# Dialectics of God: Lautman’s Mathematical Ascent to the Absolute. Paper.

Figure and Translation, visit Fractal Ontology

The first of Lautman’s two theses (On the unity of the mathematical sciences) takes as its starting point a distinction that Hermann Weyl made on group theory and quantum mechanics. Weyl distinguished between ‘classical’ mathematics, which found its highest flowering in the theory of functions of complex variables, and the ‘new’ mathematics represented by (for example) the theory of groups and abstract algebras, set theory and topology. For Lautman, the ‘classical’ mathematics of Weyl’s distinction is essentially analysis, that is, the mathematics that depends on some variable tending towards zero: convergent series, limits, continuity, differentiation and integration. It is the mathematics of arbitrarily small neighbourhoods, and it reached maturity in the nineteenth century. On the other hand, the ‘new’ mathematics of Weyl’s distinction is ‘global’; it studies the structures of ‘wholes’. Algebraic topology, for example, considers the properties of an entire surface rather than aggregations of neighbourhoods. Lautman re-draws the distinction:

In contrast to the analysis of the continuous and the infinite, algebraic structures clearly have a finite and discontinuous aspect. Though the elements of a group, field or algebra (in the restricted sense of the word) may be infinite, the methods of modern algebra usually consist in dividing these elements into equivalence classes, the number of which is, in most applications, finite.

In his other major thesis, (Essay on the notions of structure and existence in mathematics), Lautman gives his dialectical thought a more philosophical and polemical expression. His thesis is composed of ‘structural schemas’ and ‘origination schemas’ The three structural schemas are: local/global, intrinsic properties/induced properties and the ‘ascent to the absolute’. The first two of these three schemas close to Lautman’s ‘unity’ thesis. The ‘ascent to the absolute’ is a different sort of pattern; it involves a progress from mathematical objects that are in some sense ‘imperfect’, towards an object that is ‘perfect’ or ‘absolute’. His two mathematical examples of this ‘ascent’ are: class field theory, which ‘ascends’ towards the absolute class field, and the covering surfaces of a given surface, which ‘ascend’ towards a simply-connected universal covering surface. In each case, there is a corresponding sequence of nested subgroups, which induces a ‘stepladder’ structure on the ‘ascent’. This dialectical pattern is rather different to the others. The earlier examples were of pairs of notions (finite/infinite, local/global, etc.) and neither member of any pair was inferior to the other. Lautman argues that on some occasions, finite mathematics offers insight into infinite mathematics. In mathematics, the finite is not a somehow imperfect version of the infinite. Similarly, the ‘local’ mathematics of analysis may depend for its foundations on ‘global’ topology, but the former is not a botched or somehow inadequate version of the latter. Lautman introduces the section on the ‘ascent to the absolute’ by rehearsing Descartes’s argument that his own imperfections lead him to recognise the existence of a perfect being (God). Man (for Descartes) is not the dialectical opposite of or alternative to God; rather, man is an imperfect image of his creator. In a similar movement of thought, according to Lautman, reflection on ‘imperfect’ class fields and covering surfaces leads mathematicians up to ‘perfect’, ‘absolute’ class fields and covering surfaces respectively.

Albert Lautman Dialectics in mathematics

# Rhizomatic Topology and Global Politics. A Flirtatious Relationship.

Deleuze and Guattari see concepts as rhizomes, biological entities endowed with unique properties. They see concepts as spatially representable, where the representation contains principles of connection and heterogeneity: any point of a rhizome must be connected to any other. Deleuze and Guattari list the possible benefits of spatial representation of concepts, including the ability to represent complex multiplicity, the potential to free a concept from foundationalism, and the ability to show both breadth and depth. In this view, geometric interpretations move away from the insidious understanding of the world in terms of dualisms, dichotomies, and lines, to understand conceptual relations in terms of space and shapes. The ontology of concepts is thus, in their view, appropriately geometric, a multiplicity defined not by its elements, nor by a center of unification and comprehension and instead measured by its dimensionality and its heterogeneity. The conceptual multiplicity, is already composed of heterogeneous terms in symbiosis, and is continually transforming itself such that it is possible to follow, and map, not only the relationships between ideas but how they change over time. In fact, the authors claim that there are further benefits to geometric interpretations of understanding concepts which are unavailable in other frames of reference. They outline the unique contribution of geometric models to the understanding of contingent structure:

Principle of cartography and decalcomania: a rhizome is not amenable to any structural or generative model. It is a stranger to any idea of genetic axis or deep structure. A genetic axis is like an objective pivotal unity upon which successive stages are organized; deep structure is more like a base sequence that can be broken down into immediate constituents, while the unity of the product passes into another, transformational and subjective, dimension. (Deleuze and Guattari)

The word that Deleuze and Guattari use for ‘multiplicities’ can also be translated to the topological term ‘manifold.’ If we thought about their multiplicities as manifolds, there are a virtually unlimited number of things one could come to know, in geometric terms, about (and with) our object of study, abstractly speaking. Among those unlimited things we could learn are properties of groups (homological, cohomological, and homeomorphic), complex directionality (maps, morphisms, isomorphisms, and orientability), dimensionality (codimensionality, structure, embeddedness), partiality (differentiation, commutativity, simultaneity), and shifting representation (factorization, ideal classes, reciprocity). Each of these functions allows for a different, creative, and potentially critical representation of global political concepts, events, groupings, and relationships. This is how concepts are to be looked at: as manifolds. With such a dimensional understanding of concept-formation, it is possible to deal with complex interactions of like entities, and interactions of unlike entities. Critical theorists have emphasized the importance of such complexity in representation a number of times, speaking about it in terms compatible with mathematical methods if not mathematically. For example, Foucault’s declaration that: practicing criticism is a matter of making facile gestures difficult both reflects and is reflected in many critical theorists projects of revealing the complexity in (apparently simple) concepts deployed both in global politics.  This leads to a shift in the concept of danger as well, where danger is not an objective condition but “an effect of interpretation”. Critical thinking about how-possible questions reveals a complexity to the concept of the state which is often overlooked in traditional analyses, sending a wave of added complexity through other concepts as well. This work seeking complexity serves one of the major underlying functions of critical theorizing: finding invisible injustices in (modernist, linear, structuralist) givens in the operation and analysis of global politics.

