF (i.e., in terms of ∈). But beyond this, is there any philosophical interpretation of such a reduction? In the last analysis, mathematicians always transform (and that means: change) their objects of study in order to make them accessible to certain mathematical treatments. If one considers a mathematical concept as a tool, one does not only use it in a way different from the one in which it would be used if it were considered as an object; moreover, in semiotical representation of it, it is given a form which is different in both cases. In this sense, the proof theorist has to “change” the mathematical proof (which is his or her object of study to be treated with mathematical tools). When stating that something is used as object or as tool, we have always to ask: in which situation, or: by whom.

A second observation is that the translation of propositional formulæ in terms of Sheffer’s stroke in general yields quite complicated new formulæ. What is “simple” here is the particularly small number of symbols needed; but neither the semantics becomes clearer (p|q means “not both p and q”; cognitively, this looks more complex than “p and q” and so on), nor are the formulæ you get “short”. What is looked for in this case, hence, is a reduction of numerical complexity, while the primitive basis attained by the reduction cognitively looks less “natural” than the original situation (or, as Peirce expressed it, “the consciousness in the determined cognition is more lively than in the cognition which determines it”); similarly in the case of cut elimination. In contrast to this, many philosophers are convinced that the primitive basis of operating with sets constitutes really a “natural” basis of mathematical thinking, i.e., such operations are seen as the “standard bricks” of which this thinking is actually made – while no one will reasonably claim that expressions of the type p|q play a similar role for propositional logic. And yet: reduction to set theory does not really have the task of “explanation”. It is true, one thus reduces propositions about “complex” objects to propositions about “simple” objects; the propositions themselves, however, thus become in general more complex. Couched in Fregean terms, one can perhaps more easily grasp their denotation (since the denotation of a proposition is its truth value) but not their meaning. A more involved conceptual framework, however, might lead to simpler propositions (and in most cases has actually just been introduced in order to do so). A parallel argument concerns deductions: in its totality, a deduction becomes more complex (and less intelligible) by a decomposition into elementary steps.

Now, it will be subject to discussion whether in the case of some set operations it is admissible at all to claim that they are basic for thinking (which is certainly true in the case of the connectives of propositional logic). It is perfectly possible that the common sense which organizes the acceptance of certain operations as a natural basis relies on something different, not having the character of some eternal laws of thought: it relies on training.

Is it possible to observe that a surface is coloured red and blue; and not to observe that it is red? Imagine a kind of colour adjective were used for things that are half red and half blue: they are said to be ‘bu’. Now might not someone to be trained to observe whether something is bu; and not to observe whether it is also red? Such a man would then only know how to report: “bu” or “not bu”. And from the first report we could draw the conclusion that the thing was partly red.

Mathematical Reductionism: As Case Via C. S. Peirce’s Hypothetical Realism.


During the 20th century, the following epistemology of mathematics was predominant: a sufficient condition for the possibility of the cognition of objects is that these objects can be reduced to set theory. The conditions for the possibility of the cognition of the objects of set theory (the sets), in turn, can be given in various manners; in any event, the objects reduced to sets do not need an additional epistemological discussion – they “are” sets. Hence, such an epistemology relies ultimately on ontology. Frege conceived the axioms as descriptions of how we actually manipulate extensions of concepts in our thinking (and in this sense as inevitable and intuitive “laws of thought”). Hilbert admitted the use of intuition exclusively in metamathematics where the consistency proof is to be done (by which the appropriateness of the axioms would be established); Bourbaki takes the axioms as mere hypotheses. Hence, Bourbaki’s concept of justification is the weakest of the three: “it works as long as we encounter no contradiction”; nevertheless, it is still epistemology, because from this hypothetical-deductive point of view, one insists that at least a proof of relative consistency (i.e., a proof that the hypotheses are consistent with the frequently tested and approved framework of set theory) should be available.

