# Grothendieckian Construction of K-Theory with a Bundle that is Topologically Trivial and Class that is Torsion.

All relativistic quantum theories contain “antiparticles,” and allow the process of particle-antiparticle annihilation. This inspires a physical version of the Grothendieck construction of K-theory. Physics uses topological K-theory of manifolds, whose motivation is to organize vector bundles over a space into an algebraic invariant, that turns out to be useful. Algebraic K-theory started from Ki defined for i, with relations to classical constructions in algebra and number theory, followed by Quillen’s homotopy-theoretic definition ∀ i. The connections to algebra and number theory often persist for larger values of i, but in ways that are subtle and conjectural, such as special values of zeta- and L-functions.

One could also use the conserved charges of a configuration which can be measured at asymptotic infinity. By definition, these are left invariant by any physical process. Furthermore, they satisfy quantization conditions, of which the prototype is the Dirac condition on allowed electric and magnetic charges in Maxwell theory.

There is an elementary construction which, given a physical theory T, produces an abelian group of conserved charges K(T). Rather than considering the microscopic dynamics of the theory, all that is needed to be known is a set S of “particles” described by T, and a set of “bound state formation/decay processes” by which the particles combine or split to form other particles. These are called “binding processes.” Two sets of particles are “physically equivalent” if some sequence of binding processes convert the one to the other. We then define the group K(T) as the abelian group ZS of formal linear combinations of particles, quotiented by this equivalence relation.

Suppose T contains the particles S = {A,B,C}.

If these are completely stable, we could clearly define three integral conserved charges, their individual numbers, so K(T) ≅ Z3.

Introducing a binding process

A + B ↔ C —– (1)

with the bidirectional arrow to remind us that the process can go in either direction. Clearly K(T) ≅ Z2 in this case.

One might criticize this proposal on the grounds that we have assumed that configurations with a negative number of particles can exist. However, in all physical theories which satisfy the constraints of special relativity, charged particles in physical theories come with “antiparticles,” with the same mass but opposite charge. A particle and antiparticle can annihilate (combine) into a set of zero charge particles. While first discovered as a prediction of the Dirac equation, this follows from general axioms of quantum field theory, which also hold in string theory.

Thus, there are binding processes

B + B̄ ↔ Z1 + Z2 + · · · .

where B̄ is the antiparticle to a particle B, and Zi are zero charge particles, which must appear by energy conservation. To define the K-theory, we identify any such set of zero charge particles with the identity, so that

B + B̄ ↔ 0

Thus the antiparticles provide the negative elements of K(T).

Granting the existence of antiparticles, this construction of K-theory can be more simply rephrased as the Grothendieck construction. We can define K(T) as the group of pairs (E, F) ∈ (ZS, ZS), subject to the relations (E, F) ≅ (E+B, F +B) ≅ (E+L, F +R) ≅ (E+R, F +L), where (L, R) are the left and right hand side of a binding process (1).

Thinking of these as particles, each brane B must have an antibrane, which we denote by B̄. If B wraps a submanifold L, one expects that B̄ is a brane which wraps a submanifold L of opposite orientation. A potential problem is that it is not a priori obvious that the orientation of L actually matters physically, especially in degenerate cases such as L a point.

Now, let us take X as a Calabi-Yau threefold for definiteness. A physical A-brane, which are branes of the A-model topological string and thereby a TQFT shadow of the D-branes of the superstring, is specified by a pair (L, E) of a special Lagrangian submanifold L with a flat bundle E. The obvious question could be: When are (L1, E1) and (L2, E2) related by a binding process? A simple heuristic answer to this question is given by the Feynman path integral. Two configurations are connected, if they are connected by a continuous path through the configuration space; any such path (or a small deformation of it) will appear in the functional integral with some non-zero weight. Thus, the question is essentially topological. Ignoring the flat bundles for a moment, this tells us that the K-theory group for A-branes is H3(Y, Z), and the class of a brane is simply (rank E)·[L] ∈ H3(Y, Z). This is also clear if the moduli space of flat connections on L is connected.

