A Sheaf of Modules is a Geometric Generalization of a Module over a Ring – A Case Derivative of Abelian Closure

Untitled

A coherent sheaf is a generalization of, on the one hand, a module over a ring, and on the other hand, a vector bundle over a manifold. Indeed, the category of coherent sheaves is the “abelian closure” of the category of vector bundles on a variety.

Given a field which we always take to be the field of complex numbers C, an affine algebraic variety X is the vanishing locus

X = 􏰐(x1,…, xn) : fi(x1,…, xn) = 0􏰑 ⊂ An

of a set of polynomials fi(x1,…, xn) in affine space An with coordinates x1,…, xn. Associated to an affine variety is the ring A = C[X] of its regular functions, which is simply the ring C[x1,…, xn] modulo the ideal ⟨fi⟩ of the defining polynomials. Closed subvarieties Z of X are defined by the vanishing of further polynomials and open subvarieties U = X \ Z are the complements of closed ones; this defines the Zariski topology on X. The Zariski topology is not to be confused with the complex topology, which comes from the classical (Euclidean) topology of Cn defined using complex balls; every Zariski open set is also open in the complex topology, but the converse is very far from being true. For example, the complex topology of A1 is simply that of C, whereas in the Zariski topology, the only closed sets are A1 itself and finite point sets.

Projective varieties X ⊂ Pn are defined similarly. Projective space Pn is the set of lines in An+1 through the origin; an explicit coordinatization is by (n + 1)-tuples

(x0,…, xn) ∈ Cn+1 \ {0,…,0}

identified under the equivalence relation

(x0,…, xn) ∼ (λx0,…, λxn) for λ ∈ C

Projective space can be decomposed into a union of (n + 1) affine pieces (An)i = 􏰐[x0,…, xn] : xi ≠ 0􏰑 with n affine coordinates yj = xj/xi. A projective variety X is the locus of common zeros of a set {fi(x1,…, xn)} of homogeneous polynomials. The Zariski topology is again defined by choosing for closed sets the loci of vanishing of further homogeneous polynomials in the coordinates {xi}. The variety X is covered by the standard open sets Xi = X ∩ (An)i ⊂ X, which are themselves affine varieties. A variety􏰭 X is understood as a topological space with a finite open covering X = ∪i Ui, where every open piece Ui ⊂ An is an affine variety with ring of global functions Ai = C[Ui]; further, the pieces Ui are glued together by regular functions defined on open subsets. The topology on X is still referred to as the Zariski topology. X also carries the complex topology, which again has many more open sets.

Given affine varieties X ⊂ An, Y ⊂ Am, a morphism f : X → Y is given by an m-tuple of polynomials {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)} satisfying the defining relations of Y. Morphisms on projective varieties are defined similarly, using homogeneous polynomials of the same degree. Morphisms on general varieties are defined as morphisms on their affine pieces, which glue together in a compatible way.

If X is a variety, points P ∈ X are either singular or nonsingular. This is a local notion, and hence, it suffices to define a nonsingular point on an affine piece Ui ⊂ An. A point P ∈ Ui is nonsingular if, locally in the complex topology, a neighbourhood of P ∈ Ui is a complex submanifold of Cn.

The motivating example of a coherent sheaf of modules on an algebraic variety X is the structure sheaf or sheaf of regular functions OX. This is a gadget with the following properties:

  1. On every open set U ⊂ X, we are given an abelian group (or even a commutative ring) denoted OX(U), also written Γ(U, OX), the ring of regular functions on U.
  2. Restriction: if V ⊂ U is an open subset, a restriction map resUV : OX(U) → OX(V) is defined, which simply associates to every regular function f defined over U, the restriction of this function to V. If W ⊂ V ⊂ U are open sets, then the restriction maps clearly satisfy resUW = resVW ◦ resUV.
  3. Sheaf Property: suppose that an open subset U ⊂ X is covered by a collection of open subsets {Ui}, and suppose that a set of regular functions fi ∈ OX(Ui) is given such that whenever Ui and Uj intersect, then the restrictions of fi and fj to Ui ∩ Uj agree. Then there is a unique function f ∈ OX(U) whose restriction to Ui is fi.

In other words, the sheaf of regular functions consists of the collection of regular functions on open sets, together with the obvious restriction maps for open subsets; moreover, this data satisfies the Sheaf Property, which says that local functions, agreeing on overlaps, glue in a unique way to a global function on U.

A sheaf F on the algebraic variety X is a gadget satisfying the same formal properties; namely, it is defined by a collection {F(U)} of abelian groups on open sets, called sections of F over U, together with a compatible system of restriction maps on sections resUV : F(U) → F(V) for V ⊂ U, so that the Sheaf Property is satisfied: sections are locally defined just as regular functions are. But, what of sheaves of OX-modules? The extra requirement is that the sections F(U) over an open set U form a module over the ring of regular functions OX(U), and all restriction maps are compatible with the module structures. In other words, we multiply local sections by local functions, so that multiplication respects restriction. A sheaf of OX-modules is defined by the data of an A-module for every open subset U ⊂ X with ring of functions A = OX(U), so that these modules are glued together compatibly with the way the open sets glue. Hence, a sheaf of modules is indeed a geometric generalization of a module over a ring.

