The general form of SPDE’s reads
Cov η(t, x), η(t′, x′) = δ(t − t′) δ(x − x′) —– (2)
Adt = (B + √(B2 − AC))dx —– (3)
Adt = (B − √(B2 − AC))dx —– (4)
These characteristics are the geometrical loci of the propagation of the boundary conditions.
The general form of SPDE’s reads
Cov η(t, x), η(t′, x′) = δ(t − t′) δ(x − x′) —– (2)
Adt = (B + √(B2 − AC))dx —– (3)
Adt = (B − √(B2 − AC))dx —– (4)
These characteristics are the geometrical loci of the propagation of the boundary conditions.