Ramping the Markets: Banking on Ponzi Finance. Thought of the Day 112.0

China Minsky

When funded pension schemes were first put forward at the beginning of the 1970s as a private sector alternative to state earnings-related pensions, the merchant (investment) banks and stockbroking firms that promoted them did not anticipate how successful they would become in that, by the following decades, pension schemes and allied forms of life assurance would come to own most of the stocks and shares quoted on the world’s stock markets. When pension funds held a minority of stocks, the funds could altogether put money into stock markets by buying stocks, or withdraw it by selling, without significantly affecting prices or the liquidity of the market as a whole. Now that pension funds and allied life assurance and mutual funds constitute the majority of the market, it is not possible for them to withdraw funds altogether without causing a fall in prices, or even a stock market crash.

Because of their success, pension funds have become the newest and possibly the most catastrophic example of Ponzi finance. The term Ponzi finance was invented by the American economist Hyman P. Minsky as part of his analysis of financial market inflation. It describes a form of finance in which new liabilities are issued to finance existing liabilities. According to Minsky, financial crises are caused by the collapse of ‘financial structures’ whose failure is precipitated by their increasing ‘financial fragility’. Financial structures are simply commitments to make payments in the future, against claims that result in incoming payments in the future. For Minsky, the characteristic feature of financial markets and financial speculation is that they afford opportunities for economic units to enter into future financial commitments, in the expectation of gain. In this respect, at least, they are similar to fixed capital investment. Success in securing gains persuades speculators to enter into further commitments, which become more ‘fragile’, i.e., more prone to collapse because future commitments become more speculative and less covered by assured financial inflows.

Minsky identifies three types of financial commitments, which are distinguished by the different degree of financial risk that they entail. In hedge finance, future commitments are exactly matched by cash inflows. A common example is the practice in banking of lending at variable or floating rates of interest. In this way, if a bank has to pay more interest to its depositors, it can recoup the increase by raising the interest rates that it charges to its borrowers (assuming that its depositors cannot withdraw their deposits before the term of the loan expires).

Speculative finance is characterized by certain commitments which have to be covered by cash inflows which may rise or fall, or uncertain commitments against a fixed cash inflow. If a bank lends money at a fixed rate of interest it is engaging in speculative finance, because it is running the risk that it may have to pay a higher rate of interest to depositors if interest rates rise. However, to set against this risk it has the possibility that the interest rates paid to depositors may fall, and it will thereby make additional gains from a wider margin between lending and borrowing rates.

Ponzi finance, in Minsky’s view, is a situation in which both commitments and cash inflows are uncertain, so that there is a possibility of an even more enhanced profit if commitments fall and the cash inflow rises. Against this has to be set the possibility that commitments and the cash inflow will move together so that only a minimal profit will be secured, or that commitments will rise and the cash inflow will fall, in which case a much more serious loss will be entered than would have occurred under speculative finance.

Ponzi finance lies behind the view that is no less erroneous for being widely repeated, that a higher return reflects the ‘greater risk’ of an enterprise. This is exemplified in the practice of banks charging higher rates of interest for what they perceive as greater risks. Behind this view lies the Austrian tradition, from Böhm-Bawerk onwards, of regarding economic outcomes as analogous to the gains and lotteries obtainable from repeated routine games, such as the tossing of a dice. The certain pay-off (or ‘certainty-equivalent’) is held to be lower than some possible pay-off. The association of the greater payoff with its lower probability then leads to a presumption that the latter ‘causes’ the former. However, the profits of companies and financial institutions are not the proceeds of gaming, however much enterprise in an unstable market system may appear similar to gambling. In fact, these profits are the outcomes of financial flows that ebb and progress through the economy, propelled by actual expenditure and financing decisions. The systems of financial claims and liabilities arising from those decisions become more fragile, as first speculative and then Ponzi financing structures come to predominate, and larger gains and larger losses may then be made. But the possibility of extraordinary profits or losses in Ponzi financing structures in no way means that realization of such profits is caused or justified by the possibility of the losses. Ponzi finance arises out of objective contractual obligations. The ‘greater risk’, which is held to justify a higher cost of finance, may be entirely subjective or a cover for monopoly profits in finance.

The simplest example of Ponzi finance is borrowing money to pay interest on a loan. In this case, the financial liability is increased, with no reduction in the original loan. Pyramid bank deposit schemes were the schemes after which this phenomenon is named, and they are perhaps the most extreme example of such financial structures. In a pyramid deposit scheme, the financier might take, say, Rs. 100 from a depositor, and promise to double this money after a month if the depositor introduces two new depositors at the end of that month. The two new depositors get the same terms and when they pay in their Rs. 100 respectively, Rs. 100 goes to double the money of the first depositor, and the other Rs. 100 is the financier’s profit. The two new depositors get their profit at the end of the next month from the new deposits paid in by the four new depositors that they introduce to the scheme, and so on. Initially, such schemes promise and deliver good profits. But their flaw lies in the fact that they require deposits to rise exponentially in order to pay the promised rewards to depositors. In the example that is described above, deposits have to double each month so that after one year, the scheme requires Rs. 409,600 in deposits just to keep solvent. After the thirteenth month, Rs. 819,200 would need to be deposited to keep up promised payments to depositors. Such schemes therefore usually collapse when they run out of gullible people to deposit their savings in them. While their life can be briefly extended by persuading depositors not to withdraw their profits, this cannot work for more than one or two payment periods, because such schemes are so dependent on increasing amounts of additional money being paid into them in each successive period.