Doing mathematics, one tries to give proofs for propositions, i.e., to deduce the propositions logically from other propositions (premisses). Now, in the reductionist perspective, a proof of a mathematical proposition yields an insight into the truth of the proposition, if the premisses are already established (if one has already an insight into their truth); this can be done by giving in turn proofs for them (in which new premisses will occur which ask again for an insight into their truth), or by agreeing to put them at the beginning (to consider them as axioms or postulates). The philosopher tries to understand how the decision about what propositions to take as axioms is arrived at, because he or she is dissatisfied with the reductionist claim that it is on these axioms that the insight into the truth of the deduced propositions rests. Actually, this epistemology might contain a short-coming since Poincaré (and Wittgenstein) stressed that to have a proof of a proposition is by no means the same as to have an insight into its truth.

Attempts to disclose the ontology of mathematical objects reveal the following tendency in epistemology of mathematics: Mathematics is seen as suffering from a lack of ontological “determinateness”, namely that this science (contrarily to many others) does not concern material data such that the concept of material truth is not available (especially in the case of the infinite). This tendency is embarrassing since on the other hand mathematical cognition is very often presented as cognition of the “greatest possible certainty” just because it seems not to be bound to material evidence, let alone experimental check.

The technical apparatus developed by the reductionist and set-theoretical approach nowadays serves other purposes, partly for the reason that tacit beliefs about sets were challenged; the explanations of the science which it provides are considered as irrelevant by the practitioners of this science. There is doubt that the above mentioned sufficient condition is also necessary; it is not even accepted throughout as a sufficient one. But what happens if some objects, as in the case of category theory, do not fulfill the condition? It seems that the reductionist approach, so to say, has been undocked from the historical development of the discipline in several respects; an alternative is required.

Anterior to Peirce, epistemology was dominated by the idea of a grasp of objects; since Descartes, intuition was considered throughout as a particular, innate capacity of cognition (even if idealists thought that it concerns the general, and empiricists that it concerns the particular). The task of this particular capacity was the foundation of epistemology; already from Aristotle’s first premisses of syllogism, what was aimed at was to go back to something first. In this traditional approach, it is by the ontology of the objects that one hopes to answer the fundamental question concerning the conditions for the possibility of the cognition of these objects. One hopes that there are simple “basic objects” to which the more complex objects can be reduced and whose cognition is possible by common sense – be this an innate or otherwise distinguished capacity of cognition common to all human beings. Here, epistemology is “wrapped up” in (or rests on) ontology; to do epistemology one has to do ontology first.

Peirce shares Kant’s opinion according to which the object depends on the subject; however, he does not agree that reason is the crucial means of cognition to be criticised. In his paper “Questions concerning certain faculties claimed for man”, he points out the basic assumption of pragmatist philosophy: every cognition is semiotically mediated. He says that there is no immediate cognition (a cognition which “refers immediately to its object”), but that every cognition “has been determined by a previous cognition” of the same object. Correspondingly, Peirce replaces critique of reason by critique of signs. He thinks that Kant’s distinction between the world of things per se (Dinge an sich) and the world of apparition (Erscheinungswelt) is not fruitful; he rather distinguishes the world of the subject and the world of the object, connected by signs; his position consequently is a “hypothetical realism” in which all cognitions are only valid with reservations. This position does not negate (nor assert) that the object per se (with the semiotical mediation stripped off) exists, since such assertions of “pure” existence are seen as necessarily hypothetical (that means, not withstanding philosophical criticism).

By his basic assumption, Peirce was led to reveal a problem concerning the subject matter of epistemology, since this assumption means in particular that there is no intuitive cognition in the classical sense (which is synonymous to “immediate”). Hence, one could no longer consider cognitions as objects; there is no intuitive cognition of an intuitive cognition. Intuition can be no more than a relation. “All the cognitive faculties we know of are relative, and consequently their products are relations”. According to this new point of view, intuition cannot any longer serve to found epistemology, in departure from the former reductionist attitude. A central argument of Peirce against reductionism or, as he puts it,

the reply to the argument that there must be a first is as follows: In retracing our way from our conclusions to premisses, or from determined cognitions to those which determine them, we finally reach, in all cases, a point beyond which the consciousness in the determined cognition is more lively than in the cognition which determines it.

Peirce gives some examples derived from physiological observations about perception, like the fact that the third dimension of space is inferred, and the blind spot of the retina. In this situation, the process of reduction loses its legitimacy since it no longer fulfills the function of cognition justification. At such a place, something happens which I would like to call an “exchange of levels”: the process of reduction is interrupted in that the things exchange the roles performed in the determination of a cognition: what was originally considered as determining is now determined by what was originally considered as asking for determination.

