Hypostatic Abstraction. Thought of the Day 138.0

maxresdefault

Hypostatic abstraction is linguistically defined as the process of making a noun out of an adjective; logically as making a subject out of a predicate. The idea here is that in order to investigate a predicate – which other predicates it is connected to, which conditions it is subjected to, in short to test its possible consequences using Peirce’s famous pragmatic maxim – it is necessary to posit it as a subject for investigation.

Hypostatic abstraction is supposed to play a crucial role in the reasoning process for several reasons. The first is that by making a thing out of a thought, it facilitates the possibility for thought to reflect critically upon the distinctions with which it operates, to control them, reshape them, combine them. Thought becomes emancipated from the prison of the given, in which abstract properties exist only as Husserlian moments, and even if prescission may isolate those moments and induction may propose regularities between them, the road for thought to the possible establishment of abstract objects and the relations between them seems barred. The object created by a hypostatic abstraction is a thing, but it is of course no actually existing thing, rather it is a scholastic ens rationis, it is a figment of thought. It is a second intention thought about a thought – but this does not, in Peirce’s realism, imply that it is necessarily fictitious. In many cases it may indeed be, but in other cases we may hit upon an abstraction having real existence:

Putting aside precisive abstraction altogether, it is necessary to consider a little what is meant by saying that the product of subjectal abstraction is a creation of thought. (…) That the abstract subject is an ens rationis, or creation of thought does not mean that it is a fiction. The popular ridicule of it is one of the manifestations of that stoical (and Epicurean, but more marked in stoicism) doctrine that existence is the only mode of being which came in shortly before Descartes, in concsequence of the disgust and resentment which progressive minds felt for the Dunces, or Scotists. If one thinks of it, a possibility is a far more important fact than any actuality can be. (…) An abstraction is a creation of thought; but the real fact which is important in this connection is not that actual thinking has caused the predicate to be converted into a subject, but that this is possible. The abstraction, in any important sense, is not an actual thought but a general type to which thought may conform.

The seemingly scepticist pragmatic maxim never ceases to surprise: if we take all possible effects we can conceive an object to have, then our conception of those effects is identical with our conception of that object, the maxim claims – but if we can conceive of abstract properties of the objects to have effects, then they are part of our conception of it, and hence they must possess reality as well. An abstraction is a possible way for an object to behave – and if certain objects do in fact conform to this behavior, then that abstraction is real; it is a ‘real possibility’ or a general object. If not, it may still retain its character of possibility. Peirce’s definitions of hypostatic abstractions now and then confuse this point. When he claims that

An abstraction is a substance whose being consists in the truth of some proposition concerning a more primary substance,

then the abstraction’s existence depends on the truth of some claim concerning a less abstract substance. But if the less abstract substance in question does not exist, and the claim in question consequently will be meaningless or false, then the abstraction will – following that definition – cease to exist. The problem is only that Peirce does not sufficiently clearly distinguish between the really existing substances which abstractive expressions may refer to, on the one hand, and those expressions themselves, on the other. It is the same confusion which may make one shuttle between hypostatic abstraction as a deduction and as an abduction. The first case corresponds to there actually existing a thing with the quality abstracted, and where we consequently may expect the existence of a rational explanation for the quality, and, correlatively, the existence of an abstract substance corresponding to the supposed ens rationis – the second case corresponds to the case – or the phase – where no such rational explanation and corresponding abstract substance has yet been verified. It is of course always possible to make an abstraction symbol, given any predicate – whether that abstraction corresponds to any real possibility is an issue for further investigation to estimate. And Peirce’s scientific realism makes him demand that the connections to actual reality of any abstraction should always be estimated (The Essential Peirce):

every kind of proposition is either meaningless or has a Real Secondness as its object. This is a fact that every reader of philosophy should carefully bear in mind, translating every abstractly expressed proposition into its precise meaning in reference to an individual experience.

This warning is directed, of course, towards empirical abstractions which require the support of particular instances to be pragmatically relevant but could hardly hold for mathematical abstraction. But in any case hypostatic abstraction is necessary for the investigation, be it in pure or empirical scenarios.

