The general form of SPDE’s reads

Cov η(t, x), η(t′, x′) = δ(t − t′) δ(x − x′) —– (2)

Adt = (B + √(B2 − AC))dx —– (3)

Adt = (B − √(B2 − AC))dx —– (4)

These characteristics are the geometrical loci of the propagation of the boundary conditions.

Skip to content
# AltExploit

## Schoolboy Errors: Rhizomatic Dysphoria ∃! Machinic Kernel Panic: The Maximalist Politic of Self

# Tag: geometrical loci

# Hyperbolic Brownian Sheet, Parabolic and Elliptic Financials. (Didactic 3)

The general form of SPDE’s reads

Cov η(t, x), η(t′, x′) = δ(t − t′) δ(x − x′) —– (2)

Adt = (B + √(B2 − AC))dx —– (3)

Adt = (B − √(B2 − AC))dx —– (4)

These characteristics are the geometrical loci of the propagation of the boundary conditions.

%d bloggers like this: