The Biological Kant. Note Quote.

Nb3O7(OH)_self-organization2

The biological treatise takes as its object the realm of physics left out of Kant’s critical demarcations of scientific, that is, mathematical and mechanistic, physics. Here, the main idea was that scientifically understandable Nature was defined by lawfulness. In his Metaphysical Foundations of Natural Science, this idea was taken further in the following claim:

I claim, however, that there is only as much proper science to be found in any special doctrine on nature as there is mathematics therein, and further ‘a pure doctrine on nature about certain things in nature (doctrine on bodies and doctrine on minds) is only possible by means of mathematics’.

The basic idea is thus to identify Nature’s lawfulness with its ability to be studied by means of mathematical schemata uniting understanding and intuition. The central schema, to Kant, was numbers, so apt to be used in the understanding of mechanically caused movement. But already here, Kant is very well aware of a whole series of aspects of spontaneuosly experienced Nature is left out of sight by the concentration on matter in movement, and he calls for these further realms of Nature to be studied by a continuation of the Copernican turn, by the mind’s further study of the utmost limits of itself. Why do we spontaneously see natural purposes, in Nature? Purposiveness is wholly different from necessity, crucial to Kant’s definition of Nature. There is no reason in the general concept of Nature (as lawful) to assume that nature’s objects may serve each other as purposes. Nevertheless, we do not stop assuming just that. But what we do when we ascribe purposes to Nature is using the faculties of mind in another way than in science, much closer to the way we use them in the appreciation of beauty and art, the object of the first part of the book immediately before the treatment of teleological judgment. This judgment is characterized by a central distinction, already widely argued in this first part of the book: the difference between determinative and reflective judgments, respectively. While the judgment used scientifically to decide whether a specific case follows a certain rule in explanation by means of a derivation from a principle, and thus constitutes the objectivity of the object in question – the judgment which is reflective lacks all these features. It does not proceed by means of explanation, but by mere analogy; it is not constitutive, but merely regulative; it does not prove anything but merely judges, and it has no principle of reason to rest its head upon but the very act of judging itself. These ideas are now elaborated throughout the critic of teleological judgment.

nrm2357-i1

In the section Analytik der teleologischen Urteilskraft, Kant gradually approaches the question: first is treated the merely formal expediency: We may ascribe purposes to geometry in so far as it is useful to us, just like rivers carrying fertile soils with them for trees to grow in may be ascribed purposes; these are, however, merely contingent purposes, dependent on an external telos. The crucial point is the existence of objects which are only possible as such in so far as defined by purposes:

That its form is not possible after mere natural laws, that is, such things which may not be known by us through understanding applied to objects of the senses; on the contrary that even the empirical knowledge about them, regarding their cause and effect, presupposes concepts of reason.

The idea here is that in order to conceive of objects which may not be explained with reference to understanding and its (in this case, mechanical) concepts only, these must be grasped by the non-empirical ideas of reason itself. If causes are perceived as being interlinked in chains, then such contingencies are to be thought of only as small causal circles on the chain, that is, as things being their own cause. Hence Kant’s definition of the Idea of a natural purpose:

an object exists as natural purpose, when it is cause and effect of itself.

This can be thought as an idea without contradiction, Kant maintains, but not conceived. This circularity (the small causal circles) is a very important feature in Kant’s tentative schematization of purposiveness. Another way of coining this Idea is – things as natural purposes are organized beings. This entails that naturally purposeful objects must possess a certain spatio-temporal construction: the parts of such a thing must be possible only through their relation to the whole – and, conversely, the parts must actively connect themselves to this whole. Thus, the corresponding idea can be summed up as the Idea of the Whole which is necessary to pass judgment on any empirical organism, and it is very interesting to note that Kant sums up the determination of any part of a Whole by all other parts in the phrase that a natural purpose is possible only as an organized and self-organizing being. This is probably the very birth certificate of the metaphysics of self-organization. It is important to keep in mind that Kant does not feel any vitalist temptation at supposing any organizing power or any autonomy on the part of the whole which may come into being only by this process of self-organization between its parts. When Kant talks about the forming power in the formation of the Whole, it is thus nothing outside of this self-organization of its parts.

This leads to Kant’s final definition: an organized being is that in which all that is alternating is ends and means. This idea is extremely important as a formalization of the idea of teleology: the natural purposes do not imply that there exists given, stable ends for nature to pursue, on the contrary, they are locally defined by causal cycles, in which every part interchangeably assumes the role of ends and means. Thus, there is no absolute end in this construal of nature’s teleology; it analyzes teleology formally at the same time as it relativizes it with respect to substance. Kant takes care to note that this maxim needs not be restricted to the beings – animals – which we spontaneously tend to judge as purposeful. The idea of natural purposes thus entails that there might exist a plan in nature rendering processes which we have all reasons to disgust purposeful for us. In this vision, teleology might embrace causality – and even aesthetics:

Also natural beauty, that is, its harmony with the free play of our epistemological faculties in the experience and judgment of its appearance can be seen in the way of objective purposivity of nature in its totality as system, in which man is a member.

An important consequence of Kant’s doctrine is that their teleology is so to speak secularized in two ways: (1) it is formal, and (2) it is local. It is formal because self-organization does not ascribe any special, substantial goal for organisms to pursue – other than the sustainment of self-organization. Thus teleology is merely a formal property in certain types of systems. This is why teleology is also local – it is to be found in certain systems when the causal chain form loops, as Kant metaphorically describes the cycles involved in self-organization – it is no overarching goal governing organisms from the outside. Teleology is a local, bottom-up, process only.

Kant does not in any way doubt the existence of organized beings, what is at stake is the possibility of dealing with them scientifically in terms of mechanics. Even if they exist as a given thing in experience, natural purposes can not receive any concept. This implies that biology is evident in so far as the existence of organisms cannot be doubted. Biology will never rise to the heights of science, its attempts at doing so are beforehand delimited, all scientific explanations of organisms being bound to be mechanical. Following this line of argument, it corresponds very well to present-day reductionism in biology, trying to take all problems of phenotypical characters, organization, morphogenesis, behavior, ecology, etc. back to the biochemistry of genetics. But the other side of the argument is that no matter how successful this reduction may prove, it will never be able to reduce or replace the teleological point of view necessary in order to understand the organism as such in the first place.

Evidently, there is something deeply unsatisfactory in this conclusion which is why most biologists have hesitated at adopting it and cling to either full-blown reductionism or to some brand of vitalism, subjecting themselves to the dangers of ‘transcendental illusion’ and allowing for some Goethe-like intuitive idea without any schematization. Kant tries to soften up the question by philosophical means by establishing an crossing over from metaphysics to physics, or, from the metaphysical constraints on mechanical physics and to physics in its empirical totality, including the organized beings of biology. Pure mechanics leaves physics as a whole unorganized, and this organization is sought to be established by means of mediating concepts’. Among them is the formative power, which is not conceived of in a vitalist substantialist manner, but rather a notion referring to the means by which matter manages to self-organize. It thus comprehends not only biological organization, but macrophysic solid matter physics as well. Here, he adds an important argument to the critic of judgment:

Because man is conscious of himself as a self-moving machine, without being able to further understand such a possibility, he can, and is entitled to, introduce a priori organic-moving forces of bodies into the classification of bodies in general and thus to distinguish mere mechanical bodies from self-propelled organic bodies.

10 or 11 Dimensions? Phenomenological Conundrum. Drunken Risibility.

supersymmetry_experienc_2014_02

It is not the fact that we are living in a ten-dimensional world which forces string theory to a ten-dimensional description. It is that perturbative string theories are only anomaly-free in ten dimensions; and they contain gravitons only in a ten-dimensional formulation. The resulting question, how the four-dimensional spacetime of phenomenology comes off from ten-dimensional perturbative string theories (or its eleven-dimensional non-perturbative extension: the mysterious M theory), led to the compactification idea and to the braneworld scenarios.

It is not the fact that empirical indications for supersymmetry were found, that forces consistent string theories to include supersymmetry. Without supersymmetry, string theory has no fermions and no chirality, but there are tachyons which make the vacuum instable; and supersymmetry has certain conceptual advantages: it leads very probably to the finiteness of the perturbation series, thereby avoiding the problem of non-renormalizability which haunted all former attempts at a quantization of gravity; and there is a close relation between supersymmetry and Poincaré invariance which seems reasonable for quantum gravity. But it is clear that not all conceptual advantages are necessarily part of nature – as the example of the elegant, but unsuccessful Grand Unified Theories demonstrates.

Apart from its ten (or eleven) dimensions and the inclusion of supersymmetry – both have more or less the character of only conceptually, but not empirically motivated ad-hoc assumptions – string theory consists of a rather careful adaptation of the mathematical and model-theoretical apparatus of perturbative quantum field theory to the quantized, one-dimensionally extended, oscillating string (and, finally, of a minimal extension of its methods into the non-perturbative regime for which the declarations of intent exceed by far the conceptual successes). Without any empirical data transcending the context of our established theories, there remains for string theory only the minimal conceptual integration of basic parts of the phenomenology already reproduced by these established theories. And a significant component of this phenomenology, namely the phenomenology of gravitation, was already used up in the selection of string theory as an interesting approach to quantum gravity. Only, because string theory – containing gravitons as string states – reproduces in a certain way the phenomenology of gravitation, it is taken seriously.

But consistency requirements, the minimal inclusion of basic phenomenological constraints, and the careful extension of the model-theoretical basis of quantum field theory are not sufficient to establish an adequate theory of quantum gravity. Shouldn’t the landscape scenario of string theory be understood as a clear indication, not only of fundamental problems with the reproduction of the gauge invariances of the standard model of quantum field theory (and the corresponding phenomenology), but of much more severe conceptual problems? Almost all attempts at a solution of the immanent and transcendental problems of string theory seem to end in the ambiguity and contingency of the multitude of scenarios of the string landscape. That no physically motivated basic principle is known for string theory and its model-theoretical procedures might be seen as a problem which possibly could be overcome in future developments. But, what about the use of a static background spacetime in string theory which falls short of the fundamental insights of general relativity and which therefore seems to be completely unacceptable for a theory of quantum gravity?

At least since the change of context (and strategy) from hadron physics to quantum gravity, the development of string theory was dominated by immanent problems which led with their attempted solutions deeper. The result of this successively increasing self- referentiality is a more and more enhanced decoupling from phenomenological boundary conditions and necessities. The contact with the empirical does not increase, but gets weaker and weaker. The result of this process is a labyrinthic mathematical structure with a completely unclear physical relevance

Constructivism. Note Quote.

f110f2532724a581461f7024fdde344c

Constructivism, as portrayed by its adherents, “is the idea that we construct our own world rather than it being determined by an outside reality”. Indeed, a common ground among constructivists of different persuasion lies in a commitment to the idea that knowledge is actively built up by the cognizing subject. But, whereas individualistic constructivism (which is most clearly enunciated by radical constructivism) focuses on the biological/psychological mechanisms that lead to knowledge construction, sociological constructivism focuses on the social factors that influence learning.

Let us briefly consider certain fundamental assumptions of individualistic constructivism. The first issue a constructivist theory of cognition ought to elucidate concerns of course the raw materials on which knowledge is constructed. On this issue, von Glaserfeld, an eminent representative of radical constructivism, gives a categorical answer: “from the constructivist point of view, the subject cannot transcend the limits of individual experience” (Michael R. Matthews Constructivism in Science Education_ A Philosophical Examination). This statement presents the keystone of constructivist epistemology, which conclusively asserts that “the only tools available to a ‘knower’ are the senses … [through which] the individual builds a picture of the world”. What is more, the so formed mental pictures do not shape an ‘external’ to the subject world, but the distinct personal reality of each individual. And this of course entails, in its turn, that the responsibility for the gained knowledge lies with the constructor; it cannot be shifted to a pre-existing world. As Ranulph Glanville confesses, “reality is what I sense, as I sense it, when I’m being honest about it” .

