Extreme Value Theory

1469941517622

Standard estimators of the dependence between assets are the correlation coefficient or the Spearman’s rank correlation for instance. However, as stressed by [Embrechts et al. ], these kind of dependence measures suffer from many deficiencies. Moreoever, their values are mostly controlled by relatively small moves of the asset prices around their mean. To cure this problem, it has been proposed to use the correlation coefficients conditioned on large movements of the assets. But [Boyer et al.] have emphasized that this approach suffers also from a severe systematic bias leading to spurious strategies: the conditional correlation in general evolves with time even when the true non-conditional correlation remains constant. In fact, [Malevergne and Sornette] have shown that any approach based on conditional dependence measures implies a spurious change of the intrinsic value of the dependence, measured for instance by copulas. Recall that the copula of several random variables is the (unique) function which completely embodies the dependence between these variables, irrespective of their marginal behavior (see [Nelsen] for a mathematical description of the notion of copula).

In view of these limitations of the standard statistical tools, it is natural to turn to extreme value theory. In the univariate case, extreme value theory is very useful and provides many tools for investigating the extreme tails of distributions of assets returns. These new developments rest on the existence of a few fundamental results on extremes, such as the Gnedenko-Pickands-Balkema-de Haan theorem which gives a general expression for the distribution of exceedence over a large threshold. In this framework, the study of large and extreme co-movements requires the multivariate extreme values theory, which unfortunately does not provide strong results. Indeed, in constrast with the univariate case, the class of limiting extreme-value distributions is too broad and cannot be used to constrain accurately the distribution of large co-movements.

In the spirit of the mean-variance portfolio or of utility theory which establish an investment decision on a unique risk measure, we use the coefficient of tail dependence, which, to our knowledge, was first introduced in the financial context by [Embrechts et al.]. The coefficient of tail dependence between assets Xi and Xj is a very natural and easy to understand measure of extreme co-movements. It is defined as the probability that the asset Xi incurs a large loss (or gain) assuming that the asset Xj also undergoes a large loss (or gain) at the same probability level, in the limit where this probability level explores the extreme tails of the distribution of returns of the two assets. Mathematically speaking, the coefficient of lower tail dependence between the two assets Xi and Xj , denoted by λ−ij is defined by

λ−ij = limu→0 Pr{Xi<Fi−1(u)|Xj < Fj−1(u)} —– (1)

where Fi−1(u) and Fj−1(u) represent the quantiles of assets Xand Xj at level u. Similarly the coefficient of the upper tail dependence is

λ+ij = limu→1 Pr{Xi > Fi−1(u)|Xj > Fj−1(u)} —– (2)

λ−ij and λ+ij are of concern to investors with long (respectively short) positions. We refer to [Coles et al.] and references therein for a survey of the properties of the coefficient of tail dependence. Let us stress that the use of quantiles in the definition of λ−ij and λ+ij makes them independent of the marginal distribution of the asset returns: as a consequence, the tail dependence parameters are intrinsic dependence measures. The obvious gain is an “orthogonal” decomposition of the risks into (1) individual risks carried by the marginal distribution of each asset and (2) their collective risk described by their dependence structure or copula.

Being a probability, the coefficient of tail dependence varies between 0 and 1. A large value of λ−ij means that large losses occur almost surely together. Then, large risks can not be diversified away and the assets crash together. This investor and portfolio manager nightmare is further amplified in real life situations by the limited liquidity of markets. When λ−ij vanishes, these assets are said to be asymptotically independent, but this term hides the subtlety that the assets can still present a non-zero dependence in their tails. For instance, two normally distributed assets can be shown to have a vanishing coefficient of tail dependence. Nevertheless, unless their correlation coefficient is identically zero, these assets are never independent. Thus, asymptotic independence must be understood as the weakest dependence which can be quantified by the coefficient of tail dependence.