Ponzi schemes are named after Charles Ponzi, an Italian immigrant who swindled Boston investors in 1919 and 1920 with a pyramid banking scheme. Minsky noted that Ponzi’s scheme ‘swept through the working classes and even affected “respectable” folk’. Because they prey on the poor and the ignorant, Ponzi schemes in banking are usually banned, although this does not prevent them from occurring in countries where it is difficult to regulate them. In Minsky’s view, financial collapses occur because booms in financial markets result in sufficient profits for speculative and Ponzi finance to induce a shift from hedge finance to speculative and Ponzi finance.

Ponzi finance in securities markets is much more common than in banking. Indeed, it is arguable that such finance is essential for the liquidity of markets in long-term securities: if a security is bought, it may have an assured ‘residual liquidity’ if it is a bond in that, when it matures, the money will then be returned to the investor. If, however, the security is a share which is not repaid by the issuer except on liquidation of the company, then it has no assured residual liquidity. Its liquidity depends on some other investor wishing to buy it at a reasonable price. If the share is to be sold at a profit, then the condition for this to happen is that demand for it has risen since it was bought. In this respect, liquidity and capital gains in the markets for long-term securities depend on Ponzi finance.

Ponzi finance was present at the very inception of modern stock markets. The South Sea Company and the Mississippi Company, whose stocks featured in the first stock market collapse of 1720, both ended up issuing stocks to raise finance in order to buy stocks to keep the market in their stocks liquid and stable. In modern times, this is a common feature of merger and takeover activity in capital markets. Corporate takeovers are frequently financed by issuing securities. The proceeds of the new issue are used to buy in the target company’s stock ‘at a premium’, i.e., at a price that is greater than the pre-takeover market price. The money raised by issuing the new stocks is used to pay the higher return to the stock-holders of the company being taken over. In this case, issuing new stock is exactly equivalent to the pyramid banking practice of taking in new deposits in order to pay an enhanced return to older depositors, which is the premium on the target company’s stock. The main difference between the two types of operation is that, during such takeover activity, the stock market as a whole functions as a pyramid banking scheme. However, precisely because it is the market as a whole which is operating in this Ponzi way, the pyramid nature of the venture is less obvious, and the gains are greater, because more and wealthier contributors are involved. Since this is an outcome of the normal functioning of the market, which may hitherto have been acting in a perfectly proper and respectable fashion, raising finance for industry and providing for widows and orphans, it is not possible to ‘finger’ the perpetrator of the pyramid scheme.

A more obviously controversial kind of Ponzi finance is the practice known as ‘ramping’ the market. A financier discreetly buys up a particular stock over a period of time, and then announces with great fanfare that he or she is buying in the stock. There are few markets in which emulatory competition is as strong as financial markets, where being conservative in practice and faddish in innovation are preconditions for a ‘sound’ reputation. The ‘sounder’ that reputation, the more likely it is other investors will imitate the buying strategy. Indeed, there is an element of compulsion about it, depending on the reputation of the investor. Those investors without reputation must follow for whatever reasons the investment direction signalled by investors with reputation, or else languish among lower-growth stocks. As the price of the stock rises due to the increased demand for it, such reputable financiers quietly sell out at a profit to their imitators, thereby confirming their reputation for financial ‘soundness’. Obviously, the better the reputation of the financier, the greater the gain from such an operation. To support such a reputation and legitimize the profits from trading on it, financiers will obviously attribute the gains from this practice to their own financial acumen, rather than confessing to having ramped the market.

The almost instantaneous dissemination of relevant information on which modern financial markets pride themselves (and which many financial economists believe makes them near perfect), also facilitates this kind of market manipulation. In securities markets, the investors emulating the financier are the equivalent of the new depositors. They too may make money, if they too can persuade subsequent new investors to buy at higher prices. As with the pyramid banking case, ramping markets depends on increasing interest by additional investors. Because in practice it is indistinguishable from normal trading (unlike pyramid banking, which is rather more obvious), and because any losers usually have other wealth to fall back on, such practices are frowned upon in securities markets, but cannot be eliminated. However, in the case of pension funds, the eventual losers will be ordinary working people, who will only have a minimal state pension in the future to fall back on. This makes it all the more important to understand how a reputable system for financing pensions has become a Ponzi finance scheme which will in future collapse.

Advertisement

Long Term Capital Management. Note Quote.

Long Term Capital Management, or LTCM, was a hedge fund founded in 1994 by John Meriwether, the former head of Salomon Brothers’s domestic fixed-income arbitrage group. Meriwether had grown the arbitrage group to become Salomon’s most profitable group by 1991, when it was revealed that one of the traders under his purview had astonishingly submitted a false bid in a U.S. Treasury bond auction. Despite reporting the trade immediately to CEO John Gutfreund, the outcry from the scandal forced Meriwether to resign.