In this way, individualistic constructivism estranges the cognizing subject from the external world. Cognition is not considered as aiming at the discovery and investigation of an ‘independent’ world; it is viewed as a ‘tool’ that exclusively serves the adaptation of the subject to the world as it is experienced. From this perspective, ‘knowledge’ acquires an entirely new meaning. In the expression of von Glaserfeld,

the word ‘knowledge’ refers to conceptual structures that epistemic agents, given the range of present experience, within their tradition of thought and language, consider viable….[Furthermore] concepts have to be individually built up by reflective abstraction; and reflective abstraction is not a matter of looking closer but at operating mentally in a way that happens to be compatible with the perceptual material at hand.

To say it briefly, ‘knowledge’ signifies nothing more than an adequate organization of the experiential world, which makes the cognizing subject capable to effectively manipulate its perceptual experience.

It is evident that such insights, precluding any external point of reference, have impacts on knowledge evaluation. Indeed, the ascertainment that “for constructivists there are no structures other than those which the knower forms by its own activity” (Michael R. MatthewsConstructivism in Science Education A Philosophical Examination) yields unavoidably the conclusion drawn by Gerard De Zeeuw that “there is no mind-independent yardstick against which to measure the quality of any solution”. Hence, knowledge claims should not be evaluated by reference to a supposed ‘external’ world, but only by reference to their internal consistency and personal utility. This is precisely the reason that leads von Glaserfeld to suggest the substitution of the notion of “truth” by the notion of “viability” or “functional fit”: knowledge claims are appraised as “true”, if they “functionally fit” into the subject’s experiential world; and to find a “fit” simply means not to notice any discrepancies. This functional adaptation of ‘knowledge’ to experience is what finally secures the intended “viability”.

In accordance with the constructivist view, the notion of ‘object’, far from indicating any kind of ‘existence’, it explicitly refers to a strictly personal construction of the cognizing subject. Specifically, “any item of the furniture of someone’s experiential world can be called an ‘object’” (von Glaserfeld). From this point of view, the supposition that “the objects one has isolated in his experience are identical with those others have formed … is an illusion”. This of course deprives language of any rigorous criterion of objectivity; its physical-object statements, being dependent upon elements that are derived from personal experience, cannot be considered to reveal attributes of the objects as they factually are. Incorporating concepts whose meaning is highly associated with the individual experience of the cognizing subject, these statements form at the end a personal-specific description of the world. Conclusively, for constructivists the term ‘objectivity’ “shows no more than a relative compatibility of concepts” in situations where individuals have had occasion to compare their “individual uses of the particular words”.

From the viewpoint of radical constructivism, science, being a human enterprise, is amenable, by its very nature, to human limitations. It is then naturally inferred on constructivist grounds that “science cannot transcend [just as individuals cannot] the domain of experience” (von Glaserfeld). This statement, indicating that there is no essential differentiation between personal and scientific knowledge, permits, for instance, John Staver to assert that “for constructivists, observations, objects, events, data, laws and theory do not exist independent of observers. The lawful and certain nature of natural phenomena is a property of us, those who describe, not of nature, what is described”. Accordingly, by virtue of the preceding premise, one may argue that “scientific theories are derived from human experience and formulated in terms of human concepts” (von Glaserfeld).

In the framework now of social constructivism, if one accepts that the term ‘knowledge’ means no more than “what is collectively endorsed” (David Bloor Knowledge and Social Imagery), he will probably come to the conclusion that “the natural world has a small or non-existent role in the construction of scientific knowledge” (Collins). Or, in a weaker form, one can postulate that “scientific knowledge is symbolic in nature and socially negotiated. The objects of science are not the phenomena of nature but constructs advanced by the scientific community to interpret nature” (Rosalind Driver et al.). It is worth remarking that both views of constructivism eliminate, or at least downplay, the role of the natural world in the construction of scientific knowledge.

It is evident that the foregoing considerations lead most versions of constructivism to ultimately conclude that the very word ‘existence’ has no meaning in itself. It does acquire meaning only by referring to individuals or human communities. The acknowledgement of this fact renders subsequently the notion of ‘external’ physical reality useless and therefore redundant. As Riegler puts it, within the constructivist framework, “an external reality is neither rejected nor confirmed, it must be irrelevant”.

Something Out of Almost Nothing. Drunken Risibility.

Kant’s first antinomy makes the error of the excluded third option, i.e. it is not impossible that the universe could have both a beginning and an eternal past. If some kind of metaphysical realism is true, including an observer-independent and relational time, then a solution of the antinomy is conceivable. It is based on the distinction between a microscopic and a macroscopic time scale. Only the latter is characterized by an asymmetry of nature under a reversal of time, i.e. the property of having a global (coarse-grained) evolution – an arrow of time – or many arrows, if they are independent from each other. Thus, the macroscopic scale is by definition temporally directed – otherwise it would not exist.

On the microscopic scale, however, only local, statistically distributed events without dynamical trends, i.e. a global time-evolution or an increase of entropy density, exist. This is the case if one or both of the following conditions are satisfied: First, if the system is in thermodynamic equilibrium (e.g. there is degeneracy). And/or second, if the system is in an extremely simple ground state or meta-stable state. (Meta-stable states have a local, but not a global minimum in their potential landscape and, hence, they can decay; ground states might also change due to quantum uncertainty, i.e. due to local tunneling events.) Some still speculative theories of quantum gravity permit the assumption of such a global, macroscopically time-less ground state (e.g. quantum or string vacuum, spin networks, twistors). Due to accidental fluctuations, which exceed a certain threshold value, universes can emerge out of that state. Due to some also speculative physical mechanism (like cosmic inflation) they acquire – and, thus, are characterized by – directed non-equilibrium dynamics, specific initial conditions, and, hence, an arrow of time.

