Something Out of Almost Nothing. Drunken Risibility.

Kant’s first antinomy makes the error of the excluded third option, i.e. it is not impossible that the universe could have both a beginning and an eternal past. If some kind of metaphysical realism is true, including an observer-independent and relational time, then a solution of the antinomy is conceivable. It is based on the distinction between a microscopic and a macroscopic time scale. Only the latter is characterized by an asymmetry of nature under a reversal of time, i.e. the property of having a global (coarse-grained) evolution – an arrow of time – or many arrows, if they are independent from each other. Thus, the macroscopic scale is by definition temporally directed – otherwise it would not exist.

On the microscopic scale, however, only local, statistically distributed events without dynamical trends, i.e. a global time-evolution or an increase of entropy density, exist. This is the case if one or both of the following conditions are satisfied: First, if the system is in thermodynamic equilibrium (e.g. there is degeneracy). And/or second, if the system is in an extremely simple ground state or meta-stable state. (Meta-stable states have a local, but not a global minimum in their potential landscape and, hence, they can decay; ground states might also change due to quantum uncertainty, i.e. due to local tunneling events.) Some still speculative theories of quantum gravity permit the assumption of such a global, macroscopically time-less ground state (e.g. quantum or string vacuum, spin networks, twistors). Due to accidental fluctuations, which exceed a certain threshold value, universes can emerge out of that state. Due to some also speculative physical mechanism (like cosmic inflation) they acquire – and, thus, are characterized by – directed non-equilibrium dynamics, specific initial conditions, and, hence, an arrow of time.

It is a matter of debate whether such an arrow of time is

1) irreducible, i.e. an essential property of time,

2) governed by some unknown fundamental and not only phenomenological law,

3) the effect of specific initial conditions or

4) of consciousness (if time is in some sense subjective), or

5) even an illusion.

Many physicists favour special initial conditions, though there is no consensus about their nature and form. But in the context at issue it is sufficient to note that such a macroscopic global time-direction is the main ingredient of Kant’s first antinomy, for the question is whether this arrow has a beginning or not.

Time’s arrow is inevitably subjective, ontologically irreducible, fundamental and not only a kind of illusion, thus if some form of metaphysical idealism for instance is true, then physical cosmology about a time before time is mistaken or quite irrelevant. However, if we do not want to neglect an observer-independent physical reality and adopt solipsism or other forms of idealism – and there are strong arguments in favor of some form of metaphysical realism -, Kant’s rejection seems hasty. Furthermore, if a Kantian is not willing to give up some kind of metaphysical realism, namely the belief in a “Ding an sich“, a thing in itself – and some philosophers actually insisted that this is superfluous: the German idealists, for instance -, he has to admit that time is a subjective illusion or that there is a dualism between an objective timeless world and a subjective arrow of time. Contrary to Kant’s thoughts: There are reasons to believe that it is possible, at least conceptually, that time has both a beginning – in the macroscopic sense with an arrow – and is eternal – in the microscopic notion of a steady state with statistical fluctuations.

Is there also some physical support for this proposal?

Surprisingly, quantum cosmology offers a possibility that the arrow has a beginning and that it nevertheless emerged out of an eternal state without any macroscopic time-direction. (Note that there are some parallels to a theistic conception of the creation of the world here, e.g. in the Augustinian tradition which claims that time together with the universe emerged out of a time-less God; but such a cosmological argument is quite controversial, especially in a modern form.) So this possible overcoming of the first antinomy is not only a philosophical conceivability but is already motivated by modern physics. At least some scenarios of quantum cosmology, quantum geometry/loop quantum gravity, and string cosmology can be interpreted as examples for such a local beginning of our macroscopic time out of a state with microscopic time, but with an eternal, global macroscopic timelessness.

To put it in a more general, but abstract framework and get a sketchy illustration, consider the figure.


Physical dynamics can be described using “potential landscapes” of fields. For simplicity, here only the variable potential (or energy density) of a single field is shown. To illustrate the dynamics, one can imagine a ball moving along the potential landscape. Depressions stand for states which are stable, at least temporarily. Due to quantum effects, the ball can “jump over” or “tunnel through” the hills. The deepest depression represents the ground state.

In the common theories the state of the universe – the product of all its matter and energy fields, roughly speaking – evolves out of a metastable “false vacuum” into a “true vacuum” which has a state of lower energy (potential). There might exist many (perhaps even infinitely many) true vacua which would correspond to universes with different constants or laws of nature. It is more plausible to start with a ground state which is the minimum of what physically can exist. According to this view an absolute nothingness is impossible. There is something rather than nothing because something cannot come out of absolutely nothing, and something does obviously exist. Thus, something can only change, and this change might be described with physical laws. Hence, the ground state is almost “nothing”, but can become thoroughly “something”. Possibly, our universe – and, independent from this, many others, probably most of them having different physical properties – arose from such a phase transition out of a quasi atemporal quantum vacuum (and, perhaps, got disconnected completely). Tunneling back might be prevented by the exponential expansion of this brand new space. Because of this cosmic inflation the universe not only became gigantic but simultaneously the potential hill broadened enormously and got (almost) impassable. This preserves the universe from relapsing into its non-existence. On the other hand, if there is no physical mechanism to prevent the tunneling-back or makes it at least very improbable, respectively, there is still another option: If infinitely many universes originated, some of them could be long-lived only for statistical reasons. But this possibility is less predictive and therefore an inferior kind of explanation for not tunneling back.