Meriwether revived his career several years later with the founding of LTCM. Amidst the beginning of one of the greatest bull markets the global markets had ever seen, Meriwether assembled a team of some of the world’s most respected economic theorists to join other refugees from the arbitrage group at Salomon. The board of directors included Myron Scholes, a coauthor of the famous Black-Scholes formula used to price option contracts, and MIT Sloan professor Robert Merton, both of whom would later share the 1997 Nobel Prize for Economics. The firm’s impressive brain trust, collectively considered geniuses by most of the financial world, set out to raise a $1 billion fund by explaining to investors that their profoundly complex computer models allowed them to price securities according to risk more accurately than the rest of the market, in effect “vacuuming up nickels that others couldn’t see.”

One typical LTCM trade concerned the divergence in price between long-term U.S. Treasury bonds. Despite offering fundamentally the same (minimal) default risk, those issued more recently – known as “on-the-run” securities – traded more heavily than those “off-the-run” securities issued just months previously. Heavier trading meant greater liquidity, which in turn resulted in ever-so-slightly higher prices. As “on-the-run” securities become “off-the-run” upon the issuance of a new tranche of Treasury bonds, the price discrepancy generally disappears with time. LTCM sought to exploit that price convergence by shorting the more expensive “on-the-run” bond while purchasing the “off- the-run” security.

By early 1998 the intellectual firepower of its board members and the aggressive trading practices that had made the arbitrage group at Salomon so successful had allowed LTCM to flourish, growing its initial $1 billion of investor equity to $4.72 billion. However, the miniscule spreads earned on arbitrage trades could not provide the type of returns sought by hedge fund investors. In order to make transactions such as these worth their while, LTCM had to employ massive leverage in order to magnify its returns. Ultimately, the fund’s equity component sat atop more than $124.5 billion in borrowings for total assets of more than $129 billion. These borrowings were merely the tip of the ice-berg; LTCM also held off-balance-sheet derivative positions with a notional value of more than $1.25 trillion.

Untitled

The fund’s success began to pose its own problems. The market lacked sufficient capacity to absorb LTCM’s bloated size, as trades that had been profitable initially became impossible to conduct on a massive scale. Moreover, a flood of arbitrage imitators tightened the spreads on LTCM’s “bread-and-butter” trades even further. The pressure to continue delivering returns forced LTCM to find new arbitrage opportunities, and the fund diversified into areas where it could not pair its theoretical insights with trading experience. Soon LTCM had made large bets in Russia and in other emerging markets, on S&P futures, and in yield curve, junk bond, merger, and dual-listed securities arbitrage.

Combined with its style drift, the fund’s more than 26 leverage put LTCM in an increasingly precarious bubble, which was eventually burst by a combination of factors that forced the fund into a liquidity crisis. In contrast to Scholes’s comments about plucking invisible, riskless nickels from the sky, financial theorist Nassim Taleb later compared the fund’s aggressive risk taking to “picking up pennies in front of a steamroller,” a steamroller that finally came in the form of 1998’s market panic. The departure of frequent LTCM counterparty Salomon Brothers from the arbitrage market that summer put downward pressure on many of the fund’s positions, and Russia’s default on its government-issued bonds threw international credit markets into a downward spiral. Panicked investors around the globe demonstrated a “flight to quality,” selling the risky securities in which LTCM traded and purchasing U.S. Treasury securities, further driving up their price and preventing a price convergence upon which the fund had bet so heavily.

None of LTCM’s sophisticated theoretical models had contemplated such an internationally correlated credit market collapse, and the fund began hemorrhaging money, losing nearly 20% of its equity in May and June alone. Day after day, every market in which LTCM traded turned against it. Its powerless brain trust watched in horror as its equity shrank to $600 million in early September without any reduction in borrowing, resulting in an unfathomable 200 leverage ratio. Sensing the fund’s liquidity crunch, Bear Stearns refused to continue acting as a clearinghouse for the fund’s trades, throwing LTCM into a panic. Without the short-term credit that enabled its entire trading operations, the fund could not continue and its longer-term securities grew more illiquid by the day.

Obstinate in their refusal to unwind what they still considered profitable trades hammered by short-term market irrationality, LTCM’s partners refused a buyout offer of $250 million by Goldman Sachs, ING Barings, and Warren Buffet’s Berkshire Hathaway. However, LTCM’s role as a counterparty in thousands of derivatives trades that touched investment firms around the world threatened to provoke a wider collapse in international securities markets if the fund went under, so the U.S. Federal Reserve stepped in to maintain order. Wishing to avoid the precedent of a government bailout of a hedge fund and the moral hazard it could subsequently encourage, the Fed invited every major investment bank on Wall Street to an emergency meeting in New York and dictated the terms of the $3.625 billion bailout that would preserve market liquidity. The Fed convinced Bankers Trust, Barclays, Chase, Credit Suisse First Boston, Deutsche Bank, Goldman Sachs, Merrill Lynch, J.P. Morgan, Morgan Stanley, Salomon Smith Barney, and UBS – many of whom were investors in the fund – to contribute $300 million apiece, with $125 million coming from Société Générale and $100 million from Lehman Brothers and Paribas. Eventually the market crisis passed, and each bank managed to liquidate its position at a slight profit. Only one bank contacted by the Fed refused to join the syndicate and share the burden in the name of preserving market integrity.