But suppose it is not, say π1(L) is torsion. In this case, we need deeper physical arguments to decide whether the K-theory of these D-branes is H3(Y, Z), or some larger group. But a natural conjecture is that it will be K1(Y), which classifies bundles on odd-dimensional submanifolds. Two branes which differ only in the choice of flat connection are in fact connected in string theory, consistent with the K-group being H3(Y, Z). For Y a simply connected Calabi-Yau threefold, K1(Y) ≅ H3(Y, Z), so the general conjecture is borne out in this case

There is a natural bilinear form on H3(Y, Z) given by the oriented intersection number

I(L1, L2) = #([L1] ∩ [L2]) —– (2)

It has symmetry (−1)n. In particular, it is symplectic for n = 3. Furthermore, by Poincaré duality, it is unimodular, at least in our topological definition of K-theory.

D-branes, which are extended objects defined by mixed Dirichlet-Neumann boundary conditions in string theory, break half of the supersymmetries of the type II superstring and carry a complete set of electric and magnetic Ramond-Ramond charges. The product of the electric and magnetic charges is a single Dirac unit, and that the quantum of charge takes the value required by string duality. Saying that a D-brane has RR-charge means that it is a source for an “RR potential,” a generalized (p + 1)-form gauge potential in ten-dimensional space-time, which can be verified from its world-volume action that contains a minimal coupling term,

∫C(p + 1) —–(3)

where C(p + 1) denotes the gauge potential, and the integral is taken over the (p+1)-dimensional world-volume of the brane. For p = 0, C(1) is a one-form or “vector” potential (as in Maxwell theory), and thus the D0-brane is an electrically charged particle with respect to this 10d Maxwell theory. Upon further compactification, by which, the ten dimensions are R4 × X, and a Dp-brane which wraps a p-dimensional cycle L; in other words its world-volume is R × L where R is a time-like world-line in R4. Using the Poincaré dual class ωL ∈ H2n−p(X, R) to L in X, to rewrite (3) as an integral

R × X C(p + 1) ∧ ωL —– (4)

We can then do the integral over X to turn this into the integral of a one-form over a world-line in R4, which is the right form for the minimal electric coupling of a particle in four dimensions. Thus, such a wrapped brane carries a particular electric charge which can be detected at asymptotic infinity. Summarizing the RR-charge more formally,

LC = ∫XC ∧ ωL —– (5)

where C ∈ H∗(X, R). In other words, it is a class in Hp(X, R).

In particular, an A-brane (for n = 3) carries a conserved charge in H3(X, R). Of course, this is weaker than [L] ∈ H3(X, Z). To see this physically, we would need to see that some of these “electric” charges are actually “magnetic” charges, and study the Dirac-Schwinger-Zwanziger quantization condition between these charges. This amounts to showing that the angular momentum J of the electromagnetic field satisfies the quantization condition J = ħn/2 for n ∈ Z. Using an expression from electromagnetism, J⃗ = E⃗ × B⃗ , this is precisely the condition that (2) must take an integer value. Thus the physical and mathematical consistency conditions agree. Similar considerations apply for coisotropic A-branes. If X is a genuine Calabi-Yau 3-fold (i.e., with strict SU(3) holonomy), then a coisotropic A-brane which is not a special Lagrangian must be five-dimensional, and the corresponding submanifold L is rationally homologically trivial, since H5(X, Q) = 0. Thus, if the bundle E is topologically trivial, the homology class of L and thus its K-theory class is torsion.

If X is a torus, or a K3 surface, the situation is more complicated. In that case, even rationally the charge of a coisotropic A-brane need not lie in the middle-dimensional cohomology of X. Instead, it takes its value in a certain subspace of ⊕p Hp(X, Q), where the summation is over even or odd p depending on whether the complex dimension of X is even or odd. At the semiclassical level, the subspace is determined by the condition

(L − Λ)α = 0, α ∈ ⊕p Hp(X, Q)

where L and Λ are generators of the Lefschetz SL(2, C) action, i.e., L is the cup product with the cohomology class of the Kähler form, and Λ is its dual.

# Embedding Branes in Minkowski Space-Time Dimensions To Decipher Them As Particles Or Otherwise

The physics treatment of Dirichlet branes in terms of boundary conditions is very analogous to that of the “bulk” quantum field theory, and the next step is again to study the renormalization group. This leads to equations of motion for the fields which arise from the open string, namely the data (M, E, ∇). In the supergravity limit, these equations are solved by taking the submanifold M to be volume minimizing in the metric on X, and the connection ∇ to satisfy the Yang-Mills equations.