Morphism of Complexes Induces Corresponding Morphisms on Cohomology Objects – Thought of the Day 146.0

Let A = Mod(R) be an abelian category. A complex in A is a sequence of objects and morphisms in A

… → Mi-1 →di-1 Mi →di → Mi+1 → …

such that di ◦ di-1 = 0 ∀ i. We denote such a complex by M.

A morphism of complexes f : M → N is a sequence of morphisms fi : Mi → Ni in A, making the following diagram commute, where diM, diN denote the respective differentials:

Untitled

We let C(A) denote the category whose objects are complexes in A and whose morphisms are morphisms of complexes.

Given a complex M of objects of A, the ith cohomology object is the quotient

Hi(M) = ker(di)/im(di−1)

This operation of taking cohomology at the ith place defines a functor

Hi(−) : C(A) → A,

since a morphism of complexes induces corresponding morphisms on cohomology objects.

Put another way, an object of C(A) is a Z-graded object

M = ⊕i Mi

of A, equipped with a differential, in other words an endomorphism d: M → M satisfying d2 = 0. The occurrence of differential graded objects in physics is well-known. In mathematics they are also extremely common. In topology one associates to a space X a complex of free abelian groups whose cohomology objects are the cohomology groups of X. In algebra it is often convenient to replace a module over a ring by resolutions of various kinds.

A topological space X may have many triangulations and these lead to different chain complexes. Associating to X a unique equivalence class of complexes, resolutions of a fixed module of a given type will not usually be unique and one would like to consider all these resolutions on an equal footing.

A morphism of complexes f: M → N is a quasi-isomorphism if the induced morphisms on cohomology

Hi(f): Hi(M) → Hi(N) are isomorphisms ∀ i.

Two complexes M and N are said to be quasi-isomorphic if they are related by a chain of quasi-isomorphisms. In fact, it is sufficient to consider chains of length one, so that two complexes M and N are quasi-isomorphic iff there are quasi-isomorphisms

M ← P → N

For example, the chain complex of a topological space is well-defined up to quasi-isomorphism because any two triangulations have a common resolution. Similarly, all possible resolutions of a given module are quasi-isomorphic. Indeed, if

0 → S →f M0 →d0 M1 →d1 M2 → …

is a resolution of a module S, then by definition the morphism of complexes

Untitled

is a quasi-isomorphism.

The objects of the derived category D(A) of our abelian category A will just be complexes of objects of A, but morphisms will be such that quasi-isomorphic complexes become isomorphic in D(A). In fact we can formally invert the quasi-isomorphisms in C(A) as follows:

There is a category D(A) and a functor Q: C(A) → D(A)

with the following two properties:

(a) Q inverts quasi-isomorphisms: if s: a → b is a quasi-isomorphism, then Q(s): Q(a) → Q(b) is an isomorphism.

(b) Q is universal with this property: if Q′ : C(A) → D′ is another functor which inverts quasi-isomorphisms, then there is a functor F : D(A) → D′ and an isomorphism of functors Q′ ≅ F ◦ Q.

First, consider the category C(A) as an oriented graph Γ, with the objects lying at the vertices and the morphisms being directed edges. Let Γ∗ be the graph obtained from Γ by adding in one extra edge s−1: b → a for each quasi-isomorphism s: a → b. Thus a finite path in Γ∗ is a sequence of the form f1 · f2 ·· · ·· fr−1 · fr where each fi is either a morphism of C(A), or is of the form s−1 for some quasi-isomorphism s of C(A). There is a unique minimal equivalence relation ∼ on the set of finite paths in Γ∗ generated by the following relations:

(a) s · s−1 ∼ idb and s−1 · s ∼ ida for each quasi-isomorphism s: a → b in C(A).

(b) g · f ∼ g ◦ f for composable morphisms f: a → b and g: b → c of C(A).

Define D(A) to be the category whose objects are the vertices of Γ∗ (these are the same as the objects of C(A)) and whose morphisms are given by equivalence classes of finite paths in Γ∗. Define a functor Q: C(A) → D(A) by using the identity morphism on objects, and by sending a morphism f of C(A) to the length one path in Γ∗ defined by f. The resulting functor Q satisfies the conditions of the above lemma.

The second property ensures that the category D(A) of the Lemma is unique up to equivalence of categories. We define the derived category of A to be any of these equivalent categories. The functor Q: C(A) → D(A) is called the localisation functor. Observe that there is a fully faithful functor

J: A → C(A)

which sends an object M to the trivial complex with M in the zeroth position, and a morphism F: M → N to the morphism of complexes

Untitled

Composing with Q we obtain a functor A → D(A) which we denote by J. This functor J is fully faithful, and so defines an embedding A → D(A). By definition the functor Hi(−): C(A) → A inverts quasi-isomorphisms and so descends to a functor

Hi(−): D(A) → A

establishing that composite functor H0(−) ◦ J is isomorphic to the identity functor on A.