The Banking Business…Note Quote

retailandcommercialbanking

Why is lending indispensable to banking? This not-so new question has garnered a lot of steam, especially in the wake of 2007-08 crisis. In India, however, this question has become quite a staple of CSOs purportedly carrying out research and analysis in what has, albeit wrongly, begun to be considered offshoots of neoliberal policies of capitalism favoring cronyism on one hand, and marginalizing priority sector focus by nationalized banks on the other. Though, it is a bit far-fetched to call this analysis mushrooming on artificially-tilled grounds, it nevertheless isn’t justified for the leaps such analyses assume don’t exist. The purpose of this piece is precisely to demystify and be a correctional to such erroneous thoughts feeding activism. 

The idea is to launch from the importance of lending practices to banking, and why if such practices weren’t the norm, banking as a business would falter. Monetary and financial systems are creations of double entry-accounting, in that, when banks lend, the process is a creation of a matrix/(ces) of new assets and new liabilities. Monetary system is a counterfactual, which is a bookkeeping mechanism for the intermediation of real economic activity giving a semblance of reality to finance capitalism in substance and form. Let us say, a bank A lends to a borrower. By this process, a new asset and a new liability is created for A, in that, there is a debit under bank assets, and a simultaneous credit on the borrower’s account. These accounting entries enhance bank’s and borrower’s  respective categories, making it operationally different from opening bank accounts marked by deposits. The bank now has an asset equal to the amount of the loan and a liability equal to the deposit. Put a bit more differently, bank A writes a cheque or draft for the borrower, thus debiting the borrower’s loan account and crediting a payment liability account. Now, this borrower decides to deposit this cheque/draft at a different bank B, which sees the balance sheet of B grow by the same amount, with a payment due asset and a deposit liability. This is what is a bit complicated and referred to as matrix/(ces) at the beginning of this paragraph. The obvious complication is due to a duplication of balance sheet across the banks A and B, which clearly stands in need of urgent resolution. This duplication is categorized under the accounting principle of ‘Float’, and is the primary requisite for resolving duplicity. Float is the amount of time it takes for money to move from one account to another. The time period is significant because it’s as if the funds are in two places at once. The money is still in the cheque writer’s account, and the cheque recipient may have deposited funds to their bank as well. The resolution is reached when the bank B clears the cheque/draft and receives a reserve balance credit in exchange, at which point the bank A sheds both reserve balances and its payment liability. Now, what has happened is that the systemic balance sheet has grown by the amount of the original loan and deposit, even if these are domiciles in two different banks A and B. In other words, B’s balance sheet has an increased deposits and reserves, while A’s balance sheet temporarily unchanged due to loan issued offset reserves decline. It needs to be noted that here a reserve requirement is created in addition to a capital requirement, the former with the creation of a deposit, while the latter with the creation of a loan, implying that loans create capital requirement, whereas deposits create reserve requirement.  Pari Passu, bank A will seek to borrow new funding from money markets and bank B could lend funds into these markets. This is a natural reaction to the fluctuating reserve distribution created at banks A and B. This course of normalization of reserve fluctuations is a basic function of commercial bank reserve management. Though, this is a typical case involving just two banks, a meshwork of different banks, their counterparties, are involved in such transactions that define present-day banking scenario, thus highlighting complexity referred to earlier. 

Now, there is something called the Cash Reserve Ratio (CRR), whereby banks in India (and elsewhere as well) are required to hold a certain proportion of their deposits in the form of cash. However, these banks don’t hold these as cash with themselves for they deposit such cash (also known as currency chests) with the Reserve Bank of India (RBI). For example, if the bank’s deposits increase by Rs. 100, and if the CRR is 4% (this is the present CRR stipulated by the RBI), then the banks will have to hold Rs. 4 with the RBI, and the bank will be able to use only Rs. 96 for investments and lending, or credit purpose. Therefore, higher the CRR, lower is the amount that banks will be able to use for lending and investment. CRR is a tool used by the RBI to control liquidity in the banking system. Now, if the bank A lends out Rs. 100, it incurs a reserve requirement of Rs. 4, or in other words, for every Rs. 100 loan, there is a simultaneous reserve requirement of Rs. 4 created in the form of reserve liability. But, there is a further ingredient to this banking complexity in the form of Tier-1 and Tier-2 capital as laid down by BASEL Accords, to which India is a signatory. Under the accord, bank’s capital consists of tier-1 and tier-2 capital, where tier-1 is bank’s core capital, while tier-2 is supplementary, and the sum of these two is bank’s total capital. This is a crucial component and is considered highly significant by regulators (like the RBI, for instance), for the capital ratio is used to determine and rank bank’s capital adequacy. tier-1 capital consists of shareholders’ equity and retained earnings, and gives a measure of when the bank must absorb losses without ceasing business operations. BASEL-3 has capped the minimum tier-1 capital ratio at 6%, which is calculated by dividing bank’s tier-1 capital by its total risk-based assets. Tier-2 capital includes revaluation reserves, hybrid capital instruments and subordinated term debt, general loan-loss revenues, and undisclosed reserves. tier-2 capital is supplementary since it is less reliable than tier-1 capital. According to BASEL-3, the minimum total capital ratio is 8%, which indicates the minimum tier-2 capital ratio at 2%, as opposed to 6% for the tier-1 capital ratio. Going by these norms, a well capitalized bank in India must have a 8% combined tier-1 and tier-2 capital ratio, meaning that for every Rs. 100 bank loan, a simultaneous regulatory capital liability of Rs. 8 of tier-1/tier-2 is generated. Further, if a Rs. 100 loan has created a Rs. 100 deposit, it has actually created an asset of Rs. 100 for the bank, while at the same time a liability of Rs. 112, which is the sum of deposits and required reserves and capital. On the face of it, this looks like a losing deal for the bank. But, there is more than meets the eye here. 

Assume bank A lends Mr. Amit Modi Rs. 100, by crediting Mr. Modi’s deposit account held at A with Rs. 100. Two new liabilities are immediately created that need urgent addressing, viz. reserve and capital requirement. One way to raise Rs. 8 of required capital, bank A sells shares, or raise equity-like debt or retain earnings. The other way is to attach an origination fee of 10% (sorry for the excessively high figure here, but for sake of brevity, let’s keep it at 10%). This 10% origination fee helps maintain retained earnings and assist satisfying capital requirements. Now, what is happening here might look unique, but is the key to any banking business of lending, i.e. the bank A is meeting its capital requirement by discounting a deposit it created of its own loan, and thereby reducing its liability without actually reducing its asset. To put it differently, bank A extracts a 10% fee from Rs. 100 it loans, thus depositing an actual sum of only Rs. 90. With this, A’s reserve requirement decrease by Rs. 3.6 (remember 4% is the CRR). This in turn means that the loan of Rs. 100 made by A actually creates liabilities worth Rs. Rs. 108.4 (4-3.6 = 0.4 + 8). The RBI, which imposes the reserve requirement will follow up new deposit creation with a systemic injection sufficient to accommodate the requirement of bank B that has issued the deposit. And this new requirement is what is termed the targeted asset for the bank. It will fund this asset in the normal course of its asset-liability management process, just as it would any other asset. At the margin, the bank actually has to compete for funding that will draw new reserve balances into its position with the RBI. This action of course is commingled with numerous other such transactions that occur in the normal course of reserve management. The sequence includes a time lag between the creation of the deposit and the activation of the corresponding reserve requirement against that deposit. A bank in theory can temporarily be at rest in terms of balance sheet growth, and still be experiencing continuous shifting in the mix of asset and liability types, including shifting of deposits. Part of this deposit shifting is inherent in a private sector banking system that fosters competition for deposit funding. The birth of a demand deposit in particular is separate from retaining it through competition. Moreover, the fork in the road that was taken in order to construct a private sector banking system implies that the RBI is not a mere slush fund that provides unlimited funding to the banking system.  

The originating accounting entries in the above case are simple, a loan asset and a deposit liability. But this is only the start of the story. Commercial bank ‘asset-liability management’ functions oversee the comprehensive flow of funds in and out of individual banks. They control exposure to the basic banking risks of liquidity and interest rate sensitivity. Somewhat separately, but still connected within an overarching risk management framework, banks manage credit risk by linking line lending functions directly to the process of internal risk assessment and capital allocation. Banks require capital, especially equity capital, to take risk, and to take credit risk in particular. Interest rate risk and interest margin management are critical aspects of bank asset-liability management. The asset-liability management function provides pricing guidance for deposit products and related funding costs for lending operations. This function helps coordinate the operations of the left and the right hand sides of the balance sheet. For example, a central bank interest rate change becomes a cost of funds signal that transmits to commercial bank balance sheets as a marginal pricing influence. The asset-liability management function is the commercial bank coordination function for this transmission process, as the pricing signal ripples out to various balance sheet categories. Loan and deposit pricing is directly affected because the cost of funds that anchors all pricing in finance has been changed. In other cases, a change in the term structure of market interest rates requires similar coordination of commercial bank pricing implications. And this reset in pricing has implications for commercial bank approaches to strategies and targets for the compositional mix of assets and liabilities. The life of deposits is more dynamic than their birth or death. Deposits move around the banking system as banks compete to retain or attract them. Deposits also change form. Demand deposits can convert to term deposits, as banks seek a supply of longer duration funding for asset-liability matching purposes. And they can convert to new debt or equity securities issued by a particular bank, as buyers of these instruments draw down their deposits to pay for them. All of these changes happen across different banks, which can lead to temporary imbalances in the nominal matching of assets and liabilities, which in turn requires active management of the reserve account level, with appropriate liquidity management responses through money market operations in the short term, or longer term strategic adjustment in approaches to loan and deposit market share. The key idea here is that banks compete for deposits that currently exist in the system, including deposits that can be withdrawn on demand, or at maturity in the case of term deposits. And this competition extends more comprehensively to other liability forms such as debt, as well as to the asset side of the balance sheet through market share strategies for various lending categories. All of this balance sheet flux occurs across different banks, and requires that individual banks actively manage their balance sheets to ensure that assets are appropriately and efficiently funded with liabilities and equity. The ultimate purpose of reserve management is not reserve positioning per se. The end goal is balance sheets are in balance. The reserve system records the effect of this balance sheet activity. And even if loan books remain temporarily unchanged, all manner of other banking system assets and liabilities may be in motion. This includes securities portfolios, deposits, debt liabilities, and the status of the common equity and retained earnings account. And of course, loan books don’t remain unchanged for very long, in which case the loan/deposit growth dynamic comes directly into play on a recurring basis. 