It is a matter of debate whether such an arrow of time is

1) irreducible, i.e. an essential property of time,

2) governed by some unknown fundamental and not only phenomenological law,

3) the effect of specific initial conditions or

4) of consciousness (if time is in some sense subjective), or

5) even an illusion.

Many physicists favour special initial conditions, though there is no consensus about their nature and form. But in the context at issue it is sufficient to note that such a macroscopic global time-direction is the main ingredient of Kant’s first antinomy, for the question is whether this arrow has a beginning or not.

Time’s arrow is inevitably subjective, ontologically irreducible, fundamental and not only a kind of illusion, thus if some form of metaphysical idealism for instance is true, then physical cosmology about a time before time is mistaken or quite irrelevant. However, if we do not want to neglect an observer-independent physical reality and adopt solipsism or other forms of idealism – and there are strong arguments in favor of some form of metaphysical realism -, Kant’s rejection seems hasty. Furthermore, if a Kantian is not willing to give up some kind of metaphysical realism, namely the belief in a “Ding an sich“, a thing in itself – and some philosophers actually insisted that this is superfluous: the German idealists, for instance -, he has to admit that time is a subjective illusion or that there is a dualism between an objective timeless world and a subjective arrow of time. Contrary to Kant’s thoughts: There are reasons to believe that it is possible, at least conceptually, that time has both a beginning – in the macroscopic sense with an arrow – and is eternal – in the microscopic notion of a steady state with statistical fluctuations.

Is there also some physical support for this proposal?

Surprisingly, quantum cosmology offers a possibility that the arrow has a beginning and that it nevertheless emerged out of an eternal state without any macroscopic time-direction. (Note that there are some parallels to a theistic conception of the creation of the world here, e.g. in the Augustinian tradition which claims that time together with the universe emerged out of a time-less God; but such a cosmological argument is quite controversial, especially in a modern form.) So this possible overcoming of the first antinomy is not only a philosophical conceivability but is already motivated by modern physics. At least some scenarios of quantum cosmology, quantum geometry/loop quantum gravity, and string cosmology can be interpreted as examples for such a local beginning of our macroscopic time out of a state with microscopic time, but with an eternal, global macroscopic timelessness.

To put it in a more general, but abstract framework and get a sketchy illustration, consider the figure.

Untitled

Physical dynamics can be described using “potential landscapes” of fields. For simplicity, here only the variable potential (or energy density) of a single field is shown. To illustrate the dynamics, one can imagine a ball moving along the potential landscape. Depressions stand for states which are stable, at least temporarily. Due to quantum effects, the ball can “jump over” or “tunnel through” the hills. The deepest depression represents the ground state.

In the common theories the state of the universe – the product of all its matter and energy fields, roughly speaking – evolves out of a metastable “false vacuum” into a “true vacuum” which has a state of lower energy (potential). There might exist many (perhaps even infinitely many) true vacua which would correspond to universes with different constants or laws of nature. It is more plausible to start with a ground state which is the minimum of what physically can exist. According to this view an absolute nothingness is impossible. There is something rather than nothing because something cannot come out of absolutely nothing, and something does obviously exist. Thus, something can only change, and this change might be described with physical laws. Hence, the ground state is almost “nothing”, but can become thoroughly “something”. Possibly, our universe – and, independent from this, many others, probably most of them having different physical properties – arose from such a phase transition out of a quasi atemporal quantum vacuum (and, perhaps, got disconnected completely). Tunneling back might be prevented by the exponential expansion of this brand new space. Because of this cosmic inflation the universe not only became gigantic but simultaneously the potential hill broadened enormously and got (almost) impassable. This preserves the universe from relapsing into its non-existence. On the other hand, if there is no physical mechanism to prevent the tunneling-back or makes it at least very improbable, respectively, there is still another option: If infinitely many universes originated, some of them could be long-lived only for statistical reasons. But this possibility is less predictive and therefore an inferior kind of explanation for not tunneling back.

Another crucial question remains even if universes could come into being out of fluctuations of (or in) a primitive substrate, i.e. some patterns of superposition of fields with local overdensities of energy: Is spacetime part of this primordial stuff or is it also a product of it? Or, more specifically: Does such a primordial quantum vacuum have a semi-classical spacetime structure or is it made up of more fundamental entities? Unique-universe accounts, especially the modified Eddington models – the soft bang/emergent universe – presuppose some kind of semi-classical spacetime. The same is true for some multiverse accounts describing our universe, where Minkowski space, a tiny closed, finite space or the infinite de Sitter space is assumed. The same goes for string theory inspired models like the pre-big bang account, because string and M- theory is still formulated in a background-dependent way, i.e. requires the existence of a semi-classical spacetime. A different approach is the assumption of “building-blocks” of spacetime, a kind of pregeometry also the twistor approach of Roger Penrose, and the cellular automata approach of Stephen Wolfram. The most elaborated accounts in this line of reasoning are quantum geometry (loop quantum gravity). Here, “atoms of space and time” are underlying everything.

Though the question whether semiclassical spacetime is fundamental or not is crucial, an answer might be nevertheless neutral with respect of the micro-/macrotime distinction. In both kinds of quantum vacuum accounts the macroscopic time scale is not present. And the microscopic time scale in some respect has to be there, because fluctuations represent change (or are manifestations of change). This change, reversible and relationally conceived, does not occur “within” microtime but constitutes it. Out of a total stasis nothing new and different can emerge, because an uncertainty principle – fundamental for all quantum fluctuations – would not be realized. In an almost, but not completely static quantum vacuum however, macroscopically nothing changes either, but there are microscopic fluctuations.