Another crucial question remains even if universes could come into being out of fluctuations of (or in) a primitive substrate, i.e. some patterns of superposition of fields with local overdensities of energy: Is spacetime part of this primordial stuff or is it also a product of it? Or, more specifically: Does such a primordial quantum vacuum have a semi-classical spacetime structure or is it made up of more fundamental entities? Unique-universe accounts, especially the modified Eddington models – the soft bang/emergent universe – presuppose some kind of semi-classical spacetime. The same is true for some multiverse accounts describing our universe, where Minkowski space, a tiny closed, finite space or the infinite de Sitter space is assumed. The same goes for string theory inspired models like the pre-big bang account, because string and M- theory is still formulated in a background-dependent way, i.e. requires the existence of a semi-classical spacetime. A different approach is the assumption of “building-blocks” of spacetime, a kind of pregeometry also the twistor approach of Roger Penrose, and the cellular automata approach of Stephen Wolfram. The most elaborated accounts in this line of reasoning are quantum geometry (loop quantum gravity). Here, “atoms of space and time” are underlying everything.

Though the question whether semiclassical spacetime is fundamental or not is crucial, an answer might be nevertheless neutral with respect of the micro-/macrotime distinction. In both kinds of quantum vacuum accounts the macroscopic time scale is not present. And the microscopic time scale in some respect has to be there, because fluctuations represent change (or are manifestations of change). This change, reversible and relationally conceived, does not occur “within” microtime but constitutes it. Out of a total stasis nothing new and different can emerge, because an uncertainty principle – fundamental for all quantum fluctuations – would not be realized. In an almost, but not completely static quantum vacuum however, macroscopically nothing changes either, but there are microscopic fluctuations.

The pseudo-beginning of our universe (and probably infinitely many others) is a viable alternative both to initial and past-eternal cosmologies and philosophically very significant. Note that this kind of solution bears some resemblance to a possibility of avoiding the spatial part of Kant’s first antinomy, i.e. his claimed proof of both an infinite space without limits and a finite, limited space: The theory of general relativity describes what was considered logically inconceivable before, namely that there could be universes with finite, but unlimited space, i.e. this part of the antinomy also makes the error of the excluded third option. This offers a middle course between the Scylla of a mysterious, secularized creatio ex nihilo, and the Charybdis of an equally inexplicable eternity of the world.

In this context it is also possible to defuse some explanatory problems of the origin of “something” (or “everything”) out of “nothing” as well as a – merely assumable, but never provable – eternal cosmos or even an infinitely often recurring universe. But that does not offer a final explanation or a sufficient reason, and it cannot eliminate the ultimate contingency of the world.

Ergodic Theory. Thought of the Day 51.0


Classical dynamical systems have a particularly rich set of time symmetries. Let (X, φ) be a dynamical system. A classical dynamical system consists of a set X (the state space) and a function φ from X into itself that determines how the state changes over time (the dynamics). Let T={0,1,2,3,….}. Given any state x in X (the initial conditions), the orbit of x is the history h defined by h(0) = x, h(1) = φ(x), h(2) = φ(φ(x)), and so on. Let Ω be the set of all orbits determined by (X, φ) in this way. Let {Pr’E}E⊆X be any conditional probability structure on X. For any events E and D in Ω, we define PrE(D) = Pr’E’(D’), where E’ is the set of all states x in X whose orbits lie in E, and D’ is the set of all states x in X whose orbits lie in D. Then {PrE}E⊆Ω is a conditional probability structure on Ω. Thus, Ω and {PrE}E⊆Ω together form a temporally evolving system. However, not every temporally evolving system arises in this way. Suppose the function φ (which maps from X into itself) is surjective, i.e., for all x in X, there is some y in X such that φ(y)=x. Then the set Ω of orbits is invariant under all time-shifts. Let {Pr’E}E⊆X be a conditional probability structure on X, and let {PrE}E⊆Ω be the conditional probability structure it induces on Ω. Suppose that {Pr’E}E⊆X is φ-invariant, i.e., for any subsets E and D of X, if E’ = φ–1(E) and D’ = φ–1(D), then Pr’E’(D’) = Pr’E(D). Then every time shift is a temporal symmetry of the resulting temporally evolving system. The study of dynamical systems equipped with invariant probability measures is the purview of ergodic theory.