That bank was Bear Stearns.

Bear’s dominant trading position in bonds and derivatives had won it the profitable business of acting as a settlement house for nearly all of LTCM’s trading in those markets. On September 22, 1998, just days before the Fed-organized bailout, Bear put the final nail in the LTCM coffin by calling in a short-term debt in the amount of $500 million in an attempt to limit its own exposure to the failing hedge fund, rendering it insolvent in the process. Ever the maverick in investment banking circles, Bear stubbornly refused to contribute to the eventual buyout, even in the face of a potentially apocalyptic market crash and despite the millions in profits it had earned as LTCM’s prime broker. In typical Bear fashion, James Cayne ignored the howls from other banks that failure to preserve confidence in the markets through a bailout would bring them all down in flames, famously growling through a chewed cigar as the Fed solicited contributions for the emergency financing, “Don’t go alphabetically if you want this to work.”

Market analysts were nearly unanimous in describing the lessons learned from LTCM’s implosion; in effect, the fund’s profound leverage had placed it in such a precarious position that it could not wait for its positions to turn profitable. While its trades were sound in principal, LTCM’s predicted price convergence was not realized until long after its equity had been wiped out completely. A less leveraged firm, they explained, might have realized lower profits than the 40% annual return LTCM had offered investors up until the 1998 crisis, but could have weathered the storm once the market turned against it. In the words of economist John Maynard Keynes, the market had remained irrational longer than LTCM could remain solvent. The crisis further illustrated the importance not merely of liquidity but of perception in the less regulated derivatives markets. Once LTCM’s ability to meet its obligations was called into question, its demise became inevitable, as it could no longer find counterparties with whom to trade and from whom it could borrow to continue operating.

The thornier question of the Fed’s role in bailing out an overly aggressive investment fund in the name of market stability remained unresolved, despite the Fed’s insistence on private funding for the actual buyout. Though impossible to foresee at the time, the issue would be revisited anew less than ten years later, and it would haunt Bear Stearns. With negative publicity from Bear’s $38.5 million settlement with the SEC regarding charges that it had ignored fraudulent behavior by a client for whom it cleared trades and LTCM’s collapse behind it, Bear Stearns continued to grow under Cayne’s leadership, with its stock price appreciating some 600% from his assumption of control in 1993 until 2008. However, a rapid-fire sequence of negative events began to unfurl in the summer of 2007 that would push Bear into a liquidity crunch eerily similar to the one that felled LTCM.

High Frequency Traders: A Case in Point.

Events on 6th May 2010:

At 2:32 p.m., against [a] backdrop of unusually high volatility and thinning liquidity, a large fundamental trader (a mutual fund complex) initiated a sell program to sell a total of 75,000 E-Mini [S&P 500 futures] contracts (valued at approximately $4.1 billion) as a hedge to an existing equity position. […] This large fundamental trader chose to execute this sell program via an automated execution algorithm (“Sell Algorithm”) that was programmed to feed orders into the June 2010 E-Mini market to target an execution rate set to 9% of the trading volume calculated over the previous minute, but without regard to price or time. The execution of this sell program resulted in the largest net change in daily position of any trader in the E-Mini since the beginning of the year (from January 1, 2010 through May 6, 2010). [. . . ] This sell pressure was initially absorbed by: high frequency traders (“HFTs”) and other intermediaries in the futures market; fundamental buyers in the futures market; and cross-market arbitrageurs who transferred this sell pressure to the equities markets by opportunistically buying E-Mini contracts and simultaneously selling products like SPY [(S&P 500 exchange-traded fund (“ETF”))], or selling individual equities in the S&P 500 Index. […] Between 2:32 p.m. and 2:45 p.m., as prices of the E-Mini rapidly declined, the Sell Algorithm sold about 35,000 E-Mini contracts (valued at approximately $1.9 billion) of the 75,000 intended. [. . . ] By 2:45:28 there were less than 1,050 contracts of buy-side resting orders in the E-Mini, representing less than 1% of buy-side market depth observed at the beginning of the day. [. . . ] At 2:45:28 p.m., trading on the E-Mini was paused for five seconds when the Chicago Mercantile Exchange (“CME”) Stop Logic Functionality was triggered in order to prevent a cascade of further price declines. […] When trading resumed at 2:45:33 p.m., prices stabilized and shortly thereafter, the E-Mini began to recover, followed by the SPY. [. . . ] Even though after 2:45 p.m. prices in the E-Mini and SPY were recovering from their severe declines, sell orders placed for some individual securities and Exchange Traded Funds (ETFs) (including many retail stop-loss orders, triggered by declines in prices of those securities) found reduced buying interest, which led to further price declines in those securities. […] [B]etween 2:40 p.m. and 3:00 p.m., over 20,000 trades (many based on retail-customer orders) across more than 300 separate securities, including many ETFs, were executed at prices 60% or more away from their 2:40 p.m. prices. [. . . ] By 3:08 p.m., [. . . ] the E-Mini prices [were] back to nearly their pre-drop level [. . . and] most securities had reverted back to trading at prices reflecting true consensus values.

