Super-Poincaré Algebra: Is There a Case for Nontrivial Geometry in the Bosonic Sector?


In one dimension there is no Lorentz group and therefore all bosonic and fermionic fields have no space-time indices. The simplest free action for one bosonic field φ and one fermionic field ψ reads

S = γ∫dt [φ.2 – i/2ψψ.] —– (1)

We treat the scalar field as dimensionless and assign dimension cm−1/2 to fermions. Therefore, all our actions will contain the parameter γ with the dimension [γ] = cm. (1) provides the first example of a supersymmetric invariant action and is invariant w.r.t. the following transformations:

δφ = −iεψ, δψ = −εφ ̇ —– (2)

The infinitesimal parameter ε anticommutes with fermionic fields and with itself. What is really important about transformations (2) is their commutator

δ2δ1φ = δ2(−ε1ψ) = iε1ε2φ ̇

δ1δ2φ = iε2ε1φ ̇ ⇒ [δ2, δ1] φ = 2iε1ε2φ ̇ —– (3)

Thus, from (3) we may see the main property of supersymmetry transformations: they commute on translations. In our simplest one-dimensional framework this is the time translation. This property has the followin form in terms of the supersymmetry generator Q:

{Q, Q} = −2P —– (4)

The anticommutator (4), together with

[Q, P] = 0 —– (5)

describe N = 1 super-Poincaré algebra in d = 1. The structure of N-extended super-Poincaré algebra includes N real super-charges QA , A = 1, . . . , N with the following anti commutators:

{QA, QB} = −2δABP, [QA, P] = 0 —– (6)

Let us stress that the reality of the supercharges is very important, as well as having the same sign in the r.h.s. of QA, QB ∀ QA.

From (2) we see that the minimal N = 1 supermultiplet includes one bosonic and one fermionic field. A natural question arises: how many components do we need, in order to realize the N-extended superalgebra (6)? In order to mimic the transformations (2) for all N supertranslations

δφi = −iεA(LA)i ψ, δψ = −εA (RA)iφ ̇i —– (7)

Here the indices i = 1,…,db and iˆ = 1,…,df count the numbers of bosonic and fermionic components, while (LA)i and (RA)i are N arbitrary, for the time being, matrices. The additional conditions one should impose on the transformations (7) are

  • they should form the N-extended superalgebra (6)
  • they should leave invariant the free action constructed from the involved fields.

When N > 8 the minimal dimension of the supermultiplets rapidly increases and the analysis of the corresponding theories becomes very complicated. For many reasons, the most interesting case seems to be the N = 8 supersymmetric mechanics. Being the highest N case of minimal N-extended supersymmetric mechanics admitting realization on N bosons (physical and auxiliary) and N fermions, the systems with eight supercharges are the highest N ones, among the extended supersymmetric systems, which still possess a nontrivial geometry in the bosonic sector. When the number of supercharges exceeds 8, the target spaces are restricted to be symmetric spaces.

Spinorial Algebra


Superspace is to supersymmetry as Minkowski space is to the Lorentz group. Superspace provides the most natural geometrical setting in which to describe supersymmetrical theories. Almost no physicist would utilize the component of Lorentz four-vectors or higher rank tensor to describe relativistic physics.

In a field theory, boson and fermions are to be regarded as diffeomorphisms generating two different vector spaces; the supersymmetry generators are nothing but sets of linear maps between these spaces. We can thus include a supersymmetric theory in a more general geometrical framework defining the collection of diffeomorphisms,

φi : R → RdL, i = 1,…, dL —– (1)

ψαˆ : R → RdR, i = 1,…, dR —– (2)

where the one-dimensional dependence reminds us that we restrict our attention to mechanics. The free vector spaces generated by {φi}i=1dL and {ψαˆ}αˆdR are respectively VL and VR, isomorphic to RdL and RdR. For matrix representations in the following, the two integers are restricted to the case dL = dR = d. Four different linear mappings can act on VL and VR

ML : VL → VR, MR : VR → VL

UL : VL → VL, UR : VR → VR —– (3)

with linear map space dimensions

dimML = dimMR = dRdL = d2,

dimUL = dL2 = d2, dimUR = dR2 = d2 —– (4)

as a consequence of linearity. To relate this construction to a general real (≡ GR) algebraic structure of dimension d and rank N denoted by GR(d,N), two more requirements need to be added.