The pseudo-beginning of our universe (and probably infinitely many others) is a viable alternative both to initial and past-eternal cosmologies and philosophically very significant. Note that this kind of solution bears some resemblance to a possibility of avoiding the spatial part of Kant’s first antinomy, i.e. his claimed proof of both an infinite space without limits and a finite, limited space: The theory of general relativity describes what was considered logically inconceivable before, namely that there could be universes with finite, but unlimited space, i.e. this part of the antinomy also makes the error of the excluded third option. This offers a middle course between the Scylla of a mysterious, secularized creatio ex nihilo, and the Charybdis of an equally inexplicable eternity of the world.

In this context it is also possible to defuse some explanatory problems of the origin of “something” (or “everything”) out of “nothing” as well as a – merely assumable, but never provable – eternal cosmos or even an infinitely often recurring universe. But that does not offer a final explanation or a sufficient reason, and it cannot eliminate the ultimate contingency of the world.

Weyl and Automorphism of Nature. Drunken Risibility.

MTH6105spider

In classical geometry and physics, physical automorphisms could be based on the material operations used for defining the elementary equivalence concept of congruence (“equality and similitude”). But Weyl started even more generally, with Leibniz’ explanation of the similarity of two objects, two things are similar if they are indiscernible when each is considered by itself. Here, like at other places, Weyl endorsed this Leibnzian argument from the point of view of “modern physics”, while adding that for Leibniz this spoke in favour of the unsubstantiality and phenomenality of space and time. On the other hand, for “real substances” the Leibnizian monads, indiscernability implied identity. In this way Weyl indicated, prior to any more technical consideration, that similarity in the Leibnizian sense was the same as objective equality. He did not enter deeper into the metaphysical discussion but insisted that the issue “is of philosophical significance far beyond its purely geometric aspect”.

Weyl did not claim that this idea solves the epistemological problem of objectivity once and for all, but at least it offers an adequate mathematical instrument for the formulation of it. He illustrated the idea in a first step by explaining the automorphisms of Euclidean geometry as the structure preserving bijective mappings of the point set underlying a structure satisfying the axioms of “Hilbert’s classical book on the Foundations of Geometry”. He concluded that for Euclidean geometry these are the similarities, not the congruences as one might expect at a first glance. In the mathematical sense, we then “come to interpret objectivity as the invariance under the group of automorphisms”. But Weyl warned to identify mathematical objectivity with that of natural science, because once we deal with real space “neither the axioms nor the basic relations are given”. As the latter are extremely difficult to discern, Weyl proposed to turn the tables and to take the group Γ of automorphisms, rather than the ‘basic relations’ and the corresponding relata, as the epistemic starting point.

Hence we come much nearer to the actual state of affairs if we start with the group Γ of automorphisms and refrain from making the artificial logical distinction between basic and derived relations. Once the group is known, we know what it means to say of a relation that it is objective, namely invariant with respect to Γ.

By such a well chosen constitutive stipulation it becomes clear what objective statements are, although this can be achieved only at the price that “…we start, as Dante starts in his Divina Comedia, in mezzo del camin”. A phrase characteristic for Weyl’s later view follows:

It is the common fate of man and his science that we do not begin at the beginning; we find ourselves somewhere on a road the origin and end of which are shrouded in fog.

Weyl’s juxtaposition of the mathematical and the physical concept of objectivity is worthwhile to reflect upon. The mathematical objectivity considered by him is relatively easy to obtain by combining the axiomatic characterization of a mathematical theory with the epistemic postulate of invariance under a group of automorphisms. Both are constituted in a series of acts characterized by Weyl as symbolic construction, which is free in several regards. For example, the group of automorphisms of Euclidean geometry may be expanded by “the mathematician” in rather wide ways (affine, projective, or even “any group of transformations”). In each case a specific realm of mathematical objectivity is constituted. With the example of the automorphism group Γ of (plane) Euclidean geometry in mind Weyl explained how, through the use of Cartesian coordinates, the automorphisms of Euclidean geometry can be represented by linear transformations “in terms of reproducible numerical symbols”.

For natural science the situation is quite different; here the freedom of the constitutive act is severely restricted. Weyl described the constraint for the choice of Γ at the outset in very general terms: The physicist will question Nature to reveal him her true group of automorphisms. Different to what a philosopher might expect, Weyl did not mention, the subtle influences induced by theoretical evaluations of empirical insights on the constitutive choice of the group of automorphisms for a physical theory. He even did not restrict the consideration to the range of a physical theory but aimed at Nature as a whole. Still basing on his his own views and radical changes in the fundamental views of theoretical physics, Weyl hoped for an insight into the true group of automorphisms of Nature without any further specifications.

Gothic: Once Again Atheistic Materialism and Hedonistic Flirtations. Drunken Risibility.

 

2017-Time-limited-Sale-No-Painting-By-font-b-Numbers-b-font-Wall-Art-Skull-Kiss

The machinery of the Gothic, traditionally relegated to both a formulaic and a sensational aesthetic, gradually evolved into a recyclable set of images, motifs and narrative devices that surpass temporal, spatial and generic categories. From the moment of its appearance the Gothic has been obsessed with presenting itself as an imitation.

Recent literary theory has extensively probed into the power of the Gothic to evade temporal and generic limits and into the aesthetic, narratological and ideological implications this involves. Officially granting the Gothic the elasticity it has always entailed has resulted in a reconfiguration of its spectrum both synchronically – by acknowledging its influence on numerous postmodern fictions – and diachronically – by rescripting, in hindsight, the history of its canon so as to allow space for ambiguous presences.