Commercial banks’ ability to create money is constrained by capital. When a bank creates a new loan, with an associated new deposit, the bank’s balance sheet size increases, and the proportion of the balance sheet that is made up of equity (shareholders’ funds, as opposed to customer deposits, which are debt, not equity) decreases. If the bank lends so much that its equity slice approaches zero, as happened in some banks prior to the financial crisis, even a very small fall in asset prices is enough to render it insolvent. Regulatory capital requirements are intended to ensure that banks never reach such a fragile position. In contrast, central banks’ ability to create money is constrained by the willingness of their government to back them, and the ability of that government to tax the population. In practice, most central bank money these days is asset-backed, since central banks create new money when they buy assets in open market operations or Quantitative Easing, and when they lend to banks. However, in theory a central bank could literally spirit money from thin air without asset purchases or lending to banks. This is Milton Friedman’s famous helicopter drop. The central bank would become technically insolvent as a result, but provided the government is able to tax the population, that wouldn’t matter. The ability of the government to tax the population depends on the credibility of the government and the productive capacity of the economy. Hyperinflation can occur when the supply side of the economy collapses, rendering the population unable and/or unwilling to pay taxes. It can also occur when people distrust a government and its central bank so much that they refuse to use the currency that the central bank creates. Distrust can come about because people think the government is corrupt and/or irresponsible, or because they think that the government is going to fall and the money it creates will become worthless. But nowhere in the genesis of hyperinflation does central bank insolvency feature….

 

Advertisement

Banking Assets Depreciation, Insolvency and Liquidation: Why are Defaults so Contagious?

wp621_0

Interlinkages across balance sheets of financial institutions may be modeled by a weighted directed graph G = (V, e) on the vertex set V = {1,…, n} = [n], whose elements represent financial institutions. The exposure matrix is given by e ∈ Rn×n, where the ijth entry e(i, j) represents the exposure (in monetary units) of institution i to institution j. The interbank assets of an institution i are given by

A(i) := ∑j e(i, j), which represents the interbank liabilities of i. In addition to these interbank assets and liabilities, a bank may hold other assets and liabilities (such as deposits).

The net worth of the bank, given by its capital c(i), represents its capacity for absorbing losses while remaining solvent. “Capital Ratio” of institution i, although technically, the ratio of capital to interbank assets and not total assets is given by

γ(i) := c(i)/A(i)

An institution is insolvent if its net worth is negative or zero, in which case, γ(i) is set to 0.

A financial network (e, γ) on the vertex set V = [n] is defined by

• a matrix of exposures {e(i, j)}1≤i,j≤n

• a set of capital ratios {γ(i)}1≤i≤n

In this network, the in-degree of a node i is given by

d(i) := #{j∈V | e(j, i)>0},

which represents the number of nodes exposed to i, while its out-degree

d+(i) := #{j∈V | e(i, j)>0}

represents the number of institutions i is exposed to. The set of initially insolvent institutions is represented by

D0(e, γ) = {i ∈ V | γ(i) = 0}

In a network (e, γ) of counterparties, the default of one or several nodes may lead to the insolvency of other nodes, generating a cascade of defaults. Starting from the set of initially insolvent institutions D0(e, γ) which represent fundamental defaults, contagious process is defined as:

Denoting by R(j) the recovery rate on the assets of j at default, the default of j induces a loss equal to (1 − R(j))e(i, j) for its counterparty i. If this loss exceeds the capital of i, then i becomes in turn insolvent. From the formula for Capital Ration, we have c(i) = γ(i)A(i). The set of nodes which become insolvent due to their exposures to initial defaults is

D1(e, γ) = {i ∈ V | γ(i)A(i) < ∑j∈D0 (1 − R(j)) e(i, j)}

This procedure may be iterated to define the default cascade initiated by a set of initial defaults.

So, when would a default cascade happen? Consider a financial network (e, γ) on the vertex set V = [n]. Set D0(e, γ) = {i ∈ V | γ(i) = 0} of initially insolvent institutions. The increasing sequence (Dk(e, γ), k ≥ 1) of subsets of V defined by

Dk(e, γ) = {i ∈ V | γ(i)A(i) < ∑j∈Dk-1(e,γ) (1−R(j)) e(i, j)}

is called the default cascade initiated by D0(e, γ).

Thus Dk(e, γ) represents the set of institutions whose capital is insufficient to absorb losses due to defaults of institutions in Dk-1(e, γ).

Thus, in a network of size n, the cascade ends after at most n − 1 iterations. Hence, Dn-1(e, γ) represents the set of all nodes which become insolvent starting from the initial set of defaults D0(e, γ).

Consider a financial network (e, γ) on the vertex set V = [n]. The fraction of defaults in the network (e, γ) (initiated by D0(e, γ) is given by

αn(e, γ) := |Dn-1(e, γ)|/n

The recovery rates R(i) may be exogenous or determined endogenously by redistributing assets of a defaulted entity among debtors, proportionally to their outstanding debt. The latter scenario is too optimistic since in practice liquidation takes time and assets may depreciate in value due to fire sales during liquidation. When examining the short term consequences of default, the most realistic assumption on recovery rates is zero: Assets held with a defaulted counterparty are frozen until liquidation takes place, a process which can in practice take a pretty long time to terminate.

Statistical Arbitrage. Thought of the Day 123.0

eg_arb_usd_hedge

In the perfect market paradigm, assets can be bought and sold instantaneously with no transaction costs. For many financial markets, such as listed stocks and futures contracts, the reality of the market comes close to this ideal – at least most of the time. The commission for most stock transactions by an institutional trader is just a few cents a share, and the bid/offer spread is between one and five cents. Also implicit in the perfect market paradigm is a level of liquidity where the act of buying or selling does not affect the price. The market is composed of participants who are so small relative to the market that they can execute their trades, extracting liquidity from the market as they demand, without moving the price.

That’s where the perfect market vision starts to break down. Not only does the demand for liquidity move prices, but it also is the primary driver of the day-by-day movement in prices – and the primary driver of crashes and price bubbles as well. The relationship between liquidity and the prices of related stocks also became the primary driver of one of the most powerful trading models in the past 20 years – statistical arbitrage.

If you spend any time at all on a trading floor, it becomes obvious that something more than information moves prices. Throughout the day, the 10-year bond trader gets orders from the derivatives desk to hedge a swap position, from the mortgage desk to hedge mortgage exposure, from insurance clients who need to sell bonds to meet liabilities, and from bond mutual funds that need to invest the proceeds of new accounts. None of these orders has anything to do with information; each one has everything to do with a need for liquidity. The resulting price changes give the market no signal concerning information; the price changes are only the result of the need for liquidity. And the party on the other side of the trade who provides this liquidity will on average make money for doing so. For the liquidity demander, time is more important than price; he is willing to make a price concession to get his need fulfilled.

Liquidity needs will be manifest in the bond traders’ own activities. If their inventory grows too large and they feel overexposed, they will aggressively hedge or liquidate a portion of the position. And they will do so in a way that respects the liquidity constraints of the market. A trader who needs to sell 2,000 bond futures to reduce exposure does not say, “The market is efficient and competitive, and my actions are not based on any information about prices, so I will just put those contracts in the market and everybody will pay the fair price for them.” If the trader dumps 2,000 contracts into the market, that offer obviously will affect the price even though the trader does not have any new information. Indeed, the trade would affect the market price even if the market knew the selling was not based on an informational edge.

So the principal reason for intraday price movement is the demand for liquidity. This view of the market – a liquidity view rather than an informational view – replaces the conventional academic perspective of the role of the market, in which the market is efficient and exists solely for conveying information. Why the change in roles? For one thing, it’s harder to get an information advantage, what with the globalization of markets and the widespread dissemination of real-time information. At the same time, the growth in the number of market participants means there are more incidents of liquidity demand. They want it, and they want it now.

Investors or traders who are uncomfortable with their level of exposure will be willing to pay up to get someone to take the position. The more uncomfortable the traders are, the more they will pay. And well they should, because someone else is getting saddled with the risk of the position, someone who most likely did not want to take on that position at the existing market price. Thus the demand for liquidity not only is the source of most price movement; it is at the root of most trading strategies. It is this liquidity-oriented, tectonic market shift that has made statistical arbitrage so powerful.

Statistical arbitrage originated in the 1980s from the hedging demand of Morgan Stanley’s equity block-trading desk, which at the time was the center of risk taking on the equity trading floor. Like other broker-dealers, Morgan Stanley continually faced the problem of how to execute large block trades efficiently without suffering a price penalty. Often, major institutions discover they can clear a large block trade only at a large discount to the posted price. The reason is simple: Other traders will not know if there is more stock to follow, and the large size will leave them uncertain about the reason for the trade. It could be that someone knows something they don’t and they will end up on the wrong side of the trade once the news hits the street. The institution can break the block into a number of smaller trades and put them into the market one at a time. Though that’s a step in the right direction, after a while it will become clear that there is persistent demand on one side of the market, and other traders, uncertain who it is and how long it will continue, will hesitate.

The solution to this problem is to execute the trade through a broker-dealer’s block-trading desk. The block-trading desk gives the institution a price for the entire trade, and then acts as an intermediary in executing the trade on the exchange floor. Because the block traders know the client, they have a pretty good idea if the trade is a stand-alone trade or the first trickle of a larger flow. For example, if the institution is a pension fund, it is likely it does not have any special information, but it simply needs to sell the stock to meet some liability or to buy stock to invest a new inflow of funds. The desk adjusts the spread it demands to execute the block accordingly. The block desk has many transactions from many clients, so it is in a good position to mask the trade within its normal business flow. And it also might have clients who would be interested in taking the other side of the transaction.

The block desk could end up having to sit on the stock because there is simply no demand and because throwing the entire position onto the floor will cause prices to run against it. Or some news could suddenly break, causing the market to move against the position held by the desk. Or, in yet a third scenario, another big position could hit the exchange floor that moves prices away from the desk’s position and completely fills existing demand. A strategy evolved at some block desks to reduce this risk by hedging the block with a position in another stock. For example, if the desk received an order to buy 100,000 shares of General Motors, it might immediately go out and buy 10,000 or 20,000 shares of Ford Motor Company against that position. If news moved the stock price prior to the GM block being acquired, Ford would also likely be similarly affected. So if GM rose, making it more expensive to fill the customer’s order, a position in Ford would also likely rise, partially offsetting this increase in cost.

This was the case at Morgan Stanley, where there were maintained a list of pairs of stocks – stocks that were closely related, especially in the short term, with other stocks – in order to have at the ready a solution for partially hedging positions. By reducing risk, the pairs trade also gave the desk more time to work out of the trade. This helped to lessen the liquidity-related movement of a stock price during a big block trade. As a result, this strategy increased the profit for the desk.

The pairs increased profits. Somehow that lightbulb didn’t go on in the world of equity trading, which was largely devoid of principal transactions and systematic risk taking. Instead, the block traders epitomized the image of cigar-chewing gamblers, playing market poker with millions of dollars of capital at a clip while working the phones from one deal to the next, riding in a cloud of trading mayhem. They were too busy to exploit the fact, or it never occurred to them, that the pairs hedging they routinely used held the secret to a revolutionary trading strategy that would dwarf their desk’s operations and make a fortune for a generation of less flamboyant, more analytical traders. Used on a different scale and applied for profit making rather than hedging, their pairwise hedges became the genesis of statistical arbitrage trading. The pairwise stock trades that form the elements of statistical arbitrage trading in the equity market are just one more flavor of spread trades. On an individual basis, they’re not very good spread trades. It is the diversification that comes from holding many pairs that makes this strategy a success. But even then, although its name suggests otherwise, statistical arbitrage is a spread trade, not a true arbitrage trade.