Defining the generators of GR(d,N) as the family of N + N linear maps

LI ∈ {ML}, I = 1,…, N

RK ∈ {MR}, K = 1,…, N —– (5)

such that ∀ I, K = 1,…, N, we have

LI ◦ RK + LK ◦ RI = −2δIKIVR

RI ◦ LK + RK ◦ LI = −2δIKIVL —– (6)

where IVL and IVR are identity maps on VL and VR. Equations (6) will later be embedded into a Clifford algebra but one point has to be emphasized, we are working with real objects.

After equipping VL and VR with euclidean inner products ⟨·,·⟩VL and ⟨·,·⟩VR, respectively, the generators satisfy the property

⟨φ, RI(ψ)⟩VL = −⟨LI(φ), ψ⟩VR, ∀ (φ, ψ) ∈ VL ⊕ VR —— (7)

This condition relates LI to the hermitian conjugate of RI, namely RI, defined as usual by

⟨φ, RI(ψ)⟩VL = ⟨RI(φ), ψ⟩VR —– (8)

such that

RI = RIt = −LI —– (9)

The role of {UL} and {UR} maps is to connect different representations once a set of generators defined by conditions (6) and (7) has been chosen. Notice that (RILJ)ij ∈ UL and (LIRJ)αˆβˆ ∈ UR. Let us consider A ∈ {UL} and B ∈ {UR} such that

A : φ → φ′ = Aφ

B : ψ → ψ′ = Bψ —– (10)

with Vas an example,

⟨φ, RI(ψ)⟩VL → ⟨Aφ, RI B(ψ)⟩VL

= ⟨φ,A RI B(ψ)⟩VL

= ⟨φ, RI (ψ)⟩VL —– (11)

so a change of representation transforms the generators in the following manner:


RI → RI = ARIB —– (12)

In general (6) and (7) do not identify a unique set of generators. Thus, an equivalence relation has to be defined on the space of possible sets of generators, say {LI, RI} ∼ {LI, RI} iff ∃ A ∈ {UL} and B ∈ {UR} such that L′ = BLIA and R′ = ARIB.

Moving on to how supersymmetry is born, we consider the manner in which algebraic derivations are defined by

δεφi = iεI(RI)iαˆψαˆ

δεψαˆ = −εI(LI)αˆiτφi —– (13)

where the real-valued fields {φi}i=1dL and {ψαˆ}αˆ=1dR can be interpreted as bosonic and fermionic respectively. The fermionic nature attributed to the VR elements implies that ML and MR generators, together with supersymmetry transformation parameters εI, anticommute among themselves. Introducing the dL + dR dimensional space VL ⊕ VR with vectors

Ψ = (ψ φ) —– (14)

(13) reads

δε(Ψ) = (iεRψ εL∂τφ) —– (15)

such that

ε1, δε2]Ψ = iε1Iε2J (RILJτφ LIRJτψ) – iε2Jε1I (RJLIτφ LJRIτψ) = – 2iε1Iε2IτΨ —– (16)

utilizing that we have classical anticommuting parameters and that (6) holds. From (16) it is clear that δε acts as a supersymmetry generator, so that we can set

δQΨ := δεΨ = iεIQIΨ —– (17)

which is equivalent to writing

δQφi = i(εIQIψ)i

δQψαˆ = i(εIQIφ)αˆ —– (18)


Q1 = (0LIH RI0) —– (19)

where H = i∂τ. As a consequence of (16) a familiar anticommutation relation appears