Like the Einstein equations, the equations governing a submanifold of minimal volume are highly nonlinear, and their general theory is difficult. This is one motivation to look for special classes of solutions; the physical arguments favoring supersymmetry are another. Just as supersymmetric compactification manifolds correspond to a special class of Ricci-flat manifolds, those admitting a covariantly constant spinor, supersymmetry for a Dirichlet brane will correspond to embedding it into a special class of minimal volume submanifolds. Since the physical analysis is based on a covariantly constant spinor, this special class should be defined using the spinor, or else the covariantly constant forms which are bilinear in the spinor.

The standard physical arguments leading to this class are based on the kappa symmetry of the Green-Schwarz world-volume action, in which one finds that the subset of supersymmetry parameters ε which preserve supersymmetry, both of the metric and of the brane, must satisfy

φ ≡ Re εt Γε|M = Vol|M —– (1)

In words, the real part of one of the covariantly constant forms on M must equal the volume form when restricted to the brane.

Clearly dφ = 0, since it is covariantly constant. Thus,

Z(M) ≡ ∫φ —– (2)

depends only on the homology class of M. Thus, it is what physicists would call a “topological charge”, or a “central charge”.

If in addition the p-form φ is dominated by the volume form Vol upon restriction to any p-dimensional subspace V ⊂ Tx X, i.e.,

φ|V ≤ Vol|V —– (3)

then φ will be a calibration in the sense of implying the global statement

φ ≤ ∫Vol —– (4)

for any submanifold M . Thus, the central charge |Z (M)| is an absolute lower bound for Vol(M).

A calibrated submanifold M is now one satisfying (1), thereby attaining the lower bound and thus of minimal volume. Physically these are usually called “BPS branes,” after a prototypical argument of this type due, for magnetic monopole solutions in nonabelian gauge theory.

For a Calabi-Yau X, all of the forms ωp can be calibrations, and the corresponding calibrated submanifolds are p-dimensional holomorphic submanifolds. Furthermore, the n-form Re eΩ for any choice of real parameter θ is a calibration, and the corresponding calibrated submanifolds are called special Lagrangian.

This generalizes to the presence of a general connection on M, and leads to the following two types of BPS branes for a Calabi-Yau X. Let n = dimR M, and let F be the (End(E)-valued) curvature two-form of ∇.

The first kind of BPS D-brane, based on the ωp calibrations, is (for historical reasons) called a “B-type brane”. Here the BPS constraint is equivalent to the following three requirements:

1. M is a p-dimensional complex submanifold of X.
2. The 2-form F is of type (1, 1), i.e., (E, ∇) is a holomorphic vector bundle on M.
3. In the supergravity limit, F satisfies the Hermitian Yang-Mills equation:ω|p−1M ∧ F = c · ω|pMfor some real constant c.
4. F satisfies Im e(ω|M + ils2F)p = 0 for some real constant φ, where ls is the correction.

The second kind of BPS D-brane, based on the Re eΩ calibration, is called an “A-type” brane. The simplest examples of A-branes are the so-called special Lagrangian submanifolds (SLAGs), satisfying

(1) M is a Lagrangian submanifold of X with respect to ω.

(2) F = 0, i.e., the vector bundle E is flat.

(3) Im e Ω|M = 0 for some real constant α.

More generally, one also has the “coisotropic branes”. In the case when E is a line bundle, such A-branes satisfy the following four requirements:

(1)  M is a coisotropic submanifold of X with respect to ω, i.e., for any x ∈ M the skew-orthogonal complement of TxM ⊂ TxX is contained in TxM. Equivalently, one requires ker ωM to be an integrable distribution on M.

(2)  The 2-form F annihilates ker ωM.

(3)  Let F M be the vector bundle T M/ ker ωM. It follows from the first two conditions that ωM and F descend to a pair of skew-symmetric forms on FM, denoted by σ and f. Clearly, σ is nondegenerate. One requires the endomorphism σ−1f : FM → FM to be a complex structure on FM.

(4)  Let r be the complex dimension of FM. r is even and that r + n = dimR M. Let Ω be the holomorphic trivialization of KX. One requires that Im eΩ|M ∧ Fr/2 = 0 for some real constant α.