In a geometric sense, this complexity could be thought about as multidimensional mapping. In theoretical geometry, the process of mapping conceptual spaces is not primarily empirical, but for the purpose of representing and reading the relationships between information, including identification, similarity, differentiation, and distance. The reason for defining topological spaces in math, the essence of the definition, is that there is no absolute scale for describing the distance or relation between certain points, yet it makes sense to say that an (infinite) sequence of points approaches some other (but again, no way to describe how quickly or from what direction one might be approaching). This seemingly weak relationship, which is defined purely ‘locally’, i.e., in a small locale around each point, is often surprisingly powerful: using only the relationship of approaching parts, one can distinguish between, say, a balloon, a sheet of paper, a circle, and a dot.

To each delineated concept, one should distinguish and associate a topological space, in a (necessarily) non-explicit yet definite manner. Whenever one has a relationship between concepts (here we think of the primary relationship as being that of constitution, but not restrictively, we ‘specify’ a function (or inclusion, or relation) between the topological spaces associated to the concepts). In these terms, a conceptual space is in essence a multidimensional space in which the dimensions represent qualities or features of that which is being represented. Such an approach can be leveraged for thinking about conceptual components, dimensionality, and structure. In these terms, dimensions can be thought of as properties or qualities, each with their own (often-multidimensional) properties or qualities. A key goal of the modeling of conceptual space being representation means that a key (mathematical and theoretical) goal of concept space mapping is

associationism, where associations between different kinds of information elements carry the main burden of representation. (Conceptual_Spaces_as_a_Framework_for_Knowledge_Representation)

To this end,

objects in conceptual space are represented by points, in each domain, that characterize their dimensional values. A concept geometry for conceptual spaces

These dimensional values can be arranged in relation to each other, as Gardenfors explains that

distances represent degrees of similarity between objects represented in space and therefore conceptual spaces are “suitable for representing different kinds of similarity relation. Concept

These similarity relationships can be explored across ideas of a concept and across contexts, but also over time, since “with the aid of a topological structure, we can speak about continuity, e.g., a continuous change” a possibility which can be found only in treating concepts as topological structures and not in linguistic descriptions or set theoretic representations.

# Hyperstructures

In many areas of mathematics there is a need to have methods taking local information and properties to global ones. This is mostly done by gluing techniques using open sets in a topology and associated presheaves. The presheaves form sheaves when local pieces fit together to global ones. This has been generalized to categorical settings based on Grothendieck topologies and sites.

The general problem of going from local to global situations is important also outside of mathematics. Consider collections of objects where we may have information or properties of objects or subcollections, and we want to extract global information.

This is where hyperstructures are very useful. If we are given a collection of objects that we want to investigate, we put a suitable hyperstructure on it. Then we may assign “local” properties at each level and by the generalized Grothendieck topology for hyperstructures we can now glue both within levels and across the levels in order to get global properties. Such an assignment of global properties or states we call a globalizer.

To illustrate our intuition let us think of a society organized into a hyperstructure. Through levelwise democratic elections leaders are elected and the democratic process will eventually give a “global” leader. In this sense democracy may be thought of as a sociological (or political) globalizer. This applies to decision making as well.

In “frustrated” spin systems in physics one may possibly think of the “frustation” being resolved by creating new levels and a suitable globalizer assigning a global state to the system corresponding to various exotic physical conditions like, for example, a kind of hyperstructured spin glass or magnet. Acting on both classical and quantum fields in physics may be facilitated by putting a hyperstructure on them.

There are also situations where we are given an object or a collection of objects with assignments of properties or states. To achieve a certain goal we need to change, let us say, the state. This may be very difficult and require a lot of resources. The idea is then to put a hyperstructure on the object or collection. By this we create levels of locality that we can glue together by a generalized Grothendieck topology.

It may often be much easier and require less resources to change the state at the lowest level and then use a globalizer to achieve the desired global change. Often it may be important to find a minimal hyperstructure needed to change a global state with minimal resources.

Again, to support our intuition let us think of the democratic society example. To change the global leader directly may be hard, but starting a “political” process at the lower individual levels may not require heavy resources and may propagate through the democratic hyperstructure leading to a change of leader.

Hence, hyperstructures facilitates local to global processes, but also global to local processes. Often these are called bottom up and top down processes. In the global to local or top down process we put a hyperstructure on an object or system in such a way that it is represented by a top level bond in the hyperstructure. This means that to an object or system X we assign a hyperstructure

H = {B0,B1,…,Bn} in such a way that X = bn for some bn ∈ B binding a family {bi1n−1} of Bn−1 bonds, each bi1n−1 binding a family {bi2n−2} of Bn−2 bonds, etc. down to B0 bonds in H. Similarly for a local to global process. To a system, set or collection of objects X, we assign a hyperstructure H such that X = B0. A hyperstructure on a set (space) will create “global” objects, properties and states like what we see in organized societies, organizations, organisms, etc. The hyperstructure is the “glue” or the “law” of the objects. In a way, the globalizer creates a kind of higher order “condensate”. Hyperstructures represent a conceptual tool for translating organizational ideas like for example democracy, political parties, etc. into a mathematical framework where new types of arguments may be carried through.