The idea that contents of cognition are necessarily provisional has an effect on the very concept of conditions for the possibility of cognitions. It seems that one can infer from Peirce’s words that what vouches for a cognition is not necessarily the cognition which determines it but the livelyness of our consciousness in the cognition. Here, “to vouch for a cognition” means no longer what it meant before (which was much the same as “to determine a cognition”), but it still means that the cognition is (provisionally) reliable. This conception of the livelyness of our consciousness roughly might be seen as a substitute for the capacity of intuition in Peirce’s epistemology – but only roughly, since it has a different coverage.

Rants of the Undead God: Instrumentalism. Thought of the Day 68.1


Hilbert’s program has often been interpreted as an instrumentalist account of mathematics. This reading relies on the distinction Hilbert makes between the finitary part of mathematics and the non-finitary rest which is in need of grounding (via finitary meta-mathematics). The finitary part Hilbert calls “contentual,” i.e., its propositions and proofs have content. The infinitary part, on the other hand, is “not meaningful from a finitary point of view.” This distinction corresponds to a distinction between formulas of the axiomatic systems of mathematics for which consistency proofs are being sought. Some of the formulas correspond to contentual, finitary propositions: they are the “real” formulas. The rest are called “ideal.” They are added to the real part of our mathematical theories in order to preserve classical inferences such as the principle of the excluded middle for infinite totalities, i.e., the principle that either all numbers have a given property or there is a number which does not have it.

It is the extension of the real part of the theory by the ideal, infinitary part that is in need of justification by a consistency proof – for there is a condition, a single but absolutely necessary one, to which the use of the method of ideal elements is subject, and that is the proof of consistency; for, extension by the addition of ideals is legitimate only if no contradiction is thereby brought about in the old, narrower domain, that is, if the relations that result for the old objects whenever the ideal objects are eliminated are valid in the old domain. Weyl described Hilbert’s project as replacing meaningful mathematics by a meaningless game of formulas. He noted that Hilbert wanted to “secure not truth, but the consistency of analysis” and suggested a criticism that echoes an earlier one by Frege – why should we take consistency of a formal system of mathematics as a reason to believe in the truth of the pre-formal mathematics it codifies? Is Hilbert’s meaningless inventory of formulas not just “the bloodless ghost of analysis? Weyl suggested that if mathematics is to remain a serious cultural concern, then some sense must be attached to Hilbert’s game of formulae. In theoretical physics we have before us the great example of a [kind of] knowledge of completely different character than the common or phenomenal knowledge that expresses purely what is given in intuition. While in this case every judgment has its own sense that is completely realizable within intuition, this is by no means the case for the statements of theoretical physics. Hilbert suggested that consistency is not the only virtue ideal mathematics has –  transfinite inference simplifies and abbreviates proofs, brevity and economy of thought are the raison d’être of existence proofs.

Hilbert’s treatment of philosophical questions is not meant as a kind of instrumentalist agnosticism about existence and truth and so forth. On the contrary, it is meant to provide a non-skeptical and positive solution to such problems, a solution couched in cognitively accessible terms. And, it appears, the same solution holds for both mathematical and physical theories. Once new concepts or “ideal elements” or new theoretical terms have been accepted, then they exist in the sense in which any theoretical entities exist. When Weyl eventually turned away from intuitionism, he emphasized the purpose of Hilbert’s proof theory, not to turn mathematics into a meaningless game of symbols, but to turn it into a theoretical science which codifies scientific (mathematical) practice. The reading of Hilbert as an instrumentalist goes hand in hand with a reading of the proof-theoretic program as a reductionist project. The instrumentalist reading interprets ideal mathematics as a meaningless formalism, which simplifies and “rounds out” mathematical reasoning. But a consistency proof of ideal mathematics by itself does not explain what ideal mathematics is an instrument for.