Indecent Bazaars. Thought of the Day 113.0

centerperiphery

Peripheral markets may be defined as markets which generate only a small proportion of their financial inflows from local business and investors, but which attract the interest of ‘global’ investors. Emerging markets and markets for financial exotica such as financial derivatives are examples of such peripheral markets. Because emerging markets are largely dependent upon attracting international funds in order to generate increases in securities prices and capital gains which will attract further funds, they are particularly good examples of the principles of Ponzi finance at work in securities markets.

A common characteristic feature of peripheral markets is that they have no history of returns to financial investment on the scale on which finance is drawn to those markets in a time of capital market inflation. Such returns in the future have to be inferred on the basis of conjecture and fragmentary information. Investment decisions are therefore more dependent on sentiment, rather than reason. Any optimism is quickly justified by the rapid increase in asset prices in response to even a modest excess net inflow of money into such a market.

Emerging markets illustrate this very clearly. Such markets exist in developing and semi-industrialized countries with relatively undeveloped pensions and insurance institutions, principally because only a small proportion of households earn enough to be able to put aside long-term savings. The first fund manager comes upon such a market in the conviction that a change of government or government policy, or some temporary change in commodity prices, has opened a cornucopia of profitable opportunities and therefore warrants the dismissal of a history of economic, financial and political instability. If he or she is able with buying and enthusiasm to attract other speculators and fund managers to enter the market, they may drive up asset prices and make the largest capital gains. The second and third fund managers to buy into that market also make capital gains. The emulatory competition of trading on reputation while competing for returns makes international investment managers especially prone to this kind of ‘herd’ investment.

For a while such capital inflows into the market make everyone happy: international fund managers are able to show good returns from the funds in their care; finance theorists can reassure themselves that greater financial risks are compensated by higher returns; the government of the country in which the emerging market is located can sell its bonds and public sector enterprises to willing foreign investors and use the proceeds to balance its budget and repay its debts; the watchdogs of financial prudence in the International Monetary Fund can hail the revival of finance, the government’s commitment to private enterprise and apparent fiscal responsibility; state enterprises, hitherto stagnating because of under-investment by over-indebted governments, suddenly find themselves in the private sector commanding seemingly limitless opportunities for raising finance; the country’s currency after years of depreciation acquires a gilt-edged stability as dollars (the principal currency of international investment) flow in to be exchanged for local currency with which to buy local securities; the central bank accumulates dollars in exchange for the local currency that it issues to enable foreign investors to invest in the local markets and, with larger reserves, secures a new ease in managing its foreign liabilities; the indigenous middle and professional classes who buy financial and property (real estate) assets in time for the boom are enriched and for once cease their perennial grumbling at the sordid reality of life in a poor country. In this conjuncture the most banal shibboleths of enterprise and economic progress under capitalism appear like the very essence of worldly wisdom.

Only in such a situation of capital market inflation are the supposed benefits of foreign direct investment realized. Such investment by multinational companies is widely held to improve the ‘quality’ or productivity of local labour, management and technical know-how in less developed countries, whose technology and organization of labour lags behind that of the more industrialized countries. But only the most doltish and ignorant peasant would not have his or her productivity increased by being set to work with a machine of relatively recent vintage under the guidance of a manager familiar with that machine and the kind of work organization that it requires. It is more doubtful whether the initial increase in productivity can be realized without a corresponding increase in the export market (developing countries have relatively small home markets). It is even more doubtful if the productivity increase can be repeated without the replacement of the machinery by even newer machinery.

The favourable conjuncture in the capital markets of developing countries can be even more temporary. There are limits on the extent to which even private sector companies may take on financial liabilities and privatization is merely a system for transferring such liabilities from the government to the private sector without increasing the financial resources of the companies privatized. But to sustain capital gains in the emerging stock market, additional funds have to continue to flow in buying new liabilities of the government or the private sector, or buying out local investors. When new securities cease to attract international fund managers, the inflow stops. Sometimes this happens when the government privatization drive pauses, because the government runs out of attractive state enterprises or there are political and procedural difficulties in selling them. A fall in the proceeds from privatization may reveal the government’s underlying fiscal deficit, causing the pundits of international finance to sense the odour of financial unsoundness. More commonly rising imports and general price inflation, due to the economic boom set off by the inflow of foreign funds, arouse just such an odour in the noses of those pundits. Such financial soundness is a subjective view. Even if nothing is wrong in the country concerned, the prospective capital gain and yield in some other market need only rise above the expected inflation and yield of the country, to cause a capital outflow which will usually be justified in retrospect by an appeal to perceived, if not actual, financial disequilibrium.

Ponzi financial structures are characterized by ephemeral liquidity. At the time when money is coming into the markets they appear to be just the neo-classical ideal of market perfection, with lots of buyers and sellers scrambling for bargains and arbitrage profits. At the moment when disinvestment takes hold the true nature of peripheral markets and their ephemeral liquidity is revealed as trades which previously sped through in the frantic paper chase for profits are now frustrated. This too is particularly apparent in emerging markets. In order to sell, a buyer is necessary. If the majority of investors in a market also wish to sell, then sales cannot be executed for want of a buyer and the apparently perfect market liquidity dries up. The crash of the emerging stock market is followed by the fall in the exchange value of the local currency. Those international investors that succeeded in selling now have local currency which has to be converted into dollars if the proceeds of the sale are to be repatriated, or invested elsewhere. Exchange through the local banking system may now be frustrated if it has inadequate dollar reserves: a strong possibility if the central bank has been using dollars to service foreign debts. In spite of all the reassurance that this time it will be different because capital inflows are secured on financial instruments issued by the private sector, international investors are at this point as much at the mercy of the central bank and the government of an emerging market as international banks were at the height of the sovereign debt crisis. Moreover, the greater the success of the peripheral market in attracting funds, and hence the greater the boom in prices in that market, the greater is the desired outflow when it comes. With the fall in liquidity of financial markets in developing countries comes a fall in the liquidity of foreign direct investment, making it difficult to secure appropriate local financial support or repatriate profits.

Another factor which contributes to the fragility of peripheral markets is the opaqueness of financial accounting in them, in the sense that however precise and discriminating may be the financial accounting conventions, rules and reporting, they do not provide accurate indicators of the financial prospects of particular investments. In emerging markets this is commonly supposed to be because they lack the accounting regulations and expertise which supports the sophisticated integrated financial markets of the industrialized countries. In those industrialized countries, where accounting procedures are supposed to be much more transparent, peripheral markets such as venture capital and financial futures still suffer from accounting inadequacies because financial innovation introduces liabilities that have no history and which are not included in conventional accounts (notably the so-called ‘off-balance sheet’ liabilities). More important than these gaps in financial reporting is the volatility of profits from financial investment in such peripheral markets, and the absence of any stable relationship between profits from trading in their instruments and the previous history of those instruments or the financial performance of the company issuing them. Thus, even where financial records are comprehensive, accurate and revealed, they are a poor indicator of prospective returns from investments in the securities of peripheral markets.

With more than usually unreliable financial data, trading in those markets is much more based on reputation than on any systematic financial analysis: the second and third investor in such a market is attracted by the reputation of the first and subsequently the second investor. Because of the direct connection between financial inflows and values in securities markets, the more trading takes place on the basis of reputation the less of a guide to prospective returns is afforded by financial analysis. Peripheral markets are therefore much more prone to ‘ramping’ than other markets.

Why would such a crisis of withdrawal not occur, at least not on such a scale, in the more locally integrated capital markets of the advanced industrialised countries? First of all, integrated capital markets such as those of the UK, and the US are the domestic base for international investors. In periods of financial turbulence, they are more likely to have funds repatriated to them than to have funds taken out of them. Second, institutional investors tend to be more responsive to pressure to be ‘responsible investors’ in their home countries. In large measure this is because home securities make up the vast majority of investment fund portfolios. Ultimately, investment institutions will use their liquidity to protect the markets in which most of their portfolio is based. Finally, the locally integrated markets of the advanced industrialized countries have investing institutions with far greater wealth than the developing or semi-industrialized countries. Those markets are home for the pension funds which dominate the world markets. Among their wealth are deposits and other liquid assets which may be easily converted to support a stock market by buying securities. The poorer countries of the world have even poorer pension funds, which could not support their markets against an outflow due to portfolio switches by international investors.

Thus integrated markets are more ‘secure’ in that they are less prone to collapse than emerging or, more generally, peripheral markets. But precisely because of the large amount of trade already concentrated in the integrated markets, prices in them are much less likely to respond to investment fund inflows from abroad. Pension and insurance fund practice is to extrapolate those capital gains into the future for the purposes of determining the solvency of those funds. However, those gains were obtained because of a combination of inflation, the increased scope of funded pensions and the flight of funds from peripheral markets.

Ramping the Markets: Banking on Ponzi Finance. Thought of the Day 112.0

China Minsky

When funded pension schemes were first put forward at the beginning of the 1970s as a private sector alternative to state earnings-related pensions, the merchant (investment) banks and stockbroking firms that promoted them did not anticipate how successful they would become in that, by the following decades, pension schemes and allied forms of life assurance would come to own most of the stocks and shares quoted on the world’s stock markets. When pension funds held a minority of stocks, the funds could altogether put money into stock markets by buying stocks, or withdraw it by selling, without significantly affecting prices or the liquidity of the market as a whole. Now that pension funds and allied life assurance and mutual funds constitute the majority of the market, it is not possible for them to withdraw funds altogether without causing a fall in prices, or even a stock market crash.

Because of their success, pension funds have become the newest and possibly the most catastrophic example of Ponzi finance. The term Ponzi finance was invented by the American economist Hyman P. Minsky as part of his analysis of financial market inflation. It describes a form of finance in which new liabilities are issued to finance existing liabilities. According to Minsky, financial crises are caused by the collapse of ‘financial structures’ whose failure is precipitated by their increasing ‘financial fragility’. Financial structures are simply commitments to make payments in the future, against claims that result in incoming payments in the future. For Minsky, the characteristic feature of financial markets and financial speculation is that they afford opportunities for economic units to enter into future financial commitments, in the expectation of gain. In this respect, at least, they are similar to fixed capital investment. Success in securing gains persuades speculators to enter into further commitments, which become more ‘fragile’, i.e., more prone to collapse because future commitments become more speculative and less covered by assured financial inflows.

Minsky identifies three types of financial commitments, which are distinguished by the different degree of financial risk that they entail. In hedge finance, future commitments are exactly matched by cash inflows. A common example is the practice in banking of lending at variable or floating rates of interest. In this way, if a bank has to pay more interest to its depositors, it can recoup the increase by raising the interest rates that it charges to its borrowers (assuming that its depositors cannot withdraw their deposits before the term of the loan expires).