{QI, QJ} = − 2iδIJH —– (20)

confirming that we are about to recognize supersymmetry, and once this is achieved, we can associate to the algebraic derivations (13), the variations defining the scalar supermultiplets. However, the choice (13) is not unique, for this is where we could have a spinorial one,

δQξαˆ = εI(LI)αˆiFi

δQFi = − iεI(RI)iαˆτξαˆ —– (21)

Kant and Non-Euclidean Geometries. Thought of the Day 94.0


The argument that non-Euclidean geometries contradict Kant’s doctrine on the nature of space apparently goes back to Hermann Helmholtz and was retaken by several philosophers of science such as Hans Reichenbach (The Philosophy of Space and Time) who devoted much work to this subject. In a essay written in 1870, Helmholtz argued that the axioms of geometry are not a priori synthetic judgments (in the sense given by Kant), since they can be subjected to experiments. Given that Euclidian geometry is not the only possible geometry, as was believed in Kant’s time, it should be possible to determine by means of measurements whether, for instance, the sum of the three angles of a triangle is 180 degrees or whether two straight parallel lines always keep the same distance among them. If it were not the case, then it would have been demonstrated experimentally that space is not Euclidean. Thus the possibility of verifying the axioms of geometry would prove that they are empirical and not given a priori.

Helmholtz developed his own version of a non-Euclidean geometry on the basis of what he believed to be the fundamental condition for all geometries: “the possibility of figures moving without change of form or size”; without this possibility, it would be impossible to define what a measurement is. According to Helmholtz:

the axioms of geometry are not concerned with space-relations only but also at the same time with the mechanical deportment of solidest bodies in motion.

Nevertheless, he was aware that a strict Kantian might argue that the rigidity of bodies is an a priori property, but

then we should have to maintain that the axioms of geometry are not synthetic propositions… they would merely define what qualities and deportment a body must have to be recognized as rigid.

At this point, it is worth noticing that Helmholtz’s formulation of geometry is a rudimentary version of what was later developed as the theory of Lie groups. As for the transport of rigid bodies, it is well known that rigid motion cannot be defined in the framework of the theory of relativity: since there is no absolute simultaneity of events, it is impossible to move all parts of a material body in a coordinated and simultaneous way. What is defined as the length of a body depends on the reference frame from where it is observed. Thus, it is meaningless to invoke the rigidity of bodies as the basis of a geometry that pretend to describe the real world; it is only in the mathematical realm that the rigid displacement of a figure can be defined in terms of what mathematicians call a congruence.

Arguments similar to those of Helmholtz were given by Reichenbach in his intent to refute Kant’s doctrine on the nature of space and time. Essentially, the argument boils down to the following: Kant assumed that the axioms of geometry are given a priori and he only had classical geometry in mind, Einstein demonstrated that space is not Euclidean and that this could be verified empirically, ergo Kant was wrong. However, Kant did not state that space must be Euclidean; instead, he argued that it is a pure form of intuition. As such, space has no physical reality of its own, and therefore it is meaningless to ascribe physical properties to it. Actually, Kant never mentioned Euclid directly in his work, but he did refer many times to the physics of Newton, which is based on classical geometry. Kant had in mind the axioms of this geometry which is a most powerful tool of Newtonian mechanics. Actually, he did not even exclude the possibility of other geometries, as can be seen in his early speculations on the dimensionality of space.