On this picture, classical mathematics is to be formalized in a system which includes formalizations of all the directly verifiable (by calculation) propositions of contentual finite number theory. The consistency proof should show that all real propositions which can be proved by ideal methods are true, i.e., can be directly verified by finite calculation. Actual proofs such as the ε-substitution procedure are of such a kind: they provide finitary procedures which eliminate transfinite elements from proofs of real statements. In particular, they turn putative ideal derivations of 0 = 1 into derivations in the real part of the theory; the impossibility of such a derivation establishes consistency of the theory. Indeed, Hilbert saw that something stronger is true: not only does a consistency proof establish truth of real formulas provable by ideal methods, but it yields finitary proofs of finitary general propositions if the corresponding free-variable formula is derivable by ideal methods.

|, ||, |||, ||||| . The Non-Metaphysics of Unprediction. Thought of the day 67.1


The cornerstone of Hilbert’s philosophy of mathematics was the so-called finitary standpoint. This methodological standpoint consists in a restriction of mathematical thought to objects which are “intuitively present as immediate experience prior to all thought,” and to those operations on and methods of reasoning about such objects which do not require the introduction of abstract concepts, in particular, require no appeal to completed infinite totalities.

Hilbert characterized the domain of finitary reasoning in a well-known paragraph:

[A]s a condition for the use of logical inferences and the performance of logical operations, something must already be given to our faculty of representation, certain extra-logical concrete objects that are intuitively present as immediate experience prior to all thought. If logical inference is to be reliable, it must be possible to survey these objects completely in all their parts, and the fact that they occur, that they differ from one another, and that they follow each other, or are concatenated, is immediately given intuitively, together with the objects, as something that can neither be reduced to anything else nor requires reduction. This is the basic philosophical position that I consider requisite for mathematics and, in general, for all scientific thinking, understanding, and communication. [Hilbert in German + DJVU link here in English]

These objects are, for Hilbert, the signs. For the domain of contentual number theory, the signs in question are sequences of strokes (“numerals”) such as

|, ||, |||, ||||| .

The question of how exactly Hilbert understood the numerals is difficult to answer. What is clear in any case is that they are logically primitive, i.e., they are neither concepts (as Frege’s numbers are) nor sets. For Hilbert, the important issue is not primarily their metaphysical status (abstract versus concrete in the current sense of these terms), but that they do not enter into logical relations, e.g., they cannot be predicated of anything.

Sometimes Hilbert’s view is presented as if Hilbert claimed that the numbers are signs on paper. It is important to stress that this is a misrepresentation, that the numerals are not physical objects in the sense that truths of elementary number theory are dependent only on external physical facts or even physical possibilities. Hilbert made too much of the fact that for all we know, neither the infinitely small nor the infinitely large are actualized in physical space and time, yet he certainly held that the number of strokes in a numeral is at least potentially infinite. It is also essential to the conception that the numerals are sequences of one kind of sign, and that they are somehow dependent on being grasped as such a sequence, that they do not exist independently of our intuition of them. Only our seeing or using “||||” as a sequence of 4 strokes as opposed to a sequence of 2 symbols of the form “||” makes “||||” into the numeral that it is. This raises the question of individuation of stroke symbols. An alternative account would have numerals be mental constructions. According to Hilber, the numerals are given in our representation, but they are not merely subjective “mental cartoons”.

One version of this view would be to hold that the numerals are types of stroke-symbols as represented in intuition. At first glance, this seems to be a viable reading of Hilbert. It takes care of the difficulties that the reading of numerals-as-tokens (both physical and mental) faces, and it gives an account of how numerals can be dependent on their intuitive construction while at the same time not being created by thought.

Types are ordinarily considered to be abstract objects and not located in space or time. Taking the numerals as intuitive representations of sign types might commit us to taking these abstract objects as existing independently of their intuitive representation. That numerals are “space- and timeless” is a consequence that already thought could be drawn from Hilbert’s statements. The reason is that a view on which numerals are space- and timeless objects existing independently of us would be committed to them existing simultaneously as a completed totality, and this is exactly what Hilbert is objecting to.

It is by no means compatible, however, with Hilbert’s basic thoughts to introduce the numbers as ideal objects “with quite different determinations from those of sensible objects,” “which exist entirely independent of us.” By this we would go beyond the domain of the immediately certain. In particular, this would be evident in the fact that we would consequently have to assume the numbers as all existing simultaneously. But this would mean to assume at the outset that which Hilbert considers to be problematic.  Another open question in this regard is exactly what Hilbert meant by “concrete.” He very likely did not use it in the same sense as it is used today, i.e., as characteristic of spatio-temporal physical objects in contrast to “abstract” objects. However, sign types certainly are different from full-fledged abstracta like pure sets in that all their tokens are concrete.