Speculative finance is characterized by certain commitments which have to be covered by cash inflows which may rise or fall, or uncertain commitments against a fixed cash inflow. If a bank lends money at a fixed rate of interest it is engaging in speculative finance, because it is running the risk that it may have to pay a higher rate of interest to depositors if interest rates rise. However, to set against this risk it has the possibility that the interest rates paid to depositors may fall, and it will thereby make additional gains from a wider margin between lending and borrowing rates.

Ponzi finance, in Minsky’s view, is a situation in which both commitments and cash inflows are uncertain, so that there is a possibility of an even more enhanced profit if commitments fall and the cash inflow rises. Against this has to be set the possibility that commitments and the cash inflow will move together so that only a minimal profit will be secured, or that commitments will rise and the cash inflow will fall, in which case a much more serious loss will be entered than would have occurred under speculative finance.

Ponzi finance lies behind the view that is no less erroneous for being widely repeated, that a higher return reflects the ‘greater risk’ of an enterprise. This is exemplified in the practice of banks charging higher rates of interest for what they perceive as greater risks. Behind this view lies the Austrian tradition, from Böhm-Bawerk onwards, of regarding economic outcomes as analogous to the gains and lotteries obtainable from repeated routine games, such as the tossing of a dice. The certain pay-off (or ‘certainty-equivalent’) is held to be lower than some possible pay-off. The association of the greater payoff with its lower probability then leads to a presumption that the latter ‘causes’ the former. However, the profits of companies and financial institutions are not the proceeds of gaming, however much enterprise in an unstable market system may appear similar to gambling. In fact, these profits are the outcomes of financial flows that ebb and progress through the economy, propelled by actual expenditure and financing decisions. The systems of financial claims and liabilities arising from those decisions become more fragile, as first speculative and then Ponzi financing structures come to predominate, and larger gains and larger losses may then be made. But the possibility of extraordinary profits or losses in Ponzi financing structures in no way means that realization of such profits is caused or justified by the possibility of the losses. Ponzi finance arises out of objective contractual obligations. The ‘greater risk’, which is held to justify a higher cost of finance, may be entirely subjective or a cover for monopoly profits in finance.

The simplest example of Ponzi finance is borrowing money to pay interest on a loan. In this case, the financial liability is increased, with no reduction in the original loan. Pyramid bank deposit schemes were the schemes after which this phenomenon is named, and they are perhaps the most extreme example of such financial structures. In a pyramid deposit scheme, the financier might take, say, Rs. 100 from a depositor, and promise to double this money after a month if the depositor introduces two new depositors at the end of that month. The two new depositors get the same terms and when they pay in their Rs. 100 respectively, Rs. 100 goes to double the money of the first depositor, and the other Rs. 100 is the financier’s profit. The two new depositors get their profit at the end of the next month from the new deposits paid in by the four new depositors that they introduce to the scheme, and so on. Initially, such schemes promise and deliver good profits. But their flaw lies in the fact that they require deposits to rise exponentially in order to pay the promised rewards to depositors. In the example that is described above, deposits have to double each month so that after one year, the scheme requires Rs. 409,600 in deposits just to keep solvent. After the thirteenth month, Rs. 819,200 would need to be deposited to keep up promised payments to depositors. Such schemes therefore usually collapse when they run out of gullible people to deposit their savings in them. While their life can be briefly extended by persuading depositors not to withdraw their profits, this cannot work for more than one or two payment periods, because such schemes are so dependent on increasing amounts of additional money being paid into them in each successive period.

Ponzi schemes are named after Charles Ponzi, an Italian immigrant who swindled Boston investors in 1919 and 1920 with a pyramid banking scheme. Minsky noted that Ponzi’s scheme ‘swept through the working classes and even affected “respectable” folk’. Because they prey on the poor and the ignorant, Ponzi schemes in banking are usually banned, although this does not prevent them from occurring in countries where it is difficult to regulate them. In Minsky’s view, financial collapses occur because booms in financial markets result in sufficient profits for speculative and Ponzi finance to induce a shift from hedge finance to speculative and Ponzi finance.

Ponzi finance in securities markets is much more common than in banking. Indeed, it is arguable that such finance is essential for the liquidity of markets in long-term securities: if a security is bought, it may have an assured ‘residual liquidity’ if it is a bond in that, when it matures, the money will then be returned to the investor. If, however, the security is a share which is not repaid by the issuer except on liquidation of the company, then it has no assured residual liquidity. Its liquidity depends on some other investor wishing to buy it at a reasonable price. If the share is to be sold at a profit, then the condition for this to happen is that demand for it has risen since it was bought. In this respect, liquidity and capital gains in the markets for long-term securities depend on Ponzi finance.

Ponzi finance was present at the very inception of modern stock markets. The South Sea Company and the Mississippi Company, whose stocks featured in the first stock market collapse of 1720, both ended up issuing stocks to raise finance in order to buy stocks to keep the market in their stocks liquid and stable. In modern times, this is a common feature of merger and takeover activity in capital markets. Corporate takeovers are frequently financed by issuing securities. The proceeds of the new issue are used to buy in the target company’s stock ‘at a premium’, i.e., at a price that is greater than the pre-takeover market price. The money raised by issuing the new stocks is used to pay the higher return to the stock-holders of the company being taken over. In this case, issuing new stock is exactly equivalent to the pyramid banking practice of taking in new deposits in order to pay an enhanced return to older depositors, which is the premium on the target company’s stock. The main difference between the two types of operation is that, during such takeover activity, the stock market as a whole functions as a pyramid banking scheme. However, precisely because it is the market as a whole which is operating in this Ponzi way, the pyramid nature of the venture is less obvious, and the gains are greater, because more and wealthier contributors are involved. Since this is an outcome of the normal functioning of the market, which may hitherto have been acting in a perfectly proper and respectable fashion, raising finance for industry and providing for widows and orphans, it is not possible to ‘finger’ the perpetrator of the pyramid scheme.

A more obviously controversial kind of Ponzi finance is the practice known as ‘ramping’ the market. A financier discreetly buys up a particular stock over a period of time, and then announces with great fanfare that he or she is buying in the stock. There are few markets in which emulatory competition is as strong as financial markets, where being conservative in practice and faddish in innovation are preconditions for a ‘sound’ reputation. The ‘sounder’ that reputation, the more likely it is other investors will imitate the buying strategy. Indeed, there is an element of compulsion about it, depending on the reputation of the investor. Those investors without reputation must follow for whatever reasons the investment direction signalled by investors with reputation, or else languish among lower-growth stocks. As the price of the stock rises due to the increased demand for it, such reputable financiers quietly sell out at a profit to their imitators, thereby confirming their reputation for financial ‘soundness’. Obviously, the better the reputation of the financier, the greater the gain from such an operation. To support such a reputation and legitimize the profits from trading on it, financiers will obviously attribute the gains from this practice to their own financial acumen, rather than confessing to having ramped the market.

The almost instantaneous dissemination of relevant information on which modern financial markets pride themselves (and which many financial economists believe makes them near perfect), also facilitates this kind of market manipulation. In securities markets, the investors emulating the financier are the equivalent of the new depositors. They too may make money, if they too can persuade subsequent new investors to buy at higher prices. As with the pyramid banking case, ramping markets depends on increasing interest by additional investors. Because in practice it is indistinguishable from normal trading (unlike pyramid banking, which is rather more obvious), and because any losers usually have other wealth to fall back on, such practices are frowned upon in securities markets, but cannot be eliminated. However, in the case of pension funds, the eventual losers will be ordinary working people, who will only have a minimal state pension in the future to fall back on. This makes it all the more important to understand how a reputable system for financing pensions has become a Ponzi finance scheme which will in future collapse.

Bear Stearns. Note Quote.

Like many of its competitors, Bear Stearns saw the rise of the hedge fund industry during the 1990s and began managing its own funds with outside investor capital under the name Bear Stearns Asset Management (BSAM). Unlike its competitors, Bear hired all of its fund managers internally, with each manager specializing in a particular security or asset class. Objections by some Bear executives, such as co-president Alan Schwartz, that such concentration of risk could raise volatility were ignored, and the impressive returns posted by internal funds such as Ralph Cioffi’s High-Grade Structured Credit Strategies Fund quieted any concerns.

Cioffi’s fund was invested in sophisticated credit derivatives backed by mortgage securities. When the housing bubble burst, he redoubled his bets, raising a new Enhanced Leverage High-Grade Structured Credit Strategies Fund that would use 100 leverage (as compared to the 35 leverage employed by the original fund). The market continued to turn disastrously against the fund, which was soon stuck with billions of dollars worth of illiquid, unprofitable mortgages. In an attempt to salvage the situation and cut his losses, Cioffi launched a vehicle named Everquest Financial and sold its shares to the public. But when journalists at the Wall Street Journal revealed that Everquest’s primary assets were the “toxic waste” of money-losing mortgage securities, Bear had no choice but to cancel the public offering. With spectacular losses mounting daily, investors attempted to withdraw their remaining holdings. In order to free up cash for such redemptions, the fund had to liquidate assets at a loss, selling that only put additional downward pressure on its already underwater positions. Lenders to the fund began making margin calls and threatening to seize its $1.2 billion in collateral.

In a less turbulent market it might have worked, but the subprime crisis had spent weeks on the front page of financial newspapers around the globe, and every bank on Wall Street was desperate to reduce its own exposure. Insulted and furious that Bear had refused to inject any of its own capital to save the funds, Steve Black, J.P. Morgan Chase head of investment banking, called Schwartz and said, “We’re defaulting you.”

The default and subsequent seizure of $400 million in collateral by Merrill Lynch proved highly damaging to Bear Stearns’s reputation across Wall Street. In a desperate attempt to save face under the scrutiny of the SEC, James Cayne made the unprecedented move of using $1.6 billion of Bear’s own capital to prop up the hedge funds. By late July 2007 even Bear’s continued support could no longer prop up Cioffi’s two beleaguered funds, which paid back just $300 million of the credit its parent had extended. With their holdings virtually worthless, the funds had no choice but to file for bankruptcy protection.

On November 14, just two weeks after the Journal story questioning Cayne’s commitment and leadership, Bear Stearns reported that it would write down $1.2 billion in mortgage- related losses. (The figure would later grow to $1.9 billion.) CFO Molinaro suggested that the worst had passed, and to outsiders, at least, the firm appeared to have narrowly escaped disaster.

Behind the scenes, however, Bear management had already begun searching for a white knight, hiring Gary Parr at Lazard to examine its options for a cash injection. Privately, Schwartz and Parr spoke with Kohlberg Kravis Roberts & Co. founder Henry Kravis, who had first learned the leveraged buyout market while a partner at Bear Stearns in the 1960s. Kravis sought entry into the profitable brokerage business at depressed prices, while Bear sought an injection of more than $2 billion in equity capital (for a reported 20% of the company) and the calming effect that a strong, respected personality like Kravis would have upon shareholders. Ultimately the deal fell apart, largely due to management’s fear that KKR’s significant equity stake and the presence of Kravis on the board would alienate the firm’s other private equity clientele, who often competed with KKR for deals. Throughout the fall Bear continued to search for potential acquirers. With the market watching intently to see if Bear shored up its financing, Cayne managed to close only a $1 billion cross-investment with CITIC, the state-owned investment company of the People’s Republic of China.