Coisotropic A-branes carrying vector bundles of higher rank are still not fully understood. Physically, one must also specify the embedding of the Dirichlet brane in the remaining (Minkowski) dimensions of space-time. The simplest possibility is to take this to be a time-like geodesic, so that the brane appears as a particle in the visible four dimensions. This is possible only for a subset of the branes, which depends on which string theory one is considering. Somewhat confusingly, in the type IIA theory, the B-branes are BPS particles, while in IIB theory, the A-branes are BPS particles.

# How Black Holes Emitting Hawking Radiation At Best Give Non-Trivial Information About Planckian Physics: Towards Entanglement Entropy.

The analogy between quantised sound waves in fluids and quantum fields in curved space-times facilitates an interdisciplinary knowhow transfer in both directions. On the one hand, one may use the microscopic structure of the fluid as a toy model for unknown high-energy (Planckian) effects in quantum gravity, for example, and investigate the influence of the corresponding cut-off. Examining the derivation of the Hawking effect for various dispersion relations, one reproduces Hawking radiation for a rather large class of scenarios, but there are also counter-examples, which do not appear to be unphysical or artificial, displaying strong deviations from Hawkings result. Therefore, whether real black holes emit Hawking radiation remains an open question and could give non-trivial information about Planckian physics.

On the other hand, the emergence of an effective geometry/metric allows us to apply the vast amount of universal tools and concepts developed for general relativity (such as horizons), which provide a unified description and better understanding of (classical and quantum) non-equilibrium phenomena (e.g., freezing and amplification of quantum fluctuations) in condensed matter systems. As an example for such a universal mechanism, the Kibble-Zurek effect describes the generation of topological effects due to the amplification of classical/thermal fluctuations in non-equilibrium thermal phase transitions. The loss of causal connection underlying the Kibble-Zurek mechanism can be understood in terms of an effective horizon – which clearly indicates the departure from equilibrium. The associated breakdown of adiabaticity leads to an amplification of thermal fluctuations (as in the Kibble-Zurek mechanism) as well as quantum fluctuations (at zero temperature). The zero-temperature version of this amplification mechanism is completely analogous to the early universe and becomes particularly important for the new and rapidly developing field of quantum phase transitions.

Furthermore, these analogue models might provide the exciting opportunity of measuring the analogues of these exotic effects – such as Hawking radiation or the generation of the seeds for structure formation during inflation – in actual laboratory experiments, i.e., experimental quantum simulations of black hole physics or the early universe. Even though the detection of these exotic quantum effects is partially very hard and requires ultra-low temperatures etc., there is no (known) principal objection against it. The analogue models range from black and/or white hole event horizons in flowing fluids and other laboratory systems over apparent horizons in expanding Bose–Einstein condensates, for example, to particle horizons in quantum phase transitions etc.

However, one should stress that the analogy reproduces the kinematics (quantum fields in curved space-times with horizons etc.) but not the dynamics, i.e., the effective geometry/metric is not described by the Einstein equations in general. An important and strongly related problem is the correct description of the back-reaction of the quantum fluctuations (e.g., phonons) onto the background (e.g., fluid flow). In gravity, the impact of the (classical or quantum) matter is usually incorporated by the (expectation value of) energy-momentum tensor. Since this quantity can be introduced at a purely kinematic level, one may use the same construction for phonons in flowing fluids, for example, the pseudo energy-momentum tensor. The relevant component of this tensor describing the energy density (which is conserved for stationary flows) may become negative as soon as the flow velocity exceeds the sound speed. These negative contributions explain the energy balance of the Hawking radiation in black hole analogues as well as super-radiant scattering. However, the (expectation value of the) pseudo energy-momentum tensor does not determine the quantum back-reaction correctly.

One should not neglect to mention the occurrence of a horizon in the laboratory – the Unruh effect. A uniformly accelerated observer cannot see half of the (1+1- dimensional) space-time, the two Rindler wedges are completely causally disconnected by the horizon(s). In each wedge, one may introduce a set of observables corresponding to the measurements made by the observers confined to this wedge – thereby obtaining two equivalent copies of observables in one wedge. In terms of these two copies, the Minkowski vacuum is an entangled state which yields the usual phenomena (thermo-field formalism) including the Unruh effect – i.e., the uniformly accelerated observer experiences the Minkowski vacuum as a thermal bath: For rather general quantum fields (Bisognano-Wichmann theorem), the quantum state ρ obtained by restricting the Minkowski vacuum to one of the Rindler wedges behaves as a mixed state ρ = exp{−2πHˆτ/κ}/Z, where Hˆτ corresponds to the Hamiltonian generating the proper (co-moving wristwatch) time τ measured by the accelerated observer and κ is the analogue to the surface gravity and determines the acceleration.