In the ordinary course of business, HFTs use their technological advantage to profit from aggressively removing the last few contracts at the best bid and ask levels and then establishing new best bids and asks at adjacent price levels ahead of an immediacy-demanding customer. As an illustration of this “immediacy absorption” activity, consider the following stylized example, presented in Figure and described below.

Untitled 2

Suppose that we observe the central limit order book for a stock index futures contract. The notional value of one stock index futures contract is $50. The market is very liquid – on average there are hundreds of resting limit orders to buy or sell multiple contracts at either the best bid or the best offer. At some point during the day, due to temporary selling pressure, there is a total of just 100 contracts left at the best bid price of 1000.00. Recognizing that the queue at the best bid is about to be depleted, HFTs submit executable limit orders to aggressively sell a total of 100 contracts, thus completely depleting the queue at the best bid, and very quickly submit sequences of new limit orders to buy a total of 100 contracts at the new best bid price of 999.75, as well as to sell 100 contracts at the new best offer of 1000.00. If the selling pressure continues, then HFTs are able to buy 100 contracts at 999.75 and make a profit of $1,250 dollars among them. If, however, the selling pressure stops and the new best offer price of 1000.00 attracts buyers, then HFTs would very quickly sell 100 contracts (which are at the very front of the new best offer queue), “scratching” the trade at the same price as they bought, and getting rid of the risky inventory in a few milliseconds.

This type of trading activity reduces, albeit for only a few milliseconds, the latency of a price move. Under normal market conditions, this trading activity somewhat accelerates price changes and adds to the trading volume, but does not result in a significant directional price move. In effect, this activity imparts a small “immediacy absorption” cost on all traders, including the market makers, who are not fast enough to cancel the last remaining orders before an imminent price move.

This activity, however, makes it both costlier and riskier for the slower market makers to maintain continuous market presence. In response to the additional cost and risk, market makers lower their acceptable inventory bounds to levels that are too small to offset temporary liquidity imbalances of any significant size. When the diminished liquidity buffer of the market makers is pierced by a sudden order flow imbalance, they begin to demand a progressively greater compensation for maintaining continuous market presence, and prices start to move directionally. Just as the prices are moving directionally and volatility is elevated, immediacy absorption activity of HFTs can exacerbate a directional price move and amplify volatility. Higher volatility further increases the speed at which the best bid and offer queues are being depleted, inducing HFT algorithms to demand immediacy even more, fueling a spike in trading volume, and making it more costly for the market makers to maintain continuous market presence. This forces more risk averse market makers to withdraw from the market, which results in a full-blown market crash.

Empirically, immediacy absorption activity of the HFTs should manifest itself in the data very differently from the liquidity provision activity of the Market Makers. To establish the presence of these differences in the data, we test the following hypotheses:

Hypothesis H1: HFTs are more likely than Market Makers to aggressively execute the last 100 contracts before a price move in the direction of the trade. Market Makers are more likely than HFTs to have the last 100 resting contracts against which aggressive orders are executed.

Hypothesis H2: HFTs trade aggressively in the direction of the price move. Market Makers get run over by a price move.

Hypothesis H3: Both HFTs and Market Makers scratch trades, but HFTs scratch more.

To statistically test our “immediacy absorption” hypotheses against the “liquidity provision” hypotheses, we divide all of the trades during the 405 minute trading day into two subsets: Aggressive Buy trades and Aggressive Sell trades. Within each subset, we further aggregate multiple aggressive buy or sell transactions resulting from the execution of the same order into Aggressive Buy or Aggressive Sell sequences. The intuition is as follows. Often a specific trade is not a stand alone event, but a part of a sequence of transactions associated with the execution of the same order. For example, an order to aggressively sell 10 contracts may result in four Aggressive Sell transactions: for 2 contracts, 1 contract, 4 contracts, and 3 contracts, respectively, due to the specific sequence of resting bids against which this aggressive sell order was be executed. Using the order ID number, we are able to aggregate these four transactions into one Aggressive Sell sequence for 10 contracts.

Testing Hypothesis H1. Aggressive removal of the last 100 contracts by HFTs; passive provision of the last 100 resting contracts by the Market Makers. Using the Aggressive Buy sequences, we label as a “price increase event” all occurrences of trading sequences in which at least 100 contracts consecutively executed at the same price are followed by some number of contracts at a higher price. To examine indications of low latency, we focus on the the last 100 contracts traded before the price increase and the first 100 contracts at the next higher price (or fewer if the price changes again before 100 contracts are executed). Although we do not look directly at the limit order book data, price increase events are defined to capture occasions where traders use executable buy orders to lift the last remaining offers in the limit order book. Using Aggressive sell trades, we define “price decrease events” symmetrically as occurrences of sequences of trades in which 100 contracts executed at the same price are followed by executions at lower prices. These events are intended to capture occasions where traders use executable sell orders to hit the last few best bids in the limit order book. The results are presented in Table below

Untitled 2

For price increase and price decrease events, we calculate each of the six trader categories’ shares of Aggressive and Passive trading volume for the last 100 contracts traded at the “old” price level before the price increase or decrease and the first 100 contracts traded at the “new” price level (or fewer if the number of contracts is less than 100) after the price increase or decrease event.

