Traditional Platonism, according to which our mathematical theories are bodies of truths about a realm of mathematical objects, assumes that only some amongst consistent theory candidates succeed in correctly describing the mathematical realm. For platonists, while mathematicians may contemplate alternative consistent extensions of the axioms for ZF (Zermelo–Fraenkel) set theory, for example, at most one such extension can correctly describe how things really are with the universe of sets. Thus, according to Platonists such as Kurt Gödel, intuition together with quasi-empirical methods (such as the justification of axioms by appeal to their intuitively acceptable consequences) can guide us in discovering which amongst alternative axiom candidates for set theory has things right about set theoretic reality. Alternatively, according to empiricists such as Quine, who hold that our belief in the truth of mathematical theories is justified by their role in empirical science, empirical evidence can choose between alternative consistent set theories. In Quine’s view, we are justified in believing the truth of the minimal amount of set theory required by our most attractive scientific account of the world.

Despite their differences at the level of detail, both of these versions of Platonism share the assumption that mere consistency is not enough for a mathematical theory: For such a theory to be true, it must correctly describe a realm of objects, where the existence of these objects is not guaranteed by consistency alone. Such a view of mathematical theories requires that we must have some grasp of the intended interpretation of an axiomatic theory that is independent of our axiomatization – otherwise inquiry into whether our axioms “get things right” about this intended interpretation would be futile. Hence, it is natural to see these Platonist views of mathematics as following Frege in holding that axioms

. . . must not contain a word or sign whose sense and meaning, or whose contribution to the expression of a thought, was not already completely laid down, so that there is no doubt about the sense of the proposition and the thought it expresses. The only question can be whether this thought is true and what its truth rests on. (Frege to Hilbert

)Gottlob Frege The Philosophical and Mathematical Correspondence

On such an account, our mathematical axioms express genuine assertions (thoughts), which may or may not succeed in asserting truths about their subject matter. These Platonist views are “assertory” views of mathematics. Assertory views of mathematics make room for a gap between our mathematical theories and their intended subject matter, and the possibility of such a gap leads to at least two difficulties for traditional Platonism. These difficulties are articulated by Paul Benacerraf (* here* and

*) in his aforementioned papers. The first difficulty comes from the realization that our mathematical theories, even when axioms are supplemented with less formal characterizations of their subject matter, may be insufficient to choose between alternative interpretations. For example, assertory views hold that the Peano axioms for arithmetic aim to assert truths about the natural numbers. But there are many candidate interpretations of these axioms, and nothing in the axioms, or in our wider mathematical practices, seems to suffice to pin down one interpretation over any other as the correct one. The view of mathematical theories as assertions about a specific realm of objects seems to force there to be facts about the correct interpretation of our theories even if, so far as our mathematical practice goes (for example, in the case of arithmetic), any ω-sequence would do.*

**here**Benacerraf’s second worry is perhaps even more pressing for assertory views. The possibility of a gap between our mathematical theories and their intended subject matter raises the question, “How do we know that our mathematical theories have things right about their subject matter?”. To answer this, we need to consider the nature of the purported objects about which our theories are supposed to assert truths. It seems that our best characterization of mathematical objects is negative: to account for the extent of our mathematical theories, and the timelessness of mathematical truths, it seems reasonable to suppose that mathematical objects are non-physical, non- spatiotemporal (and, it is sometimes added, mind- and language-independent) objects – in short, mathematical objects are abstract. But this negative characterization makes it difficult to say anything positive about how we could know anything about how things are with these objects. Assertory, Platonist views of mathematics are thus challenged to explain just how we are meant to evaluate our mathematical assertions – just how do the kinds of evidence these Platonists present in support of their theories succeed in ensuring that these theories track the truth?