The important point missed by Reichenbach is that Riemannian geometry is necessarily based on Euclidean geometry. More precisely, a Riemannian space must be considered as locally Euclidean in order to be able to define basic concepts such as distance and parallel transport; this is achieved by defining a flat tangent space at every point, and then extending all properties of this flat space to the globally curved space (Luther Pfahler Eisenhart Riemannian Geometry). To begin with, the structure of a Riemannian space is given by its metric tensor gμν from which the (differential) length is defined as ds2 = gμν dxμ dxν; but this is nothing less than a generalization of the usual Pythagoras theorem in Euclidean space. As for the fundamental concept of parallel transport, it is taken directly from its analogue in Euclidean space: it refers to the transport of abstract (not material, as Helmholtz believed) figures in such a space. Thus Riemann’s geometry cannot be free of synthetic a priori propositions because it is entirely based upon concepts such as length and congruence taken form Euclid. We may conclude that Euclids geometry is the condition of possibility for a more general geometry, such as Riemann’s, simply because it is the natural geometry adapted to our understanding; Kant would say that it is our form of grasping space intuitively. The possibility of constructing abstract spaces does not refute Kant’s thesis; on the contrary, it reinforces it.

Abstract Expressions of Time’s Modalities. Thought of the Day 21.0


According to Gregory Bateson,

What we mean by information — the elementary unit of information — is a difference which makes a difference, and it is able to make a difference because the neural pathways along which it travels and is continually transformed are themselves provided with energy. The pathways are ready to be triggered. We may even say that the question is already implicit in them.

In other words, we always need to know some second order logic, and presuppose a second order of “order” (cybernetics) usually shared within a distinct community, to realize what a certain claim, hypothesis or theory means. In Koichiro Matsuno’s opinion Bateson’s phrase

must be a prototypical example of second-order logic in that the difference appearing both in the subject and predicate can accept quantification. Most statements framed in second-order logic are not decidable. In order to make them decidable or meaningful, some qualifier needs to be used. A popular example of such a qualifier is a subjective observer. However, the point is that the subjective observer is not limited to Alice or Bob in the QBist parlance.

This is what is necessitated in order understand the different viewpoints in logic of mathematicians, physicists and philosophers in the dispute about the existence of time. An essential aspect of David Bohm‘s “implicate order” can be seen in the grammatical formulation of theses such as the law of motion:

While it is legitimate in its own light, the physical law of motion alone framed in eternal time referable in the present tense, whether in classical or quantum mechanics, is not competent enough to address how the now could be experienced. … Measurement differs from the physical law of motion as much as the now in experience differs from the present tense in description. The watershed separating between measurement and the law of motion is in the distinction between the now and the present tense. Measurement is thus subjective and agential in making a punctuation at the moment of now. (Matsuno)

The distinction between experiencing and capturing experience of time in terms of language is made explicit in Heidegger’s Being and Time

… by passing away constantly, time remains as time. To remain means: not to disappear, thus, to presence. Thus time is determined by a kind of Being. How, then, is Being supposed to be determined by time?

Koichiro Matsuno’s comment on this is:

Time passing away is an abstraction from accepting the distinction of the grammatical tenses, while time remaining as time refers to the temporality of the durable now prior to the abstraction of the tenses.

Therefore, when trying to understand the “local logics/phenomenologies” of the individual disciplines (mathematics physics, philosophy, etc., including their fields), one should be aware of the fact that the capabilities of our scientific language are not limitless:

…the now of the present moment is movable and dynamic in updating the present perfect tense in the present progressive tense. That is to say, the now is prior and all of the grammatical tenses including the ubiquitous present tense are the abstract derivatives from the durable now. (Matsuno)

This presupposes the adequacy of mathematical abstractions specifically invented or adopted and elaborated for the expression of more sophisticated modalities of time’s now than those currently used in such formalisms as temporal logic.

Vector Fields Tangent to the Surfaces of Foliation. Note Quote.