Bear’s $0.89 profit per share in the first quarter of 2008 did little to quiet the growing whispers of its financial instability. It seemed that every day another major investment bank reported mortgage-related losses, and for whatever reason Bear’s name kept cropping up in discussions of the by-then infamous subprime crisis. Exacerbating Bear’s public relations problem, the SEC had launched an investigation into the collapse of the two BSAM hedge funds, and rumors of massive losses at three major hedge funds further rattled an already uneasy market. Nonetheless, Bear executives felt that the storm had passed, reasoning that its almost $21 billion in cash reserves had convinced the market of its long-term viability.

Instead, on Monday, March 10, 2008, Moody’s downgraded 163 tranches of mortgage- backed bonds issued by Bear across fifteen transactions. The credit rating agency had drawn sharp criticism for its role in the subprime meltdown from analysts who felt the company had overestimated the creditworthiness of mortgage-backed securities and failed to alert the market of the danger as the housing market turned. As a result, Moody’s was in the process of downgrading nearly all of its ratings, but as the afternoon wore on, Bear’s stock price seemed to be reacting far more negatively than those of competitor firms.

Wall Street’s drive toward ever more sophisticated communications devices had created an interconnected network of traders and bankers across the world. On most days, Internet chat and mobile e-mail devices relayed gossip about compensation, major employee departures, and even sports betting lines. On the morning of March 10, however, they were carrying one message to the exclusion of all others: Bear was having liquidity problems. At noon, CNBC took the story public on Power Lunch. As Bear’s stock price fell more than 10 percent to $63, Ace Greenberg frantically placed calls to various executives, demanding that someone publicly deny any such problems. When contacted himself, Greenberg told a CNBC correspondent that the rumors were “totally ridiculous,” angering CFO Molinaro, who felt that denying the rumor would only legitimize it and trigger further panic selling, making prophecies of Bear’s illiquidity self-fulfilling. Just two hours later, however, Bear appeared to have dodged a bullet. News of New York governor Eliot Spitzer’s involvement in a high-class prostitution ring wiped any financial rumors off the front page, leading Bear executives to believe the worst was once again behind them.

Instead, the rumors exploded anew the next day, as many interpreted the Federal Reserve’s announcement of a new $200 billion lending program to help financial institutions through the credit crisis as aimed specifically toward Bear Stearns. The stock dipped as low as $55.42 before closing at $62.97. Meanwhile, Bear executives faced a new crisis in the form of an explosion of novation requests, in which a party to a risky contract tries to eliminate its risky position by selling it to a third party. Credit Suisse, Deutsche Bank, and Goldman Sachs all reported a deluge of novation requests from firms trying to reduce their exposure to Bear’s credit risk. The speed and force of this explosion of novation requests meant that before Bear could act, both Goldman Sachs and Credit Suisse issued e-mails to their traders holding up any requests relating to Bear Stearns pending approval by their credit departments. Once again, the electronically linked gossip network of trading desks around the world dealt a blow to investor confidence in Bear’s stability, as a false rumor circulated that Credit Suisse’s memo had forbidden its traders from engaging in any trades with Bear. The decrease in confidence in Bear’s liquidity could be quantified by the rise in the cost of credit default swaps on Bear’s debt. The price of such an instrument – which effectively acts as five years of insurance against a default on $10 million of Bear’s debt – spiked to more than $626,000 from less than $100,000 in October, indicating heavy betting by some firms that Bear would be unable to pay its liabilities.

Untitled

Internally, Bear debated whether to address the rumors publicly, ultimately deciding to arrange a Wednesday morning interview of Schwartz by CNBC correspondent David Faber. Not wanting to encourage rumors with a hasty departure, Schwartz did the interview live from Bear’s annual media conference in Palm Beach. Chosen because of his perceived friendliness to Bear, Faber nonetheless opened the interview with a devastating question that claimed direct knowledge of a trader whose credit department had temporarily held up a trade with Bear. Later during the interview Faber admitted that the trade had finally gone through, but he had called into question Bear’s fundamental capacity to operate as a trading firm. One veteran trader later commented,

You knew right at that moment that Bear Stearns was dead, right at the moment he asked that question. Once you raise that idea, that the firm can’t follow through on a trade, it’s over. Faber killed him. He just killed him.

Despite sentiment at Bear that Schwartz had finally put the company’s best foot forward and refuted rumors of its illiquidity, hedge funds began pulling their accounts in earnest, bringing Bear’s reserves down to $15 billion. Additionally, repo lenders – whose overnight loans to investment banks must be renewed daily – began informing Bear that they would not renew the next morning, forcing the firm to find new sources of credit. Schwartz phoned Parr at Lazard, Molinaro reviewed Bear’s plans for an emergency sale in the event of a crisis, and one of the firm’s attorneys called the president of the Federal Reserve to explain Bear’s situation and implore him to accelerate the newly announced program that would allow investment banks to use mortgage securities as collateral for emergency loans from the Fed’s discount window, normally reserved for commercial banks.

The trickle of withdrawals that had begun earlier in the week turned into an unstoppable torrent of cash flowing out the door on Thursday. Meanwhile, Bear’s stock continued its sustained nosedive, falling nearly 15% to an intraday low of $50.48 before rallying to close down 1.5%. At lunch, Schwartz assured a crowded meeting of Bear executives that the whirlwind rumors were simply market noise, only to find himself interrupted by Michael Minikes, senior managing director,

Do you have any idea what is going on? Our cash is flying out the door! Our clients are leaving us!

Hedge fund clients jumped ship in droves. Renaissance Technologies withdrew approximately $5 billion in trading accounts, and D. E. Shaw followed suit with an equal amount. That evening, Bear executives assembled in a sixth-floor conference room to survey the carnage. In less than a week, the firm had burned through all but $5.9 billion of its $18.3 billion in reserves, and was still on the hook for $2.4 billion in short-term debt to Citigroup. With a panicked market making more withdrawals the next day almost certain, Schwartz accepted the inevitable need for additional financing and had Parr revisit merger discussions with J.P. Morgan Chase CEO James Dimon that had stalled in the fall. Flabbergasted at the idea that an agreement could be reached that night, Dimon nonetheless agreed to send a team of bankers over to analyze Bear’s books.

Parr’s call interrupted Dimon’s 52nd birthday celebration at a Greek restaurant just a few blocks away from Bear headquarters, where a phalanx of attorneys had begun preparing emergency bankruptcy filings and documents necessary for a variety of cash-injecting transactions. Facing almost certain insolvency in the next 24 hours, Schwartz hastily called an emergency board meeting late that night, with most board members dialing in remotely. Bear’s nearly four hundred subsidiaries would make a bankruptcy filing impossibly complicated, so Schwartz continued to cling to the hope for an emergency cash infusion to get Bear through Friday. As J.P. Morgan’s bankers pored over Bear’s positions, they balked at the firm’s precarious position and the continued size of its mortgage holdings, insisting that the Fed get involved in a bailout they considered far too risky to take on alone.

Its role as a counterparty in trillions of dollars’ worth of derivatives contracts bore an eerie similarity to LTCM, and the Fed once again saw the potential for financial Armageddon if Bear were allowed to collapse of its own accord. An emergency liquidation of the firm’s assets would have put strong downward pressure on global securities prices, exacerbating an already chaotic market environment. Facing a hard deadline of credit markets’ open on Friday morning, the Fed and J.P. Morgan wrangled back and forth on how to save Bear. Working around the clock, they finally reached an agreement wherein J.P. Morgan would access the Fed’s discount window and in turn offer Bear a $30 billion credit line that, as dictated by a last-minute insertion by J.P. Morgan general counsel Steven Cutler, would be good for 28 days. As the press release went public, Bear executives cheered; Bear would have almost a month to seek alternative financing.

Where Bear had seen a lifeline, however, the market saw instead a last desperate gasp for help. Incredulous Bear executives could only watch in horror as the firm’s capital continued to fly out of its coffers. On Friday morning Bear burned through the last of its reserves in a matter of hours. A midday conference call in which Schwartz confidently assured investors that the credit line would allow Bear to continue “business as usual” did little to stop the bleeding, and its stock lost almost half of its already depressed value, closing at $30 per share.

All day Friday, Parr set about desperately trying to save his client, searching every corner of the financial world for potential investors or buyers of all or part of Bear. Given the severity of the situation, he could rule out nothing, from a sale of the lucrative prime brokerage operations to a merger or sale of the entire company. Ideally, he hoped to find what he termed a “validating investor,” a respected Wall Street name to join the board, adding immediate credibility and perhaps quieting the now deafening rumors of Bear’s imminent demise. Sadly, only a few such personalities with the reputation and war chest necessary to play the role of savior existed, and most of them had already passed on Bear.

Nonetheless, Schwartz left Bear headquarters on Friday evening relieved that the firm had lived to see the weekend and secured 28 days of breathing room. During the ride home to Greenwich, an unexpected phone call from New York Federal Reserve President Timothy Geithner and Treasury Secretary Henry Paulson shattered that illusion. Paulson told a stunned Schwartz that the Fed’s line of credit would expire Sunday night, giving Bear 48 hours to find a buyer or file for bankruptcy. The demise of the 28-day clause remains a mystery; the speed necessary early Friday morning and the inclusion of the clause by J.P. Morgan’s general counsel suggest that Bear executives had misinterpreted it, although others believe that Paulson and Geithner had soured both on Bear’s prospects and on market perception of an emergency loan from the Fed as Friday wore on. Either way, the Fed had made up its mind, and a Saturday morning appeal from Schwartz failed to sway Geithner.

All day Saturday prospective buyers streamed through Bear’s headquarters to pick through the rubble as Parr attempted to orchestrate Bear’s last-minute salvation. Chaos reigned, with representatives from every major bank on Wall Street, J. C. Flowers, KKR, and countless others poring over Bear’s positions in an effort to determine the value of Bear’s massive illiquid holdings and how the Fed would help in financing. Some prospective buyers wanted just a piece of the dying bank, others the whole firm, with still others proposing more complicated multiple-step transactions that would slice Bear to ribbons. One by one, they dropped out, until J. C. Flowers made an offer for 90% of Bear for a total of up to $2.6 billion, but the offer was contingent on the private equity firm raising $20 billion from a bank consortium, and $20 billion in risky credit was unlikely to appear overnight.

That left J.P. Morgan. Apparently the only bank willing to come to the rescue, J.P. Morgan had sent no fewer than 300 bankers representing 16 different product groups to Bear headquarters to value the firm. The sticking point, as with all the bidders, was Bear’s mortgage holdings. Even after a massive write-down, it was impossible to assign a value to such illiquid (and publicly maligned) securities with any degree of accuracy. Having forced the default of the BSAM hedge funds that started this mess less than a year earlier.