Now what is the epistemological status of the finitary objects? In order to carry out the task of providing a secure foundation for infinitary mathematics, access to finitary objects must be immediate and certain. Hilbert’s philosophical background was broadly Kantian. Hilbert’s characterization of finitism often refers to Kantian intuition, and the objects of finitism as objects given intuitively. Indeed, in Kant’s epistemology, immediacy is a defining characteristic of intuitive knowledge. The question is, what kind of intuition is at play? Whereas the intuition involved in Hilbert’s early papers was a kind of perceptual intuition, in later writings it is identified as a form of pure intuition in the Kantian sense. Hilbert later sees the finite mode of thought as a separate source of a priori knowledge in addition to pure intuition (e.g., of space) and reason, claiming that he has “recognized and characterized the third source of knowledge that accompanies experience and logic.” Hilbert justifies finitary knowledge in broadly Kantian terms (without however going so far as to provide a transcendental deduction), characterizing finitary reasoning as the kind of reasoning that underlies all mathematical, and indeed, scientific, thinking, and without which such thought would be impossible.

The simplest finitary propositions are those about equality and inequality of numerals. The finite standpoint moreover allows operations on finitary objects. Here the most basic is that of concatenation. The concatenation of the numerals || and ||| is communicated as “2 + 3,” and the statement that || concatenated with ||| results in the same numeral as ||| concatenated with || by “2 + 3 = 3 + 2.” In actual proof-theoretic practice, as well as explicitly, these basic operations are generalized to operations defined by recursion, paradigmatically, primitive recursion, e.g., multiplication and exponentiation. Roughly, a primitive recursive definition of a numerical operation is one in which the function to be defined, f , is given by two equations

f(0, m) = g(m)

f(n′, m) = h(n, m, f(n, m)),

where g and h are functions already defined, and n′ is the successor numeral to n. For instance, if we accept the function g(m) = m (the constant function) and h(n, m, k) = m + k as finitary, then the equations above define a finitary function, in this case, multiplication f (n, m) = n × m. Similarly, finitary judgments may involve not just equality or inequality but also basic decidable properties, such as “is a prime.” This is finitarily acceptable as long as the characteristic function of such a property is itself finitary: For instance, the operation which transforms a numeral to | if it is prime and to || otherwise can be defined by primitive recursion and is hence finitary. Such finitary propositions may be combined by the usual logical operations of conjunction, disjunction, negation, but also bounded quantification. The problematic finitary propositions are those that express general facts about numerals such as that 1 + n = n + 1 for any given numeral n. It is problematic because, for Hilbert it is from the finitist point of view incapable of being negated. By this he means that the contradictory proposition that there is a numeral n for which 1 + n ≠ n + 1 is not finitarily meaningful. A finitary general proposition is not to be understood as an infinite conjunction but only as a hypothetical judgment that comes to assert something when a numeral is given. Even though they are problematic in this sense, general finitary statements are of particular importance to Hilbert’s proof theory, since the statement of consistency of a formal system T is of such a general form: for any given sequence p of formulas, p is not a derivation of a contradiction in T. Even though in general existential statements are not finitarily meaningful, they may be given finitary meaning if the witness is given by a finitary function. For instance, the finitary content of Euclid’s theorem that for every prime p there is a prime > p, is that given a specific prime p one can produce, by a finitary operation, another prime > p (viz., by testing all numbers between p and p! + 1.).

Noneism. Part 1.


Noneism was created by Richard Routley. Its point of departure is the rejection of what Routley calls “The Ontological Assumption”. This assumption consists in the explicit or, more frequently, implicit belief that denoting always refers to existing objects. If the object, or objects, on which a proposition is about, do not exist, then these objects can only be one: the null entity. It is incredible that Frege believed that denoting descriptions without a real (empirical, theoretical, or ideal) referent denoted only the null set. And it is also difficult to believe that Russell sustained the thesis that non-existing objects cannot have properties and that propositions about these objects are false.