Although we are interested in gauge field theories, we will use mainly the language of mechanics that is, of a finite number of degrees of freedom, which is sufficient for our purposes. A quick switch to the field theory language can be achieved by using DeWitt’s condensed notation. Consider, as our starting point a time-independent first- order Lagrangian L(q, q ̇) defined in configuration-velocity space TQ, that is, the tangent bundle of some configuration manifold Q that we assume to be of dimension n. Gauge theories rely on singular as opposed to regular Lagrangians, that is, Lagrangians whose Hessian matrix with respect to the velocities (where q stands, in a free index notation, for local coordinates in Q),

Wij ≡ ∂2L/∂q.i∂q.j —– (1)

is not invertible. Two main consequences are drawn from this non-invertibility. First notice that the Euler-Lagrange equations of motion [L]i = 0, with

[L]i : = αi − Wijq ̈j


αi := ∂2L/∂q.i∂q.j q.j

cannot be written in a normal form, that is, isolating on one side the accelerations q ̈ = f (q, q ̇). This makes the usual theorems about the existence and uniqueness of solutions of ordinary differential equations inapplicable. Consequently, there may be points in the tangent bundle where there are no solutions passing through the point, and others where there is more than one solution.

The second consequence of the Hessian matrix being singular concerns the construction of the canonical formalism. The Legendre map from the tangent bundle TQ to the cotangent bundle —or phase space— T ∗Q (we use the notation pˆ(q, q ̇) := ∂L/∂q ̇),

FL : TQ → T ∗ Q —– (2)

(q, q ̇) → (q, p=pˆ) —– (3)

is no longer invertible because ∂pˆ/∂q ̇ = ∂L/∂q ̇∂q ̇ is the Hessian matrix. There appears then an issue about the projectability of structures from the tangent bundle to phase space: there will be functions defined on TQ that cannot be translated (projected) to functions on phase space. This feature of the formalisms propagates in a corresponding way to the tensor structures, forms, vector fields, etc.

In order to better identify the problem and to obtain the conditions of projectability, we must be more specific. We will make a single assumption, which is that the rank of the Hessian matrix is constant everywhere. If this condition is not satisfied throughout the whole tangent bundle, we will restrict our considerations to a region of it, with the same dimensionality, where this condition holds. So we are assuming that the rank of the Legendre map FL is constant throughout T Q and equal to, say, 2n − k. The image of FL will be locally defined by the vanishing of k independent functions, φμ(q, p), μ = 1, 2, .., k. These functions are the primary constraints, and their pullback FL ∗ φμ to the tangent bundle is identically zero:

(FL ∗ φμ)(q, q ̇) := φμ(q, pˆ) = 0, ∀ q, q ̇—– (4)

The primary constraints form a generating set of the ideal of functions that vanish on the image of the Legendre map. With their help it is easy to obtain a basis of null vectors for the Hessian matrix. Indeed, applying ∂/∂q. to (4) we get

Wij = (∂φμ/∂pj)|p=pˆ = 0, ∀ q, q ̇ —– (5)

With this result in hand, let us consider some geometrical aspects of the Legendre map. We already know that its image in T∗Q is given by the primary constraints’ surface. A foliation in TQ is also defined, with each element given as the inverse image of a point in the primary constraints’ surface in T∗Q. One can easily prove that the vector fields tangent to the surfaces of the foliation are generated by

Γμ= (∂φμ/∂pj)|p=pˆ = ∂/∂q.j —– (6)

The proof goes as follows. Consider two neighboring points in TQ belonging to the same sheet, (q, q ̇) and (q, q ̇ + δq ̇) (the configuration coordinates q must be the same because they are preserved by the Legendre map). Then, using the definition of the Legendre map, we must have pˆ(q, q ̇) = pˆ(q, q ̇ + δq ̇), which implies, expanding to first order,

∂pˆ/ ∂q ̇ δ q ̇ = 0

which identifies δq ̇ as a null vector of the Hessian matrix (here expressed as ∂pˆ/∂q ̇). Since we already know a basis for such null vectors, (∂φμ /∂pj)|p=pˆ, μ = 1, 2, …, k, it follows that the vector fields Γμ form a basis for the vector fields tangent to the foliation.