Table above presents, for the six trader categories, volume shares for the last 100 contracts at the old price and the first 100 contracts at the new price. For comparison, the unconditional shares of aggressive and passive trading volume of each trader category are also reported. Table has four panels covering (A) price increase events on May 3-5, (B) price decrease events on May 3-5, (C) price increase events on May 6, and (D) price decrease events on May 6. In each panel there are six rows of data, one row for each trader category. Relative to panels A and C, the rows for Fundamental Buyers (BUYER) and Fundamental Sellers (SELLER) are reversed in panels B and D to emphasize the symmetry between buying during price increase events and selling during price decrease events. The first two columns report the shares of Aggressive and Passive contract volume for the last 100 contracts before the price change; the next two columns report the shares of Aggressive and Passive volume for up to the next 100 contracts after the price change; and the last two columns report the “unconditional” market shares of Aggressive and Passive sides of all Aggressive buy volume or sell volume. For May 3-5, the data are based on volume pooled across the three days.

Consider panel A, which describes price increase events associated with Aggressive buy trades on May 3-5, 2010. High Frequency Traders participated on the Aggressive side of 34.04% of all aggressive buy volume. Strongly consistent with immediacy absorption hypothesis, the participation rate rises to 57.70% of the Aggressive side of trades on the last 100 contracts of Aggressive buy volume before price increase events and falls to 14.84% of the Aggressive side of trades on the first 100 contracts of Aggressive buy volume after price increase events.

High Frequency Traders participated on the Passive side of 34.33% of all aggressive buy volume. Consistent with hypothesis, the participation rate on the Passive side of Aggressive buy volume falls to 28.72% of the last 100 contracts before a price increase event. It rises to 37.93% of the first 100 contracts after a price increase event.

These results are inconsistent with the idea that high frequency traders behave like textbook market makers, suffering adverse selection losses associated with being picked off by informed traders. Instead, when the price is about to move to a new level, high frequency traders tend to avoid being run over and take the price to the new level with Aggressive trades of their own.

Market Makers follow a noticeably more passive trading strategy than High Frequency Traders. According to panel A, Market Makers are 13.48% of the Passive side of all Aggressive trades, but they are only 7.27% of the Aggressive side of all Aggressive trades. On the last 100 contracts at the old price, Market Makers’ share of volume increases only modestly, from 7.27% to 8.78% of trades. Their share of Passive volume at the old price increases, from 13.48% to 15.80%. These facts are consistent with the interpretation that Market Makers, unlike High Frequency Traders, do engage in a strategy similar to traditional passive market making, buying at the bid price, selling at the offer price, and suffering losses when the price moves against them. These facts are also consistent with the hypothesis that High Frequency Traders have lower latency than Market Makers.

Intuition might suggest that Fundamental Buyers would tend to place the Aggressive trades which move prices up from one tick level to the next. This intuition does not seem to be corroborated by the data. According to panel A, Fundamental Buyers are 21.53% of all Aggressive trades but only 11.61% of the last 100 Aggressive contracts traded at the old price. Instead, Fundamental Buyers increase their share of Aggressive buy volume to 26.17% of the first 100 contracts at the new price.

Taking into account symmetry between buying and selling, panel B shows the results for Aggressive sell trades during May 3-5, 2010, are almost the same as the results for Aggressive buy trades. High Frequency Traders are 34.17% of all Aggressive sell volume, increase their share to 55.20% of the last 100 Aggressive sell contracts at the old price, and decrease their share to 15.04% of the last 100 Aggressive sell contracts at the new price. Market Makers are 7.45% of all Aggressive sell contracts, increase their share to only 8.57% of the last 100 Aggressive sell trades at the old price, and decrease their share to 6.58% of the last 100 Aggressive sell contracts at the new price. Fundamental Sellers’ shares of Aggressive sell trades behave similarly to Fundamental Buyers’ shares of Aggressive Buy trades. Fundamental Sellers are 20.91% of all Aggressive sell contracts, decrease their share to 11.96% of the last 100 Aggressive sell contracts at the old price, and increase their share to 24.87% of the first 100 Aggressive sell contracts at the new price.

Panels C and D report results for Aggressive Buy trades and Aggressive Sell trades for May 6, 2010. Taking into account symmetry between buying and selling, the results for Aggressive buy trades in panel C are very similar to the results for Aggressive sell trades in panel D. For example, Aggressive sell trades by Fundamental Sellers were 17.55% of Aggressive sell volume on May 6, while Aggressive buy trades by Fundamental Buyers were 20.12% of Aggressive buy volume on May 6. In comparison with the share of Fundamental Buyers and in comparison with May 3-5, the Flash Crash of May 6 is associated with a slightly lower – not higher – share of Aggressive sell trades by Fundamental Sellers.

The number of price increase and price decrease events increased dramatically on May 6, consistent with the increased volatility of the market on that day. On May 3-5, there were 4100 price increase events and 4062 price decrease events. On May 6 alone, there were 4101 price increase events and 4377 price decrease events. There were therefore approximately three times as many price increase events per day on May 6 as on the three preceding days.