On its final 10Q in March, Bear listed $399 billion in assets and $387 billion in liabilities, leaving just $12 billion in equity for a 32 leverage multiple. Bear initially estimated that this included $120 billion of “risk-weighted” assets, those that might be subject to subsequent write-downs. As J.P. Morgan’s bankers worked around the clock trying to get to the bottom of Bear’s balance sheet, they came to estimate the figure at nearly $220 billion. That pessimistic outlook, combined with Sunday morning’s New York Times article reiterating Bear’s recent troubles, dulled J.P. Morgan’s appetite for jumping onto what appeared to be a sinking ship. Later, one J.P. Morgan banker shuddered, recalling the article. “That article certainly had an impact on my thinking. Just the reputational aspects of it, getting into bed with these people.”

On Saturday morning J.P. Morgan backed out and Dimon told a shell-shocked Schwartz to pursue any other option available to him. The problem was, no such alternative existed. Knowing this, and the possibility that the liquidation of Bear could throw the world’s financial markets into chaos, Fed representatives immediately phoned Dimon. As it had in the LTCM case a decade ago, the Fed relied heavily on suasion, or “jawboning,” the longtime practice of attempting to influence market participants by appeals to reason rather than a declaration by fiat. For hours, J.P. Morgan’s and the Fed’s highest-ranking officials played a game of high-stakes poker, with each side bluffing and Bear’s future hanging in the balance. The Fed wanted to avoid unprecedented government participation in the bailout of a private investment firm, while J.P. Morgan wanted to avoid taking on any of the “toxic waste” in Bear’s mortgage holdings. “They kept saying, ‘We’re not going to do it,’ and we kept saying, ‘We really think you should do it,’” recalled one Fed official. “This went on for hours . . . They kept saying, ‘We can’t do this on our own.’” With the hours ticking away until Monday’s Australian markets would open at 6:00 p.m. New York time, both sides had to compromise.

On Sunday afternoon, Schwartz stepped out of a 1:00 emergency meeting of Bear’s board of directors to take the call from Dimon. The offer would come somewhere in the range of $4 to 5 per share. Hearing the news from Schwartz, the Bear board erupted with rage. Dialing in from the bridge tournament in Detroit, Cayne exploded, ranting furiously that the firm should file for bankruptcy protection under Chapter 11 rather than accept such a humiliating offer, which would reduce his 5.66 million shares – once worth nearly $1 billion – to less than $30 million in value. In reality, however, bankruptcy was impossible. As Parr explained, changes to the federal bankruptcy code in 2005 meant that a Chapter 11 filing would be tantamount to Bear falling on its sword, because regulators would have to seize Bear’s accounts, immediately ceasing the firm’s operations and forcing its liquidation. There would be no reorganization.

Even as Cayne raged against the $4 offer, the Fed’s concern over the appearance of a $30 billion loan to a failing investment bank while American homeowners faced foreclosures compelled Treasury Secretary Paulson to pour salt in Bear’s wounds. Officially, the Fed had remained hands-off in the LTCM bailout, relying on its powers of suasion to convince other banks to step up in the name of market stability. Just 10 years later, they could find no takers. The speed of Bear’s collapse, the impossibility of conducting true due diligence in such a compressed time frame, and the incalculable risk of taking on Bear’s toxic mortgage holdings scared off every buyer and forced the Fed from an advisory role into a principal role in the bailout. Worried that a price deemed at all generous to Bear might subsequently encourage moral hazard – increased risky behavior by investment banks secure in the knowledge that in a worst-case scenario, disaster would be averted by a federal bailout – Paulson determined that the transaction, while rescuing the firm, also had to be punitive to Bear shareholders. He called Dimon, who reiterated the contemplated offer range.

“That sounds high tome,” Paulson told the J.P. Morgan chief. “I think this should be done at a very low price.” It was moments later that Braunstein called Parr. “The number’s $2.” Under Delaware law, executives must act on behalf of both shareholders and creditors when a company enters the “zone of insolvency,” and Schwartz knew that Bear had rocketed through that zone over the past few days. Faced with bankruptcy or J.P. Morgan, Bear had no choice but to accept the embarrassingly low offer that represented a 97% discount off its $32 close on Friday evening. Schwartz convinced the weary Bear board that $2 would be “better than nothing,” and by 6:30 p.m., the deal was unanimously approved.

After 85 years in the market, Bear Stearns ceased to exist.

(Il)liquid Hedge Lock-Ups. Thought of the Day 107.0

here-are-the-hedge-funds-that-are-dominating-in-2016

Hedge funds have historically limited their participation in illiquid investments, preferring to match their investment horizon to the typical one-year lock-up periods that their investors agree to. However, many hedge funds have increasingly invested in illiquid assets in an effort to augment returns. For example, they have invested in private investments in public equity (PIPEs), acquiring large minority holdings in public companies. Their purchases of CDOs and CLOs (collateralized loan obligations) are also somewhat illiquid, since these fixed income securities are difficult to price and there is a limited secondary market during times of crisis. In addition, hedge funds have participated in loans, and invested in physical assets. Sometimes, investments that were intended to be held for less than one year have become long-term, illiquid assets when the assets depreciated and hedge funds decided to continue holding the assets until values recovered, rather than selling at a loss. It is estimated that more than 20% of total assets under management by hedge funds are illiquid, hard-to-price assets. This makes hedge fund asset valuation difficult, and has created a mismatch between hedge fund assets and liabilities, giving rise to significant problems when investors attempt to withdraw their cash at the end of lock-up periods.

Hedge funds generally focus their investment strategies on financial assets that are liquid and able to be readily priced based on reported prices in the market for those assets or by reference to comparable assets that have a discernible price. Since most of these assets can be valued and sold over a short period of time to generate cash, hedge funds permit investors to invest in or withdraw money from the fund at regular intervals and managers receive performance fees based on quarterly mark-to-market valuations. However, in order to match up maturities of assets and liabilities for each investment strategy, most hedge funds have the ability to prevent invested capital from being withdrawn during certain periods of time. They achieve this though “lock-up” and “gate” provisions that are included in investment agreements with their investors.

A lock-up provision provides that during an initial investment period of, typically, one to two years, an investor is not allowed to withdraw any money from the fund. Generally, the lock-up period is a function of the investment strategy that is being pursued. Sometimes, lock-up periods are modified for specific investors through the use of a side letter agreement. However, this can become problematic because of the resulting different effective lock-up periods that apply to different investors who invest at the same time in the same fund. Also, this can trigger “most favored nations” provisions in other investor agreements.

A gate is a restriction that limits the amount of withdrawals during a quarterly or semi- annual redemption period after the lock-up period expires. Typically gates are percentages of a fund’s capital that can be withdrawn on a scheduled redemption date. A gate of 10 to 20% is common. A gate provision allows the hedge fund to increase exposure to illiquid assets without facing a liquidity crisis. In addition, it offers some protection to investors that do not attempt to withdraw funds because if withdrawals are too high, assets might have to be sold by the hedge fund at disadvantageous prices, causing a potential reduction in investment returns for remaining investors. During 2008 and 2009, as many hedge fund investors attempted to withdraw money based on poor returns and concerns about the financial crisis, there was considerable frustration and some litigation directed at hedge fund gate provisions.

Hedge funds sometimes use a “side pocket” account to house comparatively illiquid or hard-to-value assets. Once an asset is designated for inclusion in a side pocket, new investors don’t participate in the returns from this asset. When existing investors withdraw money from the hedge fund, they remain as investors in the side pocket asset until it either is sold or becomes liquid through a monetization event such as an IPO. Management fees are typically charged on side pocket assets based on their cost, rather than a mark-to-market value of the asset. Incentive fees are charged based on realized proceeds when the asset is sold. Usually, there is no requirement to force the sale of side pocket investments by a specific date. Sometimes, investors accuse hedge funds of putting distressed assets that were intended to be sold during a one-year horizon into a side pocket account to avoid dragging down the returns of the overall fund. Investors are concerned about unexpected illiquidity arising from a side pocket and the potential for even greater losses if a distressed asset that has been placed there continues to decline in value. Fund managers sometimes use even more drastic options to limit withdrawals, such as suspending all redemption rights (but only in the most dire circumstances).

Asset Backed Securities. Drunken Risibility.

Asset Backed Securities (ABS) are freely traded financial instruments that represent packages of loans issued by the commercial banks. The majority are created from mortgages, but credit card debt, commercial real estate loans, student loans, and hedge fund loans are also known to have been securitized. The earliest form of ABS within the American banking system appears to stem from the creation of the Federal National Mortgage Association (Fannie Mae) in 1938 as part of amendments to the US National Housing Act, a Great Depression measure aimed at creating loan liquidity. Fannie Mae, and the other Government Sponsored Enterprises buy loans from approved mortgage sellers, typically banks, and create guaranteed financial debt instruments from them, to be sold on the credit markets. The resulting bonds, backed as they are by loan insurance, are widely used in pension funds and insurance companies, as a secure, financial instrument providing a predictable, low risk return.

The creation of a more general form of Mortgage Backed Security is credited to Bob Dall and the trading desk of Salmon brothers in 1977 by Michael Lewis (Liar’s Poker Rising Through the Wreckage on Wall Street). Lewis also describes a rapid expansion in their sale beginning in 1981 as a side effect of the United States savings and loans crisis. The concept was extended in 1987 by bankers at Drexel Burnham Lambert Inc. to corporate bonds and loans in the form of Collateralized Debt Obligations (CDOs), which eventually came to include mortgage backed securities, and in the form of CDO-Squared instruments, pools of CDO.

Analysis of the systemic effects of Asset Backed Security has concentrated chiefly on their ability to improve the quantity of loans, or loan liquidity, which has been treated as a positive feature by Greenspan. It has also been noted that securitization allowed banks to increase their return on capital by transforming their operations into a credit generating pipeline process. Hyun Song Shin has also analysed their effect on bank leverage and the stability of the larger financial system within an accounting framework. He highlights the significance of loan supply factors in causing the sub-prime crisis. Although his model appears not to completely incorporate the full implications of the process operating within the capital reserve regulated banking system, it presents an alternate, matrix based analysis of the uncontrolled debt expansion that these instruments permit.

The systemic problem introduced by asset backed securities, or any form of sale that transfers loans made by commercial banking institutions outside the regulatory framework is that they allow banks to escape the explicit reserve and regulatory capital based regulation on the total amount of loans being issued against customer deposits. This has the effect of steadily increasing the ratio of bank originated loans to money on deposit within the banking system.

The following example demonstrates the problem using two banks, A and B. For simplicity fees related to loans and ABS sales are excluded. It is assumed that the deposit accounts are Net Transaction accounts carry a 10% reserve requirement, and that both banks are ”well capitalised” and that the risk weighted multiplier for the capital reserve for these loans is also 10.

The example proceeds as a series of interactions as money flows between the two banks. The liabilities (deposits) and assets (loans) are shown, with loans being separated into bank loans, and Mortgage Backed Securities (MBS), depending on their state.