The knowledge of these vector fields is instrumental for addressing the issue of the projectability of structures. Consider a real-valued function fL: TQ → R. It will — locally— define a function fH: T∗Q −→ R iff it is constant on the sheets of the foliation, that is, when

ΓμfL = 0, μ = 1,2,…,k. (7)

Equation (7) is the projectability condition we were looking for. We express it in the following way:

ΓμfL = 0, μ = 1,2,…,k ⇔ there exists fH such that FL ∗ fH = fL

Automorphisms. Note Quote.


A group automorphism is an isomorphism from a group to itself. If G is a finite multiplicative group, an automorphism of G can be described as a way of rewriting its multiplication table without altering its pattern of repeated elements. For example, the multiplication table of the group of 4th roots of unity G={1,-1,i,-i} can be written as shown above, which means that the map defined by

 1|->1,    -1|->-1,    i|->-i,    -i|->i

is an automorphism of G.

Looking at classical geometry and mechanics, Weyl followed Newton and Helmholtz in considering congruence as the basic relation which lay at the heart of the “art of measuring” by the handling of that “sort of bodies we call rigid”. He explained how the local congruence relations established by the comparison of rigid bodies can be generalized and abstracted to congruences of the whole space. In this respect Weyl followed an empiricist approach to classical physical geometry, based on a theoretical extension of the material practice with rigid bodies and their motions. Even the mathematical abstraction to mappings of the whole space carried the mark of their empirical origin and was restricted to the group of proper congruences (orientation preserving isometries of Euclidean space, generated by the translations and rotations) denoted by him as ∆+. This group seems to express “an intrinsic structure of space itself; a structure stamped by space upon all the inhabitants of space”.

But already on the earlier level of physical knowledge, so Weyl argued, the mathematical automorphisms of space were larger than ∆. Even if one sees “with Newton, in congruence the one and only basic concept of geometry from which all others derive”, the group Γ of automorphisms in the mathematical sense turns out to be constituted by the similarities.

The structural condition for an automorphism C ∈ Γ of classical congruence geometry is that any pair (v1,v2) of congruent geometric configurations is transformed into another pair (v1*,v2*) of congruent configurations (vj* = C(vj), j = 1,2). For evaluating this property Weyl introduced the following diagram:


Because of the condition for automorphisms just mentioned the maps C T C-1 and C-1TC belong to ∆+ whenever T does. By this argument he showed that the mathematical automorphism group Γ is the normalizer of the congruences ∆+ in the group of bijective mappings of Euclidean space.

More generally, it also explains the reason for his characterization of generalized similarities in his analysis of the problem of space in the early 1920s. In 1918 he translated the relationship between physical equivalences as congruences to the mathematical automorphisms as the similarities/normalizer of the congruences from classical geometry to special relativity (Minkowski space) and “localized” them (in the sense of physics), i.e., he transferred the structural relationship to the infinitesimal neighbourhoods of the differentiable manifold characterizing spacetime (in more recent language, to the tangent spaces) and developed what later would be called Weylian manifolds, a generalization of Riemannian geometry. In his discussion of the problem of space he generalized the same relationship even further by allowing any (closed) sub-group of the general linear group as a candidate for characterizing generalized congruences at every point.

Moreover, Weyl argued that the enlargement of the physico-geometrical automorphisms of classical geometry (proper congruences) by the mathematical automorphisms (similarities) sheds light on Kant’s riddle of the “incongruous counterparts”. Weyl presented it as the question: Why are “incongruous counterparts” like the left and right hands intrinsically indiscernible, although they cannot be transformed into another by a proper motion? From his point of view the intrinsic indiscernibility could be characterized by the mathematical automorphisms Γ. Of course, the congruences ∆ including the reflections are part of the latter, ∆ ⊂ Γ; this implies indiscernibility between “left and right” as a special case. In this way Kant’s riddle was solved by a Leibnizian type of argument. Weyl very cautiously indicated a philosophical implication of this observation:

And he (Kant) is inclined to think that only transcendental idealism is able to solve this riddle. No doubt, the meaning of congruence and similarity is founded in spatial intuition. Kant seems to aim at some subtler point. But just this point is one which can be completely clarified by general concepts, namely by subsuming it under the general and typical group-theoretic situation explained before . . . .