Both transgressive and hybrid in form and content, the Gothic has been accepted as a malleable genre, flexible enough to create more freely, in Borgesian fashion, its own precursors. The genre flouted what are considered the basic principles of good prose writing: adherence to verisimilitude and avoidance of both narrative diversions and moralising – all of which are, of course, made to be deliberately upset. Many merely cite the epigrammatic power of the essay’s most renowned phrase, that the rise of the Gothic “was the inevitable result of the revolutionary shocks which all of Europe has suffered”.

The eighteenth-century French materialist philosophy purported the displacement of metaphysical investigations into the meaning of life by materialist explorations. Julien Offray de La Mettrie, a French physician and philosopher, the earliest of materialist writers of the Enlightenment, published the materialist manifesto L’ Homme machine (Man a Machine), that did away with the transcendentalism of the soul, banished all supernatural agencies by claiming that mind is as mechanical as matter and equated humans with machines. In his words: “The human body is a machine that winds up its own springs: it is a living image of the perpetual motion”. French materialist thought resulted in the publication of the great 28-volume Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des méttrie par une société de gens de lettres by Denis Diderot and Jean Le Rond d’ Alembert, and which was grounded on purely materialist principles, against all kinds of metaphysical thinking. Diderot’s atheist materialism set the tone of the Encyclopédie, which, for both editors, was the ideal vehicle […] for reshaping French high culture and attitudes, as well as the perfect instrument with which to insinuate their radical Weltanschauung surreptitiously, using devious procedures, into the main arteries of French Society, embedding their revolutionary philosophic manifesto in a vast compilation ostensibly designed to provide plain information and basic orientation but in fact subtly challenging and transforming attitudes in every respect. While materialist thinkers ultimately disowned La Mettrie because he ran counter to their systematic moral, political and social naturalism, someone like Sade remained deeply influenced and inspired for his indebtedness to La Mettrie’s atheism and hedonism, particularly to the perception of virtue and vice as relative notions − the result of socialisation and at odds with nature.

 

Iain Hamilton Grant’s Schelling in Opposition to Fichte. Note Quote.

33576_640

The stated villain of Philosophies of Nature is not Hegelianism but rather ‘neo-Fichteanism’. It is Grant’s ‘Philosophies of Nature After Schelling‘, which takes up the issue of graduating Schelling to escape the accoutrements of Kantian and Fichtean narrow transcendentalism. Grant frees Schelling from the grips of narrow minded inertness and mechanicality in nature that Kant and Fichte had presented nature with. This idea is the Deleuzean influence on Grant. Manuel De Landa makes a vociferous case in this regard. According to De Landa, the inertness of matter was rubbished by Deleuze in the way that Deleuze sought for a morphogenesis of form thereby launching a new kind of materialism. This is the anti-essentialist position of Deleuze. Essentialism says that matter and energy are inert, they do not have any morphogenetic capabilities. They cannot give rise to new forms on their own. Disciplines like complexity theory, non-linear dynamics do give matter its autonomy over inertness, its capabilities in terms of charge. But its account of the relationship between Fichte and Schelling actually obscures the rich meaning of speculation in Hegel and after. Grant quite accurately recalls that Schelling confronted Fichte’s identification of the ‘not I’ with passive nature – the consequence of identifying all free activity with the ‘I’ alone. For Grant, that which Jacobi termed ‘speculative egotism’ becomes the nightmare of modern philosophy and of technological modernity at large. The ecological concern is never quite made explicit in Philosophies of Nature. Yet Grant’s introduction to Schelling’s On the World Soul helps to contextualise the meaning of his ‘geology of morals’.

What we miss from Grant’s critique of Fichte is the manner by which the corrective, positive characterisation of nature proceeds from Schelling’s confirmation of Fichte’s rendering of the fact of consciousness (Tatsache) into the act of consciousness (Tathandlung). Schelling, as a consequence, becomes singularly critical of contemplative speculation, since activity now implies working on nature and thereby changing it – along with it, we might say – rather than either simply observing it or even experimenting upon it.

In fact, Grant reads Schelling only in opposition to Fichte, with drastic consequences for his speculative realism: the post-Fichtean element of Schelling’s naturephilosophy allows for the new sense of speculation he will share with Hegel – even though they will indeed turn this against Kant and Fichte. Without this account, we are left with the older, contemplative understanding of metaphysical speculation, which leads to a certain methodologism in Grant’s study. Hence, ‘the principle method of naturephilosophy consists in “unconditioning” the phenomena’. Relatedly, Meillassoux defines the ‘speculative’ as ‘every type of thinking’ – not acting, – ‘that claims to be able to access some form of absolute’.

In direct contrast to this approach, the collective ‘system programme’ of Hegel, Schelling and Hölderlin was not a programme for thinking alone. Their revolutionised sense of speculation, from contemplation of the stars to reform of the worldly, is overlooked by today’s speculative realism – a philosophy that, ‘refuses to interrogate reality through human (linguistic, cultural or political) mediations of it’. We recall that Kant similarly could not extend his Critique to speculative reason precisely on account of his contemplative determination of pure reason (in terms of the hierarchical gap between reason and the understanding). Grant’s ‘geology of morals’ does not oppose ‘Kanto-Fichtean philosophy’, as he has it, but rather remains structurally within the sphere of Kant’s pre-political metaphysics.

Whitehead’s Anti-Substantivilism, or Process & Reality as a Cosmology to-be. Thought of the Day 39.0

whiteheads-process-philosophy

Treating “stuff” as some kind of metaphysical primitive is mere substantivilism – and fundamentally question-begging. One has replaced an extra-theoretic referent of the wave-function (unless one defers to some quasi-literalist reading of the nature of the stochastic amplitude function ζ[X(t)] as somehow characterizing something akin to being a “density of stuff”, and moreover the logic and probability (Born Rules) must ultimately be obtained from experimentally obtained scattering amplitudes) with something at least as equally mystifying, as the argument against decoherence goes on to show:

In other words, you have a state vector which gives rise to an outcome of a measurement and you cannot understand why this is so according to your theory.