A comparison of May 6 with May 3-5 reveals significant changes in the trading patterns of High Frequency Traders. Compared with May 3-5 in panels A and B, the share of Aggressive trades by High Frequency Traders drops from 34.04% of Aggressive buys and 34.17% of Aggressive sells on May 3-5 to 26.98% of Aggressive buy trades and 26.29% of Aggressive sell trades on May 6. The share of Aggressive trades for the last 100 contracts at the old price declines by even more. High Frequency Traders’ participation rate on the Aggressive side of Aggressive buy trades drops from 57.70% on May 3-5 to only 38.86% on May 6. Similarly, the participation rate on the Aggressive side of Aggressive sell trades drops from and 55.20% to 38.67%. These declines are largely offset by increases in the participation rate by Opportunistic Traders on the Aggressive side of trades. For example, Opportunistic Traders’ share of the Aggressive side of the last 100 contracts traded at the old price rises from 19.21% to 34.26% for Aggressive buys and from 20.99% to 33.86% for Aggressive sells. These results suggest that some Opportunistic Traders follow trading strategies for which low latency is important, such as index arbitrage, cross-market arbitrage, or opportunistic strategies mimicking market making.

Testing Hypothesis H2. HFTs trade aggressively in the direction of the price move; Market Makers get run over by a price move. To examine this hypothesis, we analyze whether High Frequency Traders use Aggressive trades to trade in the direction of contemporaneous price changes, while Market Makers use Passive trades to trade in the opposite direction from price changes. To this end, we estimate the regression equation

Δyt = α + Φ . Δyt-1 + δ . yt-1 + Σi=120i . Δpt-1 /0.25] + εt

(where yt and Δyt denote inventories and change in inventories of High Frequency Traders for each second of a trading day; t = 0 corresponds to the opening of stock trading on the NYSE at 8:30:00 a.m. CT (9:30:00 ET) and t = 24, 300 denotes the close of Globex at 15:15:00 CT (4:15 p.m. ET); Δpt denotes the price change in index point units between the high-low midpoint of second t-1 and the high-low midpoint of second t. Regressing second-by-second changes in inventory levels of High Frequency Traders on the level of their inventories the previous second, the change in their inventory levels the previous second, the change in prices during the current second, and lagged price changes for each of the previous 20 previous seconds.)

for Passive and Aggressive inventory changes separately.

Untitled

Table above presents the regression results of the two components of change in holdings on lagged inventory, lagged change in holdings and lagged price changes over one second intervals. Panel A and Panel B report the results for May 3-5 and May 6, respectively. Each panel has four columns, reporting estimated coefficients where the dependent variables are net Aggressive volume (Aggressive buys minus Aggressive sells) by High Frequency Traders (∆AHFT), net Passive volume by High Frequency Traders (∆PHFT), net Aggressive volume by Market Makers (∆AMM), and net Passive volume by Market Makers (∆PMM).

We observe that for lagged inventories (NPHFTt−1), the estimated coefficients for Aggressive and Passive trades by High Frequency Traders are δAHFT = −0.005 (t = −9.55) and δPHFT = −0.001 (t = −3.13), respectively. These coefficient estimates have the interpretation that High Frequency Traders use Aggressive trades to liquidate inventories more intensively than passive trades. In contrast, the results for Market Makers are very different. For lagged inventories (NPMMt−1), the estimated coefficients for Aggressive and Passive volume by Market Makers are δAMM = −0.002 (t = −6.73) and δPMM = −0.002 (t = −5.26), respectively. The similarity of these coefficients estimates has the interpretation that Market Makers favor neither Aggressive trades nor Passive trades when liquidating inventories.

For contemporaneous price changes (in the current second) (∆Pt−1), the estimated coefficient Aggressive and Passive volume by High Frequency Traders are β0 = 57.78 (t = 31.94) and β0 = −25.69 (t = −28.61), respectively. For Market Makers, the estimated coefficients for Aggressive and Passive trades are β0 = 6.38 (t = 18.51) and β0 = −19.92 (t = −37.68). These estimated coefficients have the interpretation that in seconds in which prices move up one tick, High Frequency traders are net buyers of about 58 contracts with Aggressive trades and net sellers of about 26 contracts with Passive trades in that same second, while Market Makers are net buyers of about 6 contracts with Aggressive trades and net sellers of about 20 contracts with Passive trades. High Frequency Traders and Market Makers are similar in that they both use Aggressive trades to trade in the direction of price changes, and both use Passive trades to trade against the direction of price changes. High Frequency Traders and Market Makers are different in that Aggressive net purchases by High Frequency Traders are greater in magnitude than the Passive net purchases, while the reverse is true for Market Makers.

For lagged price changes, coefficient estimates for Aggressive trades by High Frequency Traders and Market Makers are positive and statistically significant at lags 1-4 and lags 1-10, respectively. These results have the interpretation that both High Frequency Traders’ and Market Makers’ trade on recent price momentum, but the trading is compressed into a shorter time frame for High Frequency Traders than for Market Makers.