Weyl stopped here without discussing the relationship between group theoretical methods and the “subtler point” Kant aimed at more explicitly. But we may read this remark as an indication that he considered his reflections on automorphism groups as a contribution to the transcendental analysis of the conceptual constitution of modern science. In his book on Symmetry, he went a tiny step further. Still with the Weylian restraint regarding the discussion of philosophical principles he stated: “As far as I see all a priori statements in physics have their origin in symmetry” (126).

To prepare for the following, Weyl specified the subgroup ∆o ⊂ ∆ with all those transformations that fix one point (∆o = O(3, R), the orthogonal group in 3 dimensions, R the field of real numbers). In passing he remarked:

In the four-dimensional world the Lorentz group takes the place of the orthogonal group. But here I shall restrict myself to the three-dimensional space, only occasionally pointing to the modifications, the inclusion of time into the four-dimensional world brings about.

Keeping this caveat in mind (restriction to three-dimensional space) Weyl characterized the “group of automorphisms of the physical world”, in the sense of classical physics (including quantum mechanics) by the combination (more technically, the semidirect product ̧) of translations and rotations, while the mathematical automorphisms arise from a normal extension:

– physical automorphisms ∆ ≅ R3 X| ∆o with ∆o ≅ O(3), respectively ∆ ≅ R4 X| ∆o for the Lorentz group ∆o ≅ O(1, 3),

– mathematical automorphisms Γ = R+ X ∆
(R+ the positive real numbers with multiplication).

In Weyl’s view the difference between mathematical and physical automorphisms established a fundamental distinction between mathematical geometry and physics.

Congruence, or physical equivalence, is a geometric concept, the meaning of which refers to the laws of physical phenomena; the congruence group ∆ is essentially the group of physical automorphisms. If we interpret geometry as an abstract science dealing with such relations and such relations only as can be logically defined in terms of the one concept of congruence, then the group of geometric automorphisms is the normalizer of ∆ and hence wider than ∆.

He considered this as a striking argument against what he considered to be the Cartesian program of a reductionist geometrization of physics (physics as the science of res extensa):

According to this conception, Descartes’s program of reducing physics to geometry would involve a vicious circle, and the fact that the group of geometric automorphisms is wider than that of physical automorphisms would show that such a reduction is actually impossible.” 

In this Weyl alluded to an illusion he himself had shared for a short time as a young scientist. After the creation of his gauge geometry in 1918 and the proposal of a geometrically unified field theory of electromagnetism and gravity he believed, for a short while, to have achieved a complete geometrization of physics.

He gave up this illusion in the middle of the 1920s under the impression of the rising quantum mechanics. In his own contribution to the new quantum mechanics groups and their linear representations played a crucial role. In this respect the mathematical automorphisms of geometry and the physical automorphisms “of Nature”, or more precisely the automorphisms of physical systems, moved even further apart, because now the physical automorphism started to take non-geometrical material degrees of freedom into account (phase symmetry of wave functions and, already earlier, the permutation symmetries of n-particle systems).

But already during the 19th century the physical automorphism group had acquired a far deeper aspect than that of the mobility of rigid bodies:

In physics we have to consider not only points but many types of physical quantities such as velocity, force, electromagnetic field strength, etc. . . .

All these quantities can be represented, relative to a Cartesian frame, by sets of numbers such that any orthogonal transformation T performed on the coordinates keeps the basic physical relations, the physical laws, invariant. Weyl accordingly stated:

All the laws of nature are invariant under the transformations thus induced by the group ∆. Thus physical relativity can be completely described by means of a group of transformations of space-points.