Initial Conditions: To simplify Bank B is shown as having made no loans, and has excess reserves at the central bank to maintain the balance sheet. The normal inter-bank and central bank lending mechanisms would enable the bank to compensate for temporary imbalances during the process under normal conditions. All deposit money used within the example remains on deposit at either Bank A or Bank B. On the right hand side of the table the total amount of deposits and loans for both banks is shown.

Untitled

Step 1: Bank A creates a $1000 Mortgage Backed Security from the loan on its balance sheet.

Untitled

Step 2: The securitized loan is sold to the depositor at Bank B. $1000 is paid to Bank A from that depositor in payment for the loan. Bank A now has no loans outstanding against its deposits, and the securitized loan has been moved outside of banking system regulation. Note that total deposits at the two banks have temporarily shrunk due to the repayment of the loan capital at A. The actual transfer of the deposits between the banks is facilitated through the reserve holdings which also function as clearing funds.

Untitled

Step 3: As Bank A now has no loans against its deposits, and is within its regulatory capital ratios, it can make a new $1000 loan. The funds from this loan are deposited at Bank B. The sum of the deposits rises as a result as does the quantity of loans. Note that the transfer of the loan money from Bank A to Bank B again goes through the reserve holdings in the clearing system and restores the original balance at Bank B.

Untitled

Step 4: Bank A securitizes the loan made in Step 3 repeating Step 1.

Untitled

Step 5: Bank A sells the MBS to the depositor at Bank B, repeating Step 2.

Untitled

Step 6: Bank A makes a new loan which is deposited at Bank B, repeating Step 3.

Untitled

Step 7: Bank A securitizes the loan made in Step 6, repeating Step 4.

Untitled

Since the Deposit and Loan positions of the two banks are identical in all respects in Steps (1,4), (2,5), (3,6) and (4,7) the process can continue indefinitely, resulting in expansion of the total commercial bank originated loan supply independent of central bank control.

This is a simplified version of the flows between loans, deposits, and asset backed securities that occur daily in the banking system. At no point has either bank needed recourse to central bank funds, or broken any of their statutory requirements with respect to capitalisation or reserve requirements where they apply.

The problem is the implicit assumption with reserve based banking systems that bank originated loans remain within the banking system. Allowing the sale of loans to holders outside of the regulated banking system (i.e. to entities other than regulated banks) removes these loans from that control and thus creates a systemic loophole in the regulation of the commercial bank loan supply.

The introduction of loans sales has consequently created a novel situation in those modern economies that allow them, not only in causing a significant expansion in total lending from the banking sector, but also in changing the systemic relationship between the quantity of money in the system to the quantity of bank originated debt, and thereby considerably diluting the influence the central bank can exert over the loan supply. The requirement that no individual bank should lend more than their deposits has been enforced by required reserves at the central bank since the 19th century in Europe, and the early 20th century in the USA. Serendipitously, this also created a systemic limit on the ratio of money to bank originated lending within the monetary system. While the sale of Asset Backed Securities does not allow any individual bank to exceed this ratio at any given point in time, as the process evolves the banking system itself exceeds it as loans are moved outside the constraints provided by regulatory capital or reserve regulation, thereby creating a mechanism for unconstrained growth in commercial bank originated lending.

While the asset backed security problem explains the dramatic growth in banking sector debt that has occurred over the last three decades, it does not explain the accompanying growth in the money supply. Somewhat uniquely of the many regulatory challenges that the banking system has created down the centuries, the asset backed security problem, in and of itself does not cause the banks, or the banking system to ”print money”.

The question of what exactly constitutes money in modern banking systems is a non-trivial one. As the examples above show, bank loans create money in the form of bank deposits, and bank deposits can be used directly for monetary purposes either through cheques or more usually now direct electronic transfer. For economic purposes then, bank deposits can be regarded as directly equivalent to physical money. The reality within the banking system however is somewhat more complex, in that transfers between bank deposits must be performed using deposits in the clearing mechanisms, either through the reserves at the central bank, or the bank’s own asset deposits at other banks. Nominally limits on the total quantity of central bank reserves should in turn limit the growth in bank deposits from bank lending, but it is clear from the monetary statistics that this is not the case.

Individually commercial banks are limited in the amount of money they can lend. They are limited by any reserve requirements for their deposits, by the accounting framework that surrounds the precise classification of assets and liabilities within their locale, and by the ratio of their equity or regulatory capital to their outstanding, risk weighted loans as recommended by the Basel Accords. However none of these limits is sufficient to prevent uncontrolled expansion.

Reserve requirements at the central bank can only effectively limit bank deposits if they apply to all accounts in the system, and the central bank maintains control over any mechanisms that allow individual banks to increase their reserve holdings. This appears not to be the case. Basel capital restrictions can also limit bank lending. Assets (loans) held by banks are classified by type, and have accordingly different percentage capital requirements. Regulatory capital requirements are divided into two tiers of capital with different provisions and risk categorisation applying to instruments held in them. To be adequately capitalised under the Basel accords, a bank must maintain a ratio of at least 8% between its Tier 1 and Tier 2 capital reserves, and its loans. Equity capital reserves are provided by a bank’s owners and shareholders when the bank is created, and exist to provide a buffer protecting the bank’s depositors against loan defaults.

Under Basel regulation, regulatory capital can be held in a variety of instruments, depending on Tier 1 or Tier 2 status. It appears that some of those instruments, in particular subordinated debt and hybrid debt capital instruments, can represent debt issued from within the commercial banking system.

Annex A – Basel Capital Accords, Capital Elements Tier 1

(a) Paid-up share capital/common stock

(b) Disclosed reserves

Tier 2

(a) Undisclosed reserves

(b) Asset revaluation reserves

(c) General provisions/general loan-loss reserves

(d) Hybrid (debt/equity) capital instruments

(e) Subordinated debt

Subordinated debt is defined in Annex A of the Basel treaty as:

(e) Subordinated term debt: includes conventional unsecured subordinated debt capital instruments with a minimum original fixed term to maturity of over five years and limited life redeemable preference shares. During the last five years to maturity, a cumulative discount (or amortisation) factor of 20% per year will be applied to reflect the diminishing value of these instruments as a continuing source of strength. Unlike instruments included in item (d), these instruments are not normally available to participate in the losses of a bank which continues trading. For this reason these instruments will be limited to a maximum of 50% of tier 1.

This is debt issued by the bank, in various forms, but of guaranteed long duration, and controlled repayment. In effect, it allows Banks to hold borrowed money in regulatory capital. It is subordinate to the claims of depositors in the event of Bank failure. The inclusion of subordinated debt in Tier 2 allows financial instruments created from lending to become part of the regulatory control on further lending, creating a classic feedback loop. This can also occur as a second order effect if any form of regulatory capital can be purchased with money borrowed from within the banking system

Fiscal Responsibility and Budget Management (FRBM) Act

The Government appointed a five-member Committee in May 2016, to review the Fiscal Responsibility and Budget Management (FRBM) Act and to examine a changed format including flexible FRBM targets. The Committee formation was announced during the 2016-17 budget by FM Arun Jaitely. The Panel was headed by the former MP and former Revenue and Expenditure Secretary NK Singh and included four other members, CEA Arvind Subramanian, former Finance Secretary Sumit Bose, the then Deputy Governor and present governor of the RBI Urjit Patel and Nathin Roy. There was a difference of opinion about the need for adopting a fixed FRBM target like fiscal deficit, and the divisive opinion lay precisely in not following through such a fixity in times when the government had to spend high to fight recession and support economic growth. The other side of the camp argued it being necessary to inculcate a feeling of fiscal discipline. During Budget speech in 2016, Mr Jaitley expressed this debate:

There is now a school of thought which believes that instead of fixed numbers as fiscal deficit targets, it may be better to have a fiscal deficit range as the target, which would give necessary policy space to the government to deal with dynamic situations. There is also a suggestion that fiscal expansion or contraction should be aligned with credit contraction or expansion, respectively, in the economy.

The need for a flexible FRBM target that allowed higher fiscal deficit during difficult/recessionary years and low targets during comfortable years, gives the government a breathing space to borrow more during tight years. In it report submitted in late January this year, the committee did advocate for a range rather than a fixed fiscal deficit target. Especially, fiscal management becomes all the more important post-demonetisation and the resultant slump in consumption expenditure. The view is that the government could be tempted to increase public spending to boost consumption. but, here is the catch: while ratings agencies do look at the fiscal discipline of a country when considering them for a ratings upgrade, they also look at the context and the growth rate of the economy, so the decision will not be a myopic one based only on the fiscal and revenue deficits.

Fiscal responsibility is an economic concept that has various definitions, depending on the economic theory held by the person or organization offering the definition. Some say being fiscally responsible is just a matter of cutting debt, while others say it’s about completely eliminating debt. Still others might argue that it’s a matter of controlling the level of debt without completely reducing it. Perhaps the most basic definition of fiscal responsibility is the act of creating, optimizing and maintaining a balanced budget.

“Fiscal” refers to money and can include personal finances, though it most often is used in reference to public money or government spending. This can involve income from taxes, revenue, investments or treasuries. In a governmental context, a pledge of fiscal responsibility is a government’s assurance that it will judiciously spend, earn and generate funds without placing undue hardship on its citizens. Fiscal responsibility includes a moral contract to maintain a financially sound government for future generations, because a First World society is difficult to maintain without a financially secure government.

But, what exactly is fiscal responsibility, fiscal management and FRBM. So, here is an attempt to demystify these.

Fiscal responsibility often starts with a balanced budget, which is one with no deficits and no surpluses. The expectations of what might be spent and what is actually spent are equal. Many forms of government have different views and expectations for maintaining a balanced budget, with some preferring to have a budget deficit during certain economic times and a budget surplus during others. Other types of government view a budget deficit as being fiscally irresponsible at any time. Fiscal irresponsibility refers to a lack of effective financial planning by a person, business or government. This can include decreasing taxes in one crucial area while drastically increasing spending in another. This type of situation can cause a budget deficit in which the outgoing expenditures exceed the cash coming in. A government is a business in its own right, and no business — or private citizen — can thrive eternally while operating with a deficit.

When a government is fiscally irresponsible, its ability to function effectively is severely limited. Emergent situations arise unexpectedly, and a government needs to have quick access to reserve funds. A fiscally irresponsible government isn’t able to sustain programs designed to provide fast relief to its citizens.

A government, business or person can take steps to become more fiscally responsible. One useful method for government is to provide some financial transparency, which can reduce waste, expose fraud and highlight areas of financial inefficiency. Not all aspects of government budgets and spending can be brought into full public view because of various risks to security, but offering an inside look at government spending can offer a nation’s citizens a sense of well-being and keep leaders honest. Similarly, a private citizen who is honest with himself about where he is spending his money is better able to determine where he might be able to make cuts that would allow him to live within his means.

Fiscal Responsibility and Budget Management (FRBM) became an Act in 2003. The objective of the Act is to ensure inter-generational equity in fiscal management, long run macroeconomic stability, better coordination between fiscal and monetary policy, and transparency in fiscal operation of the Government.