For lagged price changes, coefficient estimates for Passive volume by High Frequency Traders and Market Makers are negative and statistically significant at lags 1 and lags 1-3, respectively. Panel B of Table presents results for May 6. Similar to May 3-5, High Frequency Traders tend to use Aggressive trades more intensely than Passive trades to liquidate inventories, while Market Makers do not show this pattern. Also similar to May 3-5, High Frequency Trades and Market makers use Aggressive trades to trade in the contemporaneous direction of price changes and use Passive trades to trade in the direction opposite price changes, with Aggressive trading greater than Passive trading for High Frequency Traders and the reverse for Market Makers. In comparison with May 3-5, the coefficients are smaller in magnitude on May 6, indicating reduced liquidity at each tick. For lagged price changes, the coefficients associated with Aggressive trading by High Frequency Traders change from positive to negative at lags 1-4, and the positive coefficients associated with Aggressive trading by Market Makers change from being positive and statistically significant at lags lags 1-10 to being positive and statistically significant only at lags 1-3. These results illustrate accelerated trading velocity in the volatile market conditions of May 6.

We further examine how high frequency trading activity is related to market prices. Figure below illustrates how prices change after HFT trading activity in a given second. The upper-left panel presents results for buy trades for May 3-5, the upper right panel presents results for buy trades on May 6, and the lower-left and lower-right present corresponding results for sell trades. For an “event” second in which High Frequency Traders are net buyers, net Aggressive Buyers, and net Passive Buyers value-weighted average prices paid by the High Frequency Traders in that second are subtracted from the value-weighted average prices for all trades in the same second and each of the following 20 seconds. The results are averaged across event seconds, weighted by the magnitude of High Frequency Traders’ net position change in the event second. The upper-left panel presents results for May 3-5, the upper-right panel presents results for May 6, and the lower two panels present results for sell trades calculated analogously. Price differences on the vertical axis are scaled so that one unit equals one tick ($12.50 per contract).

Untitled 2

When High Frequency Traders are net buyers on May 3-5, prices rise by 17% of a tick in the next second. When HFTs execute Aggressively or Passively, prices rise by 20% and 2% of a tick in the next second, respectively. In subsequent seconds, prices in all cases trend downward by about 5% of a tick over the subsequent 19 seconds. For May 3-5, the results are almost symmetric for selling.

When High Frequency Traders are buying on May 6, prices increase by 7% of a tick in the next second. When they are aggressive buyers or passive buyers, prices increase by increase 25% of a tick or decrease by 5% of a tick in the next second, respectively. In subsequent seconds, prices generally tend to drift downwards. The downward drift is especially pronounced after Passive buying, consistent with the interpretation that High Frequency Traders were “run over” when their resting limit buy orders were “run over” in the down phase of the Flash Crash. When High Frequency Traders are net sellers, the results after one second are analogous to buying. After aggressive selling, prices continue to drift down for 20 seconds, consistent with the interpretation that High Frequency Traders made profits from Aggressive sales during the down phase of the Flash Crash.

Testing Hypothesis H3. Both HFTs and Market Makers scratch trades; HFTs scratch more. A textbook market maker will try to buy at the bid price, sell at the offer price, and capture the bid-ask spread as a profit. Sometimes, after buying at the bid price, market prices begin to fall before the market maker can make a one tick profit by selling his inventory at the best offer price. To avoid taking losses in this situation, one component of a traditional market making strategy is to “scratch trades in the presence of changing market conditions by quickly liquidating a position at the same price at which it was acquired. These scratched trades represent inventory management trades designed to lower the cost of adverse selection. Since many competing market makers may try to scratch trades at the same time, traders with the lowest latency will tend to be more successful in their attempts to scratch trades and thus more successful in their ability to avoid losses when market conditions change.

To examine whether and to what extent traders engage in trade scratching, we sequence each trader’s trades for the day using audit trail sequence numbers which not only sort trades by second but also sort trades chronologically within each second. We define an “immediately scratched trade” as a trade with the properties that the next trade in the sorted sequence (1) occurred in the same second, (2) was executed at the same price, (3) was in the opposite direction, i.e., buy followed by sell or sell followed by buy. For each of the trading accounts in our sample, we calculate the number of immediately scratched trades, then compare the number of scratched trades across the six trader categories.

The results of this analysis are presented in the table below. Panel A provides results for May 3-5 and panel B for May 6. In each panel, there are five rows of data, one for each trader category. The first three columns report the total number of trades, the total number of immediately scratched trades, and the percentage of trades that are immediately scratched by traders in five categories. For May 3-6, the reported numbers are from the pooled data.

Untitled 2

This table presents statistics for immediate trade scratching which measures how many times a trader changes his/her direction of trading in a second aggregated over a day. We define a trade direction change as a buy trade right after a sell trade or vice versa at the same price level in the same second.

This table shows that High Frequency Traders scratched 2.84 % of trades on May 3-5 and 4.26 % on May 6; Market Makers scratched 2.49 % of trades on May 3-5 and 5.53 % of trades on May 6. While the percentages of immediately scratched trades by Market Makers is slightly higher than that for High Frequency Traders on May 6, the percentages for both groups are very similar. The fourth, fifth, and sixth columns of the Table report the mean, standard deviation, and median of the number of scratched trades for the traders in each category.

Although the percentages of scratched trades are similar, the mean number of immediately scratched trades by High Frequency Traders is much greater than for Market Makers: 540.56 per day on May 3-5 and 1610.75 on May 6 for High Frequency Traders versus 13.35 and 72.92 for Market Makers. The differences between High Frequency Traders and Market Makers reflect differences in volume traded. The Table shows that High Frequency Traders and Market Makers scratch a significantly larger percentage of their trades than other trader categories.