By this argumentation Weyl described a deep shift which ocurred in the late 19th century for the understanding of physics. He described it as an extension of the group of physical automorphisms. The laws of physics (“basic relations” in his more abstract terminology above) could no longer be directly characterized by the motion of rigid bodies because the physics of fields, in particular of electric and magnetic fields, had become central. In this context, the motions of material bodies lost their epistemological primary status and the physical automorphisms acquired a more abstract character, although they were still completely characterizable in geometric terms, by the full group of Euclidean isometries. The indistinguishability of left and right, observed already in clear terms by Kant, acquired the status of a physical symmetry in electromagnetism and in crystallography.

Weyl thus insisted that in classical physics the physical automorphisms could be characterized by the group ∆ of Euclidean isometries, larger than the physical congruences (proper motions) ∆+ but smaller than the mathe- matical automorphisms (similarities) Γ.

This view fitted well to insights which Weyl drew from recent developments in quantum physics. He insisted – differently to what he had thought in 1918 – on the consequence that “length is not relative but absolute” (Hs, p. 15). He argued that physical length measurements were no longer dependent on an arbitrary chosen unit, like in Euclidean geometry. An “absolute standard of length” could be fixed by the quantum mechanical laws of the atomic shell:

The atomic constants of charge and mass of the electron atomic constants and Planck’s quantum of action h, which enter the universal field laws of nature, fix an absolute standard of length, that through the wave lengths of spectral lines is made available for practical measurements.


The main insight that Poincaré brought to mechanics was to view the temporal behavior of a system as a succession of configurations in a state space. The most important consequence was his focus on the geometric and topological structure of the allowed states. Due to its geometric character, the approach he introduced has a kind of universality built in. Previously one would say that two systems are obviously different because their behavior is governed by different physical forces and constraints and because they are composed of different materials. Moreover, if their equations of motion, summarizing how the systems react and change state over time, are different, then their behavior is different.

To be concrete let’s take a driven pendulum and a superconducting Josephson junction in a microwave field. These are physical systems that are different in just these ways. One is made out of a stiff wood rod and a heavy weight, say; the other consists of a loop of superconducting metal and operates near absolute zero temperature. The pendulum’s state is given by the position and velocity of the weight; the Josephson junction’s state is determined by the flow of tunneling quantum mechanical electrons.


In constrast to this notion of apparent difference, Poincaré’s view ignores the particular form of the governing equations, even forgets what the underlying variables mean, and instead just looks at the set of states and how a system moves through them. In this view, two systems, like the pendulum and Josephson junction, are the same if they have the same geometric structures in their state spaces. In fact, the pendulum and Josephson junction both exhibit the period-doubling route to chaos and so are very, very similar systems despite their initial superficial dissimilarity. In particular, the mechanisms that produce the period-doubling behavior and eventual deterministic chaos are the same in both. This type of universality allows one to understand the behavior and dynamics of systems in very many different branches of science within a unified framework. Poincaré’s approach gives a precise way for us to say how two systems are qualitatively the same.

Roughly speaking, a bifurcation is a qualitative change in an attractor’s structure as a control parameter is smoothly varied. For example, a simple equilibrium, or fixed point attractor, might give way to a periodic oscillation as the stress on a system increases. Similarly, a periodic attractor might become unstable and be replaced by a chaotic attractor.


In Benard convection, to take a real world example, heat from the surface of the earth simply conducts its way to the top of the atmosphere until the rate of heat generation at the surface of the earth gets too high. At this point heat conduction breaks down and bodily motion of the air (wind!) sets in. The atmosphere develops pairs of convection cells, one rotating left and the other rotating right. In a dripping faucet at low pressure, drops come off the faucet with equal timing between them. As the pressure is increased the drops begin to fall with two drops falling close together, then a longer wait, then two drops falling close together again. In this case, a simple periodic process has given way to a periodic process with twice the period, a process described as “period doubling”. If the flow rate of water through the faucet is increased further, often an irregular dripping is found and the behavior can become chaotic.