The Government notified FRBM rules in July 2004 to specify the annual reduction targets for fiscal indicators. The FRBM rule specifies reduction of fiscal deficit to 3% of the GDP by 2008-09 with annual reduction target of 0.3% of GDP per year by the Central government. Similarly, revenue deficit has to be reduced by 0.5% of the GDP per year with complete elimination to be achieved by 2008-09. It is the responsibility of the government to adhere to these targets. The Finance Minister has to explain the reasons and suggest corrective actions to be taken, in case of breach.

FRBM Act provides a legal institutional framework for fiscal consolidation. It is now mandatory for the Central government to take measures to reduce fiscal deficit, to eliminate revenue deficit and to generate revenue surplus in the subsequent years. The Act binds not only the present government but also the future Government to adhere to the path of fiscal consolidation. The Government can move away from the path of fiscal consolidation only in case of natural calamity, national security and other exceptional grounds which Central Government may specify.

Further, the Act prohibits borrowing by the government from the Reserve Bank of India, thereby, making monetary policy independent of fiscal policy. The Act bans the purchase of primary issues of the Central Government securities by the RBI after 2006, preventing monetization of government deficit. The Act also requires the government to lay before the parliament three policy statements in each financial year namely Medium Term Fiscal Policy Statement; Fiscal Policy Strategy Statement and Macroeconomic Framework Policy Statement.

To impart fiscal discipline at the state level, the Twelfth Finance Commission gave incentives to states through conditional debt restructuring and interest rate relief for introducing Fiscal Responsibility Legislations (FRLs). All the states have implemented their own FRLs.

Indian economy faced with the problem of large fiscal deficit and its monetization spilled over to external sector in the late 1980s and early 1990s. The large borrowings of the government led to such a precarious situation that government was unable to pay even for two weeks of imports resulting in economic crisis of 1991. Consequently, Economic reforms were introduced in 1991 and fiscal consolidation emerged as one of the key areas of reforms. After a good start in the early nineties, the fiscal consolidation faltered after 1997-98. The fiscal deficit started rising after 1997-98. The Government introduced FRBM Act, 2003 to check the deteriorating fiscal situation.

The implementation of FRBM Act/FRLs improved the fiscal performance of both centre and states.

The States have achieved the targets much ahead the prescribed timeline. Government of India was on the path of achieving this objective right in time. However, due to the global financial crisis, this was suspended and the fiscal consolidation as mandated in the FRBM Act was put on hold in 2007- 08.The crisis period called for increase in expenditure by the government to boost demand in the economy. As a result of fiscal stimulus, the government has moved away from the path of fiscal consolidation. However, it should be noted that strict adherence to the path of fiscal consolidation during pre crisis period created enough fiscal space for pursuing counter cyclical fiscal policy.the main provisions of the Act are:

  1. The government has to take appropriate measures to reduce the fiscal deficit and revenue deficit so as to eliminate revenue deficit by 2008-09 and thereafter, sizable revenue surplus has to be created.
  2. Setting annual targets for reduction of fiscal deficit and revenue deficit, contingent liabilities and total liabilities.
  3. The government shall end its borrowing from the RBI except for temporary advances.
  4. The RBI not to subscribe to the primary issues of the central government securities after 2006.
  5. The revenue deficit and fiscal deficit may exceed the targets specified in the rules only on grounds of national security, calamity etc.

Though the Act aims to achieve deficit reductions prima facie, an important objective is to achieve inter-generational equity in fiscal management. This is because when there are high borrowings today, it should be repaid by the future generation. But the benefit from high expenditure and debt today goes to the present generation. Achieving FRBM targets thus ensures inter-generation equity by reducing the debt burden of the future generation. Other objectives include: long run macroeconomic stability, better coordination between fiscal and monetary policy, and transparency in fiscal operation of the Government.

The Act had said that the fiscal deficit should be brought down to 3% of the gross domestic product (GDP) and revenue deficit should drop down to nil, both by March 2009. Fiscal deficit is the excess of government’s total expenditure over its total income. The government incurs revenue and capital expenses and receives income on the revenue and capital account. Further, the excess of revenue expenses over revenue income leads to a revenue deficit. The FRBM Act wants the revenue deficit to be nil as the revenue expenditure is day-to-day expenses and does not create a capital asset. Usually, the liabilities should not be carried forward, else the government ends up borrowing to repay its current liabilities.

However, these targets were not achieved because the global credit crisis hit the markets in 2008. The government had to roll out a fiscal stimulus to revive the economy and this increased the deficits.

In the 2011 budget, the finance minister said that the FRBM Act would be modified and new targets would be fixed and flexibility will be built in to have a cushion for unforeseen circumstances. According to the 13th Finance Commission, fiscal deficit will be brought down to 3.5% in 2013-14. Likewise, revenue deficit is expected to be cut to 2.1% in 2013-14.

In the 2012 Budget speech, the finance minister announced an amendment to the FRBM Act. He also announced that instead of the FRBM targeting the revenue deficit, the government will now target the effective revenue deficit. His budget speech defines effective revenue deficit as the difference between revenue deficit and grants for creation of capital assets. In other words, capital expenditure will now be removed from the revenue deficit and whatever remains (effective revenue deficit) will now be the new goalpost of the fiscal consolidation. Here’s what effective revenue deficit means.

Every year the government incurs expenditure and simultaneously earns income. Some expenses are planned (that it includes in its five-year plans) and other are non-planned. However, both planned and non-planned expenditure consists of capital and revenue expenditure. For instance, if the government sets up a power plant as part of its non-planned expenditure, then costs incurred towards maintaining it will now not be called revenue deficit because it is towards maintaining a “capital asset”. Experts say that revenue deficit could become a little distorted because by reclassifying revenue deficit, it is simplifying its target.

 

access to reserve funds. A fiscally irresponsible government isn’t able to sustain programs designed to provide fast relief to its citizens.

Public Sector Banks Lending, Demonetisation and RBI Norms: an adumbration

How far is it true that in the current scheme of things with stressed assets plaguing the Public Sector Banks on one hand and the recent demonetisation rendering bills of Rs. 500 and Rs. 1000 legally invalid has fuelled once again the debate of these public banks with excess deposits or surplus liquidity in their kitty are roaring to go on a relentless lending, thus pressurising the already existing stressed assets into an explosion of unprecedented nature hitherto unseen? Now, that is quite a long question by a long way indeed. Those on the civil sector spectrum and working on financials leave no stone unturned in admitting that such indeed is the case, and they are not to be wholly held culpable for India’s Finance Minister has at least on a couple of times since the decision to demonetise on 8th November aided such a train of thought by calling upon banks to be ready for such lending to projects, which, if I were to speculate would be under project finance and geared towards the crumbling infrastructure of the country. Assuming if such were the case, then, it undoubtedly stamps a political position for these civil actors, but it would hardly be anything other than a cauldron, since economics would fail to feed-forward such claims.

So, what then is the truth behind this? This post is half-cooked, for it is as a result of an e-mail exchange with a colleague of mine. The answer to the long question above in short is ‘NO’. Let us go about proving it. Reserve Bank of India in no different manner has been toying the switch of a flip-flop in policy makeovers in the wake of demonetisation. But, what the Central Bank and the Regulator of India’s monetary policy has done increase Cash Reserve Ratio (CRR) by 100% of net demand and time liabilities (NDTL),  which is the difference between the sum of demand and time liabilities (deposits) of a bank and the deposits in the form of assets held by another bank. Formulaically,

NDTL = demand and time liabilities (deposits) – deposits with other banks.

The amount specified as the CRR is held in cash and cash equivalents, is stored in bank vaults or parked with the Reserve Bank of India. The aim here is to ensure that banks do not run out of cash to meet the payment demands of their depositors. CRR is a crucial monetary policy tool and is used for controlling money supply in an economy. towards the end of November, the RBI hiked the incremental CRR by 100%. The incremental cash reserve ratio (CRR) prescribes the reserve ratio based on the extent of growth in resources (deposits). It im­mobilises the excess liquidity from where it is lodged (the banks which show high growth), unlike the average ratio which impounds from the banks which are slow-growing as well as banks which are fast-growing. It also avoids the jerkiness of the average ratio. This means it has literally mopped the surplus liquidity that has gone into the banks as deposits in the wake of demonetisation. So, banks do not have capital to lend.  There is a formula on how much a bank could lend. It is:

Lending = Deposits – CRR – SLR (statutory liquidity ratio) – provisioning

; SLR is the amount of liquid assets such as precious metals (Gold) or other approved securities, that a financial institution must maintain as reserves other than the cash.
Formulaically,

SLR rate = (liquid assets / (demand + time liabilities)) × 100%

As of now, the CRR and SLR rates are 4% and 23% respectively. Hence, the bank can only use 100-4-23= 73% of its total deposits for the purpose of lending. So, with higher CRR, banks can give less money as loan, since with higher interest rates, it becomes expensive to lend. This can curb inflation (and this is one of the main arguments of pro-demonetisation economists), but may also lead to slowdown in economy, because people wait for the interest rates to go down, before taking loans.

Moving on, what civil actors perceive, and not totally wrongly is that in the wake of demonetisation, deposits going into the banks are some form of recapitalisation, or capital infusion, which is technically and strictly speaking, not the case. For capital infusion in India happens through a budgetary allocation, and not this route. The RBI even came out with reverse repo, so that banks could purchase government securities from the RBI and thus lend money to the regulator. Thereafter, CRR was raised to 100, which, though incremental in nature would be revised 2 days from now, i.e. on the 9th. This incremental CRR is intended to be a temporary measure within RBI’s liquidity management framework to drain excess liquidity in the system. Though, the regular CRR would be 4, this incremental CRR is precisely to lock down lending going out from surplus deposits/liquidity as a result of Demonetisation. This move by the RBI was necessitated by the fact it at present holds Rs. 7.25 lac crore of rupee securities (G-Secs and T-Bills) and will soon run out of options of going in for reverse repo options, where it sells G-Secs in return for cash from banks, which have surplus deposits. These transactions have been reckoned at rates between 6.21% – 6.25%. There are expectations that the volume of deposits will increase by up to Rs. 10 lac crores by December due to demonetisation. The present equation of Rs. 3.24 lac crore impounded due to CRR and Rs. 7.56 lac crore to be used as open market option (OMO) or reverse repo options broadly covers this amount, leaving no extra margin.

There are two implications out of this:

One being, as the level of deposits keep increasing, banks may have to park the increments as CRR with RBI, which will affect their profit and loss (P&L). The expectation till today morning, i.e. the 7th December, 2016 had been that the RBI would lower the repo rate aggressively by 50 basis points (bps), which it did not do. This surely is deferred till stability due to demonetisation is achieved in the system. The other being on interest rate transmission. Banks could have delayed cutting their lending rates given that they had promised at least 3-4% interest rate to savings account depositors, and not be receiving any interest on the deposits impounded for CRR, which they haven’t as on individual levels, they have been cutting lending rates to approach RBI’s. This culminates into liquidity to tighten and send bond yields on a northward blip, and this is where lending would shrink automatically. Hence the banks cannot go after relentless lending, either in the wake or otherwise of demonetisation. QED.