As a response to Platonism, one can likewise read Process and Reality as essentially anti-substantivilist.

Consider, for instance:

Those elements of our experience which stand out clearly and distinctly [giving rise to our substantial intuitions] in our consciousness are not its basic facts, [but] they are . . . late derivatives in the concrescence of an experiencing subject. . . .Neglect of this law [implies that] . . . [e]xperience has been explained in a thoroughly topsy-turvy fashion, the wrong end first (161).

To function as an object is to be a determinant of the definiteness of an actual occurrence [occasion] (243).

The phenomenological ontology offered in Process and Reality is richly nuanced (including metaphysical primitives such as prehensions, occasions, and their respectively derivative notions such as causal efficacy, presentational immediacy, nexus, etc.). None of these suggest metaphysical notions of substance (i.e., independently existing subjects) as a primitive. The case can perhaps be made concerning the discussion of eternal objects, but such notions as discussed vis-à-vis the process of concrescence are obviously not metaphysically primitive notions. Certainly these metaphysical primitives conform in a more nuanced and articulated manner to aspects of process ontology. “Embedding” – as the notion of emergence is a crucial constituent in the information-theoretic, quantum-topological, and geometric accounts. Moreover, concerning the issue of relativistic covariance, it is to be regarded that Process and Reality is really a sketch of a cosmology-to-be . . . [in the spirit of ] Kant [who] built on the obsolete ideas of space, time, and matter of Euclid and Newton. Whitehead set out to suggest what a philosophical cosmology might be that builds on Newton.

Knowledge Within and Without: The Upanishadic Tradition (1)

www.krishnapath.org

All perceptible matter comes from a primary substance, or tenuity beyond conception, filling all space, the akasha or luminiferous ether, which is acted upon by the life giving Prana or creative force, calling into existence, in never-ending cycles all things and phenomena – Nikola Tesla

Teilhard de Chardin:

In the eyes of the physicist, nothing exists legitimately, at least up to now, except the without of things. The same intellectual attitude is still permissible in the bacteriologist, whose cultures (apart from substantial difficulties) are treated as laboratory reagents. But it is still more difficult in the realm of plants. It tends to become a gamble in the case of a biologist studying the behavior of insects or coelenterates. It seems merely futile with regard to the vertebrates. Finally, it breaks down completely with man, in whom the existence of a within can no longer be evaded, because it is a subject of a direct intuition and the substance of all knowledge. It is impossible to deny that, deep within ourselves, “an interior” appears at the heart of beings, as it were seen through a rent. This is enough to ensure that, in one degree or another, this “interior” should obtrude itself as existing everywhere in nature from all time. Since the stuff of the universe has an inner aspect at one point of itself, there is necessarily a double to its structure, that is to say in every region of space and time-in the same way for instance, as it is granular: co-extensive with their Without, there is a Within to things.

Both Indian thought and modern scientific thought accept a fundamental unity behind the world of variety. That basic unitary reality evolves into all that we see around us in the world. This view is a few thousand years old in India; We find it in the Samkhyan and Vedantic schools of Indian thought; and they expound it very much on the lines followed by modern thought. In his address to the Chicago Parliament of Religions in 1893, Vivekananda said:

All science is bound to come to this conclusion in the long run, Manifestation and not creation, is the word of science today, and the Hindu is only glad that what he has been cherishing in his bosom for ages is going to be taught in more forcible language, and with further light from the latest conclusions of science.

The Samkhyan school uses two terms to represent Nature or Pradhana: Prakrti denoting Nature in its unmodified state, and Vikrti denoting nature in its modified state. The Vedanta similarly speaks of Brahman as the inactive state, and Maya or Shakti as the active state of one and the same primordial non-dual reality. But the Brahman of the Vedanta is the unity of both the spiritual and the non-spiritual, the non-physical and the physical aspects of the universe.

So as the first answer to the question, ‘What is the world?’ we get this child’s answer in his growing knowledge of the discrete entities and events of the outer world and their inter-connections. The second answer is the product of scientific thought, which gives us the knowledge of the one behind the many. All the entities and events of the world are but the modifications or evolutions of one primordial basis reality, be it nature, space- time or cosmic dust.

Although modern scientific thought does not yet have a place for any spiritual reality or principle, scientists like Chardin and Julian Huxley are trying to find a proper place for the experience of the spiritual in the scientific picture of the universe. When this is achieved, the scientific picture, which is close to Vedanta already, will become closer still, and the synthesis of the knowledge of the ‘without’ and the ‘within’ of things will give us the total view of the universe. This is wisdom according to Vedanta, whereas all partial views are just pieces of knowledge or information only.

The Upanishads deal with this ‘within’ of things. Theirs in fact, is the most outstanding contribution on this subject in the human cultural legacy. They term this aspect of reality of things pratyak chaitanya or pratyak atman or pratyak tattva; and they contain the fascinating account of the stages by which the human mind rose from crude beginnings to clear, wholly spiritual heights in the realization of this reality.

How does the world look when we view it from the outside? We seek an answer from the physical sciences. How does it look when we view from the inside? We seek an answer from the non-physical sciences, including the science of religion. And philosophy, as understood in the Upanishadic tradition, is the synthesis of these two answers: Brahmavidyā is Sarvavidyāpratishthā, as the Mundaka Upanishad puts it.

क्षेत्रक्षेत्रज्ञयोर्ज्ञानं यत्तज्ज्ञानम् मतं मम

kṣetrakṣetrajñayorjñānaṃ yattajjñānam mataṃ mama

“The unified knowledge of the ‘without’ and the ‘within’ of things is true knowledge according to Me, as Krishna says in the Gita” (Bhagavad-Gita chapter 13, 2nd Shloka).