Space-time diagram with a trajectory of a uniformly accelerated observer and the resulting particle horizons. The observer is confined to the right Rindler wedge (region x > |ct| between the two horizons) and cannot influence or be influenced by all events in the left Rindler wedge (x < |ct|), which is completely causally disconnected.

The thermal character of this restricted state ρ arises from the quantum correlations of the Minkowski vacuum in the two Rindler wedges, i.e., the Minkowski vacuum is a multi-mode squeezed state with respect the two equivalent copies of observables in each wedge. This is a quite general phenomenon associated with doubling the degrees of freedom and describes the underlying idea of the thermo-field formalism, for example. The entropy of the thermal radiation in the Unruh and the Hawking effect can be understood as an entanglement entropy: For the Unruh effect, it is caused by averaging over the quantum correlations between the two Rindler wedges. In the black hole case, each particle of the outgoing Hawking radiation has its infalling partner particle (with a negative energy with respect to spatial infinity) and the entanglement between the two generates the entropy flux of the Hawking radiation. Instead of accelerating a detector and measuring its excitations, one could replace the accelerated observer by an accelerated scatterer. This device would scatter (virtual) particles from the thermal bath and thereby create real particles – which can be interpreted as a signature of Unruh effect.

# Spirit is Matter on the Seventh Plane; Matter is Spirit – on the Lowest Point of its Cyclic Activity; and Both — are MAYA. Note Quote.

In the 1930s the scientist Sir James Jeans wrote:

the tendency of modem physics is to resolve the whole material universe into waves, and nothing but waves. These waves are of two kinds: bottled-up waves, which we call matter, and unbottled waves, which we call radiation or light. If annihilation of matter occurs, the process is merely that of unbottling imprisoned wave-energy and setting it free to travel through space. These concepts reduce the whole universe to a world of light, potential or existent . . . . — The Mysterious Universe

The idea of matter being crystallized light echoes what H. P. Blavatsky wrote half a century earlier in The Secret Doctrine, where she speaks of “that infinite Ocean of Light, whose one pole is pure Spirit lost in the absoluteness of Non-Being, and the other, the matter in which it condenses, crystallizing into a more and more gross type as it descends into manifestation” (The Secret Doctrine). Material particles, she said, were infinitely divisible centers of force, and matter could therefore exist in infinitely varying degrees of density. Our physical senses have been evolved to perceive only one particular plane of matter, which is interpenetrated by countless other worlds or planes invisible to us because composed of ranges of energy-substance both finer and grosser than our own.

Modern science has analyzed matter down to the point where it vanishes into wisps of energy. Energy is said to be a measure of motion or activity. But motion of what? It is a truism that there can be no motion without something that moves. Scientists in the last century believed that wave-motion took place in a universal medium called the ether. This hypothesis was abandoned because the ether proved to be chemically and physically undetectable, and science was left with the unlikely idea that waves are transmitted through “empty space.”

Modern physicists believe that underlying the material world there is a quantum field, also called the quantum void or vacuum. The quantum field is said to be “a continuous medium which is present everywhere in space” (The Tao of Physics) and matter is said to be constituted by regions of space in which the field is extremely intense. Scientists assert that the quantum field is non-material, but deny that it is mere nothingness. Paul Davies states that the quantum void is not inert and featureless but throbbing with energy and vitality, a seething ferment of “Virtual” particles and “ghost” particles. (Superforce) It therefore seems to be actually a form of ether, which is non-material only in the sense that it is not composed of physical matter. Rather than material particles being “knots of nothingness,” as Davies calls them, they may therefore be seen as vibrations in an etheric medium composed of a subtler, superphysical grade of substance. The same reasoning applies to all the other “non-material” fields and forces postulated by science.

Everything is relative. Physical matter is condensed energy, but what for us is energy would be matter for beings on a higher plane than ours, as is suggested by the fact that energy does not exist in a continuous flow but is composed of discrete units or quanta. Likewise, the energy on the next plane would be matter to an even higher plane. The loftiest form of energy in any particular hierarchy of worlds is what we call spirit or consciousness. As H. P. Blavatsky put it: “Spirit is matter on the seventh plane; matter is Spirit – on the lowest point of its cyclic activity; and both — are MAYA.” (The Secret Doctrine). To say that spirit and matter are “maya” or illusion does not mean that they do not exist, but that we do not understand them as they really are. Any particular plane of energy-substance can be understood only with reference to superior, causal planes. Everything — from atom to human, from star to universe — is the expression of something higher.