Categorial Logic – Paracompleteness versus Paraconsistency. Thought of the Day 46.2


The fact that logic is content-dependent opens a new horizon concerning the relationship of logic to ontology (or objectology). Although the classical concepts of a priori and a posteriori propositions (or judgments) has lately become rather blurred, there is an undeniable fact: it is certain that the far origin of mathematics is based on empirical practical knowledge, but nobody can claim that higher mathematics is empirical.

Thanks to category theory, it is an established fact that some sort of very important logical systems: the classical and the intuitionistic (with all its axiomatically enriched subsystems), can be interpreted through topoi. And these possibility permits to consider topoi, be it in a Noneist or in a Platonist way, as universes, that is, as ontologies or as objectologies. Now, the association of a topos with its correspondent ontology (or objectology) is quite different from the association of theoretical terms with empirical concepts. Within the frame of a physical theory, if a new fact is discovered in the laboratory, it must be explained through logical deduction (with the due initial conditions and some other details). If a logical conclusion is inferred from the fundamental hypotheses, it must be corroborated through empirical observation. And if the corroboration fails, the theory must be readjusted or even rejected.

In the case of categorial logic, the situation has some similarity with the former case; but we must be careful not to be influenced by apparent coincidences. If we add, as an axiom, the tertium non datur to the formalized intuitionistic logic we obtain classical logic. That is, we can formally pass from the one to the other, just by adding or suppressing the tertium. This fact could induce us to think that, just as in physics, if a logical theory, let’s say, intuitionistic logic, cannot include a true proposition, then its axioms must be readjusted, to make it possible to include it among its theorems. But there is a radical difference: in the semantics of intuitionistic logic, and of any logic, the point of departure is not a set of hypothetical propositions that must be corroborated through experiment; it is a set of propositions that are true under some interpretation. This set can be axiomatic or it can consist in rules of inference, but the theorems of the system are not submitted to verification. The derived propositions are just true, and nothing more. The logician surely tries to find new true propositions but, when they are found (through some effective method, that can be intuitive, as it is in Gödel’s theorem) there are only three possible cases: they can be formally derivable, they can be formally underivable, they can be formally neither derivable nor underivable, that is, undecidable. But undecidability does not induce the logician to readjust or to reject the theory. Nobody tries to add axioms or to diminish them. In physics, when we are handling a theory T, and a new describable phenomenon is found that cannot be deduced from the axioms (plus initial or some other conditions), T must be readjusted or even rejected. A classical logician will never think of changing the axioms or rules of inference of classical logic because it is undecidable. And an intuitionist logician would not care at all to add the tertium to the axioms of Heyting’s system because it cannot be derived within it.

The foregoing considerations sufficiently show that in logic and mathematics there is something that, with full right, can be called “a priori“. And although, as we have said, we must acknowledge that the concepts of a priori and a posteriori are not clear-cut, in some cases, we can rightly speak of synthetical a priori knowledge. For instance, the Gödel’s proposition that affirms its own underivabilty is synthetical and a priori. But there are other propositions, for instance, mathematical induction, that can also be considered as synthetical and a priori. And a great deal of mathematical definitions, that are not abbreviations, are synthetical. For instance, the definition of a monoid action is synthetical (and, of course, a priori) because the concept of a monoid does not have among its characterizing traits the concept of an action, and vice versa.

Categorial logic is, the deepest knowledge of logic that has ever been achieved. But its scope does not encompass the whole field of logic. There are other kinds of logic that are also important and, if we intend to know, as much as possible, what logic is and how it is related to mathematics and ontology (or objectology), we must pay attention to them. From a mathematical and a philosophical point of view, the most important logical non-paracomplete systems are the paraconsistent ones. These systems are something like a dual to paracomplete logics. They are employed in inconsistent theories without producing triviality (in this sense also relevant logics are paraconsistent). In intuitionist logic there are interpretations that, with respect to some topoi, include two false contradictory propositions; whereas in paraconsistent systems we can find interpretations in which there are two contradictory true propositions.

There is, though, a difference between paracompleteness and paraconsistency. Insofar as mathematics is concerned, paracomplete systems had to be coined to cope with very deep problems. The paraconsistent ones, on the other hand, although they have been applied with success to mathematical theories, were conceived for purely philosophical and, in some cases, even for political and ideological motivations. The common point of them all was the need to construe a logical system able to cope with contradictions. That means: to have at one’s disposal a deductive method which offered the possibility of deducing consistent conclusions from inconsistent premisses. Of course, the inconsistency of the premisses had to comply with some (although very wide) conditions to avoid triviality. But these conditions made it possible to cope with paradoxes or antinomies with precision and mathematical sense.

But, philosophically, paraconsistent logic has another very important property: it is used in a spontaneous way to formalize the naive set theory, that is, the kind of theory that pre-Zermelian mathematicians had always employed. And it is, no doubt, important to try to develop mathematics within the frame of naive, spontaneous, mathematical thought, without falling into the artificiality of modern set theory. The formalization of the naive way of mathematical thinking, although every formalization is unavoidably artificial, has opened the possibility of coping with dialectical thought.