From this total viewpoint there is neither inside nor outside; they are relative concepts depending upon some sort of a reference point, e.g.the body; as such, they move within the framework of relativity. Reality knows neither ‘inside’ nor ‘outside’; it is ever full. But these relative concepts are helpful in our approach to the understanding of the total reality.

Thus we find that our knowledge of the manifold of experience the idam, also involves something else, namely, the unity behind the manifold. This unity behind the manifold, which is not perceptible to the senses, is indicated by the term adah meaning ‘that’, indicating something far away, unlike the ‘this’ of the sense experience. ‘This’ is the correlative of ‘that’; ‘this’ is the changeable aspect of reality; ‘that’ is its unchangeable aspect. If ‘this’ refers to something given in sense experience, ‘that’ refers to something transcendental, beyond the experience of the senses. To say ‘this’ therefore also implies at the same time something that is beyond ‘this’. This is an effect as such, it is visible and palpable; and behind it lies the cause, the invisible and the impalpable. Adah, ‘that’, represents the invisible behind the visible, the transcendental behind the empirical, a something that is beyond time and space. In religion this something is called ‘God’. In philosophy it is called tat or adah, That, Brahman, the ultimate Reality, the cause, the ground, and the goal of the universe.

So this verse first tells us that beyond and behind the manifested universe is the reality of Brahman, which is the fullness of pure Being; it then tells us about this world of becoming which, being nothing but Brahman, is also the ‘Full’. From the view of total Reality, it is all ‘fullness’ everywhere, in space-time as well as beyond space-time. Then the verse adds:

पूर्णस्य पूर्णमादाय पूर्णमेवाशिष्यते

pūrṇasya pūrṇamādāya pūrṇamevāśiṣyate

‘From the Fullness of Brahman has come the fullness of the universe, leaving alone Fullness as the remainder.’

What, then, is the point of view or level from which the sentiments of this verse proceed? It is that of the total Reality, the Absolute and the Infinite, in which as we have read earlier, the ‘within’ and the ‘without’ of things merge. The Upanishads call it as ocean of Sachchidānanda, the unity of absolute existence, absolute awareness, and absolute bliss. Itself beyond all distinctions of time and space, it yet manifests itself through all such distinctions. To the purified vision of the Upanishadic sages, this whole universe appeared as the fullness of Being, which was, which is, which shall ever be. In the Bhagavad-Gita (VII. 26) Krshna says:

वेदाहं समतीतानि वर्तमानानि चार्जुन ।
भविष्याणि च भूतानि मां तु वेद न कश्चन ॥

vedāhaṃ samatītāni vartamānāni cārjuna |
bhaviṣyāṇi ca bhūtāni māṃ tu veda na kaścana ||

‘I, O Arjuna, know the beings that are of the past, that are of the present, and that are to come in future; but Me no one knows.’

That fullness of the true Me, says Krshna, is beyond all these limited categories, such as space and time, cause and effect, and substance and attribute.

Anthropocosmism. Thought of the Day 20.0

Anthropocosmic

Russian cosmism appeared as sort of antithesis to the classical physicalist paradigm of thinking that was based on strict a differentiation of man and nature. It made an attempt to revive the ontology of an integral vision that organically unites man and cosmos. These problems were discussed both in the scientific and the religious form of cosmism. In the religious form N. Fedorov’s conception was the most significant one. Like other cosmists, he was not satisfied with the split of the Universe into man and nature as opposed entities. Such an opposition, in his opinion, condemned nature to thoughtlessness and destructiveness, and man to submission to the existing “evil world”. Fedorov maintained the ideas of a unity of man and nature, a connection between “soul” and cosmos in terms of regulation and resurrection. He offered a project of resurrection that was not understood only as a resurrection of ancestors, but contained at least two aspects: raising from the dead in a narrow, direct sense, and in a wider, metaphoric sense that includes nature’s ability of self-reconstruction. Fedorov’s resurrection project was connected with the idea of the human mind’s going to outer space. For him, “the Earth is not bound”, and “human activity cannot be restricted by the limits of the terrestrial planet”, which is only the starting point of this activity. One should critically look at the Utopian and fantastic elements of N. Fedorov’s views, which contain a considerable grain of mysticism, but nevertheless there are important rational moments of his conception: the quite clearly expressed idea of interconnection, the unity of man and cosmos, the idea of the correlation of the rational and moral elements of man, the ideal of the unity of humanity as planetary community of people.

But while religious cosmism was more notable for the fantastic and speculative character of its discourses, the natural scientific trend, solving the problem of interconnection between man and cosmos, paid special attention to the comprehension of scientific achievements that confirmed that interconnection. N. G. Kholodny developed these ideas in terms of anthropocosmism, opposing it to anthropocentrism. He wrote: “Having put himself in the place of God, man destroyed his natural connections with nature and condemned himself to a long solitary existence”. In Kholodny ́s opinion, anthropocentrism passed through several stages in its development: at the first stage man did not oppose himself to nature and did not oppose it, he rather “humanized” the natural forces. At the second stage man, extracting himself from nature, man looks at it as the object for research, the base of his well-being. At the next stage man uplifts himself over nature, basing himself in this activity on spiritual forces he studies the Universe. And, lastly, the next stage is characterized by a crisis of the anthropocentric worldview, which starts to collapse under the influence of the achievements of science and philosophy. N. G. Kholodny was right noting that in the past anthropocentrism had played a positive role; it freed man from his fright at nature by means of uplifting him over the latter. But gradually, beside anthropocentrism there appeared sprouts of the new vision – anthropocosmism. Kholodny regarded anthropocosmism as a certain line of development of the human intellect, will and feelings, which led people to their aims. An essential element in anthropocosmism was the attempt to reconsider the question of man ́s place in nature and of his interrelations with cosmos on the foundation of natural scientific knowledge.