Throughout the ages, sages and seers have suggested that hidden within the phenomenal world in which we live there are inner worlds of reality — astral, mental, and spiritual — and that the physical world is but a pale shadow of the spiritual world. These inner worlds cannot be investigated with physical instruments, but only by delving into the depths of our own minds and consciousness, and this requires many lives of self-purification and self-conquest. Scientists using only materialistic methods are in no position to deny point-blank the possibility of such higher planes.

Most scientists, in fact, now believe that some 90% of the matter in the universe exists in a state unknown to them; it is called “dark matter” because it is physically unobservable, and its existence is known of only by its gravitational effects. Such matter is suggestive of the higher subplanes and planes postulated by theosophy, which are composed of matter of increasingly slower rates of vibration and are therefore beyond our range of perception. Given scientists’ confessed ignorance of most of the matter in the universe and their inability to explain satisfactorily the evolution of life and consciousness and the “laws of nature” along materialistic lines, any suggestion that they are on the verge of discovering the innermost secrets of nature or of reducing the mystery of existence to a single equation is premature to say the least!

In theosophical philosophy, the physical universe is regarded as no more than a cross section through infinitude. Universal nature is composed of worlds within worlds within worlds, filled full of conscious, living beings at infinitely varying stages of their evolutionary awakenment. Our finite minds cannot embrace the infinite. As G. de Purucker says in his Fundamentals of the Esoteric Philosophy, we can do no more than to try and form a simple conception of the Boundless All: never-ending life and consciousness in unceasing motion everywhere. The ancients, he says, were never so foolish as to try to fathom infinitude. They recognized the reality of being and let it go at that, knowing that an ever-expanding consciousness and an ever-growing understanding of existence is all that we can ever attain to during our eternal evolutionary journey through the fields of infinitude.

# Fock Space

Fock space is just another separable infinite dimensional Hilbert space (and so isomorphic to all its separable infinite dimensional brothers). But the key is writing it down in a fashion that suggests a particle interpretation. In particular, suppose that H is the one-particle Hilbert space, i.e. the state space for a single particle. Now depending on whether our particle is a Boson or a Fermion, the state space of a pair of these particles is either Es(H ⊗ H) or Ea(H ⊗ H), where Es is the projection onto the vectors invariant under the permutation ΣH,H on H ⊗ H, and Ea is the projection onto vectors that change signs under ΣH,H. For

present purposes, we ignore these differences, and simply use H ⊗ H to denote one possibility or the other. Now, proceeding down the line, for n particles, we have the Hilbert space Hn ≡ H ⊗ · · · ⊗ H, etc..

A state in Hn is definitely a state of n particles. To get disjunctive states, we make use of the direct sum operation “⊕” on Hilbert spaces. So we define the Fock space F(H) over H as the infinite direct sum:

F (H ) = C ⊕ H ⊕ (H ⊗ H ) ⊕ (H ⊗ H ⊗ H ) ⊕ · · · .

So, the state vectors in Fock space include a state where there are no particles (the vector lies in the first summand), a state where there is one particle, a state where there are two particles, etc.. Furthermore, there are states that are superpositions of different numbers of particles.

One can spend time worrying about what it means to say that particle numbers can be superposed. But that is the “half empty cup” point of view. From the “half full cup” point of view, it makes sense to count particles. Indeed, the positive (unbounded) operator

N=0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕···,

is the formal element of our model that permits us to talk about the number of particles.

In the category of Hilbert spaces, all separable Hilbert spaces are isomorphic – there is no difference between Fock space and the single particle space. If we are not careful, we could become confused about the bearer of the name “Fock space.”

The confusion goes away when we move to the appropriate category. According to Wigner’s analysis, a particle corresponds to an irreducible unitary representation of the identity component P of the Poincaré group. Then the single particle space and Fock space are distinct objects in the category of representations of P. The underlying Hilbert spaces of the two representations are both separable (and hence isomorphic as Hilbert spaces); but the two representations are most certainly not equivalent (one is irreducible, the other reducible).