For practical implementations, a direct application of the definitions (1) and (2) fails to provide reasonable estimations due to the double curse of dimensionality and undersampling of extreme values, so that a fully non-parametric approach is not reliable. It turns out to be possible to circumvent this fundamental difficulty by considering the general class of factor models, which are among the most widespread and versatile models in finance. They come in two classes: multiplicative and additive factor models respectively. The multiplicative factor models are generally used to model asset fluctuations due to an underlying stochastic volatility for a survey of the properties of these models). The additive factor models are made to relate asset fluctuations to market fluctuations, as in the Capital Asset Pricing Model (CAPM) and its generalizations, or to any set of common factors as in Arbitrage Pricing Theory. The coefficient of tail dependence is known in close form for both classes of factor models, which allows for an efficient empirical estimation.

Advertisement

What’s a Market Password Anyway? Towards Defining a Financial Market Random Sequence. Note Quote.

From the point of view of cryptanalysis, the algorithmic view based on frequency analysis may be taken as a hacker approach to the financial market. While the goal is clearly to find a sort of password unveiling the rules governing the price changes, what we claim is that the password may not be immune to a frequency analysis attack, because it is not the result of a true random process but rather the consequence of the application of a set of (mostly simple) rules. Yet that doesn’t mean one can crack the market once and for all, since for our system to find the said password it would have to outperform the unfolding processes affecting the market – which, as Wolfram’s PCE suggests, would require at least the same computational sophistication as the market itself, with at least one variable modelling the information being assimilated into prices by the market at any given moment. In other words, the market password is partially safe not because of the complexity of the password itself but because it reacts to the cracking method.

Figure-6-By-Extracting-a-Normal-Distribution-from-the-Market-Distribution-the-Long-Tail

Whichever kind of financial instrument one looks at, the sequences of prices at successive times show some overall trends and varying amounts of apparent randomness. However, despite the fact that there is no contingent necessity of true randomness behind the market, it can certainly look that way to anyone ignoring the generative processes, anyone unable to see what other, non-random signals may be driving market movements.

Von Mises’ approach to the definition of a random sequence, which seemed at the time of its formulation to be quite problematic, contained some of the basics of the modern approach adopted by Per Martin-Löf. It is during this time that the Keynesian kind of induction may have been resorted to as a starting point for Solomonoff’s seminal work (1 and 2) on algorithmic probability.

Per Martin-Löf gave the first suitable definition of a random sequence. Intuitively, an algorithmically random sequence (or random sequence) is an infinite sequence of binary digits that appears random to any algorithm. This contrasts with the idea of randomness in probability. In that theory, no particular element of a sample space can be said to be random. Martin-Löf randomness has since been shown to admit several equivalent characterisations in terms of compression, statistical tests, and gambling strategies.

The predictive aim of economics is actually profoundly related to the concept of predicting and betting. Imagine a random walk that goes up, down, left or right by one, with each step having the same probability. If the expected time at which the walk ends is finite, predicting that the expected stop position is equal to the initial position, it is called a martingale. This is because the chances of going up, down, left or right, are the same, so that one ends up close to one’s starting position,if not exactly at that position. In economics, this can be translated into a trader’s experience. The conditional expected assets of a trader are equal to his present assets if a sequence of events is truly random.

If market price differences accumulated in a normal distribution, a rounding would produce sequences of 0 differences only. The mean and the standard deviation of the market distribution are used to create a normal distribution, which is then subtracted from the market distribution.

Schnorr provided another equivalent definition in terms of martingales. The martingale characterisation of randomness says that no betting strategy implementable by any computer (even in the weak sense of constructive strategies, which are not necessarily computable) can make money betting on a random sequence. In a true random memoryless market, no betting strategy can improve the expected winnings, nor can any option cover the risks in the long term.

Over the last few decades, several systems have shifted towards ever greater levels of complexity and information density. The result has been a shift towards Paretian outcomes, particularly within any event that contains a high percentage of informational content, i.e. when one plots the frequency rank of words contained in a large corpus of text data versus the number of occurrences or actual frequencies, Zipf showed that one obtains a power-law distribution

Departures from normality could be accounted for by the algorithmic component acting in the market, as is consonant with some empirical observations and common assumptions in economics, such as rule-based markets and agents. The paper.