This means that we can have a very clear apprehension of imaginary objects, and quite clear intellection of abstract objects that are not real. This is possible because to determine an object we only need to describe it through its distinctive traits. This description is possible because an object is always chacterized through some definite notes. The amount of traits necessary to identify an object greatly varies. In some cases we need only a few, for instance, the golden mountain, or the blue bird; in other cases we need more, for instance, the goddess Venus or the centaur Chiron. In other instances the traits can be very numerous, even infinite. For instance the chiliedron, and the decimal number 0,0000…009, in which 9 comes after the first million zeros, have many traits. And the ordinal omega or any Hilbert space have infinite traits (although these traits can be reckoned through finite definitions). These examples show, in a convincing manner, that the Ontological Assumption is untenable. We must reject it and replace it with what Routley dubbs the Characterization Postulate. The Characterization Postulate says that, to be an object means to be characterized by determined traits. The set of the characterizing traits of an object can be called its “characteristic”. When the characteristic of an object is set up, the object is perfectly recognizable.

Once this postulate is adopted, its consequences are far reaching. Since we can characterize objects through any traits whatsoever, an object can not only be inexistent, it can even be absurd or inconsistent. For instance, the “squond” (the circle that is square and round). And we can make perfectly valid logical inferences from the premiss: x is the sqound:

(1) if x is the squond, then x is square
(2) if x is the squond, then x is round

So, the theory of objects has the widest realm of application. It is clear that the Ontological Assumption imposes unacceptable limits to logic. As a matter of fact, the existential quantifier of classical logic could not have been conceived without the Ontological Assumption. The expression “(∃x)Fx” means that there exists at least an object that has the property F (or, in extensional language, that there exists an x that is a member of the extension of F). For this reason, “∃x” is unappliable to non existing objects. Of course, in classical logic we can deny the existence of an Object, but we cannot say anything about Objects that have never existed and shall never exist (we are strictly speaking about classical logic). We cannot quantify individual variables of a first order predicate that do not refer to a real, actual, past or future entity. For instance, we cannot say “(∃x) (x is the eye of Polyphemus)”. This would be false, of course, because Polyphemus does not exist. But if the Ontological Assumption is set aside, it is true, within a mythological frame, that Polyphemus has a single eye and many other properties. And now we can understand why noneism leads to logical material-dependence.

As we have anticipated, there must be some limitations concerning the selection of the contradictory properties; otherwise the whole theory becomes inconsistent and is trivialized. To avoid trivialization neutral (noneist) logic distinguishes between two sorts of negation: the classical propositional negation: “8 is not P”, and the narrower negation: “8 is non-P”. In this way, and by applying some other technicalities (for instance, in case an universe is inconsistent, some kind of paraconsistent logic must be used) trivialization is avoided. With the former provisions, the Characterization Postulate can be applied to create inconsistent universes in which classical logic is not valid. For instance, a world in which there is a mysterious personage, that within determined but very subtle circumstances, is and is not at the same time in two different places. In this case the logic to be applied is, obviously, some kind of paraconsistent logic (the type to be selected depends on the characteristic of the personage). And in another universe there could be a jewel which has two false properties: it is false that it is transparent and it is false that it is opaque. In this kind of world we must use, clearly, some kind of paracomplete logic. To develop naive set theory (in Halmos sense), we must use some type of paraconsistent logic to cope with the paradoxes, that are produced through a natural way of mathematical reasoning; this logic can be of several orders, just like the classical. In other cases, we can use some kind of relevant and, a fortiori, paraconsistent logic; and so on, ad infinitum.

But if logic is content-dependent, and this dependence is a consequence of the Ontological Assumption’s rejection, what about ontology? Because the universes determined through the application of the Characterization Postulate may have no being (in fact, most of them do not), we cannot say that the objects that populate such universes are entities, because entities exist in the empirical world, or in the real world that underpins the phenomena, or (in a somewhat different way), in an ideal Platonic world. Instead of speaking about ontology, we should speak about objectology. In essence objectology is the discipline founded by Meinong (Theory of Objects), but enriched and made more precise by Routley and other noneist logicians. Its main division would be Ontology (the study of real physical and Platonic objects) and Medenology (the study of objects that have no existence).