Advertisement

Fallibilist a priori. Thought of the Day 127.0

Figure-1-Peirce's-ten-classes-of-sign-represented-in-terms-of-three-core-functions-and

Kant’s ‘transcendental subject’ is pragmatized in this notion in Peirce, transcending any delimitation of reason to the human mind: the ‘anybody’ is operational and refers to anything which is able to undertake reasoning’s formal procedures. In the same way, Kant’s synthetic a priori notion is pragmatized in Peirce’s account:

Kant declares that the question of his great work is ‘How are synthetical judgments a priori possible?’ By a priori he means universal; by synthetical, experiential (i.e., relating to experience, not necessarily derived wholly from experience). The true question for him should have been, ‘How are universal propositions relating to experience to be justified?’ But let me not be understood to speak with anything less than profound and almost unparalleled admiration for that wonderful achievement, that indispensable stepping-stone of philosophy. (The Essential Peirce Selected Philosophical Writings)

Synthetic a priori is interpreted as experiential and universal, or, to put it another way, observational and general – thus Peirce’s rationalism in demanding rational relations is connected to his scholastic realism posing the existence of real universals.

But we do not make a diagram simply to represent the relation of killer to killed, though it would not be impossible to represent this relation in a Graph-Instance; and the reason why we do not is that there is little or nothing in that relation that is rationally comprehensible. It is known as a fact, and that is all. I believe I may venture to affirm that an intelligible relation, that is, a relation of thought, is created only by the act of representing it. I do not mean to say that if we should some day find out the metaphysical nature of the relation of killing, that intelligible relation would thereby be created. [ ] No, for the intelligible relation has been signified, though not read by man, since the first killing was done, if not long before. (The New Elements of Mathematics)

Peirce’s pragmatizing Kant enables him to escape the threatening subjectivism: rational relations are inherent in the universe and are not our inventions, but we must know (some of) them in order to think. The relation of killer to killed, is not, however, given our present knowledge, one of those rational relations, even if we might later become able to produce a rational diagram of aspects of it. Yet, such a relation is, as Peirce says, a mere fact. On the other hand, rational relations are – even if inherent in the universe – not only facts. Their extension is rather that of mathematics as such, which can be seen from the fact that the rational relations are what make necessary reasoning possible – at the same time as Peirce subscribes to his father’s mathematics definition: Mathematics is the science that draws necessary conclusions – with Peirce’s addendum that these conclusions are always hypothetical. This conforms to Kant’s idea that the result of synthetic a priori judgments comprised mathematics as well as the sciences built on applied mathematics. Thus, in constructing diagrams, we have all the possible relations in mathematics (which is inexhaustible, following Gödel’s 1931 incompleteness theorem) at our disposal. Moreover, the idea that we might later learn about the rational relations involved in killing entails a historical, fallibilist rendering of the a priori notion. Unlike the case in Kant, the a priori is thus removed from a privileged connection to the knowing subject and its transcendental faculties. Thus, Peirce rather anticipates a fallibilist notion of the a priori.

Valencies of Predicates. Thought of the Day 125.0

Naturalizing semiotics - The triadic sign of Charles Sanders Pei

Since icons are the means of representing qualities, they generally constitute the predicative side of more complicated signs:

The only way of directly communicating an idea is by means of an icon; and every indirect method of communicating an idea must depend for its establishment upon the use of an icon. Hence, every assertion must contain an icon or set of icons, or else must contain signs whose meaning is only explicable by icons. The idea which the set of icons (or the equivalent of a set of icons) contained in an assertion signifies may be termed the predicate of the assertion. (Collected Papers of Charles Sanders Peirce)

Thus, the predicate in logic as well as ordinary language is essentially iconic. It is important to remember here Peirce’s generalization of the predicate from the traditional subject-copula-predicate structure. Predicates exist with more than one subject slot; this is the basis for Peirce’s logic of relatives and permits at the same time enlarging the scope of logic considerably and approaching it to ordinary language where several-slot-predicates prevail, for instance in all verbs with a valency larger than one. In his definition of these predicates by means of valency, that is, number of empty slots in which subjects or more generally indices may be inserted, Peirce is actually the founder of valency grammar in the tradition of Tesnière. So, for instance, the structure ‘_ gives _ to _’ where the underlinings refer to slots, is a trivalent predicate. Thus, the word classes associated with predicates are not only adjectives, but verbs and common nouns; in short all descriptive features in language are predicative.

This entails the fact that the similarity charted in icons covers more complicated cases than does the ordinary use of the word. Thus,

where ordinary logic considers only a single, special kind of relation, that of similarity, – a relation, too, of a particularly featureless and insignificant kind, the logic of relatives imagines a relation in general to be placed. Consequently, in place of the class, which is composed of a number of individual objects or facts brought together by means of their relation of similarity, the logic of relatives considers the system, which is composed of objects brought together by any kind of relations whatsoever. (The New Elements of Mathematics)

This allows for abstract similarity because one phenomenon may be similar to another in so far as both of them partake in the same relation, or more generally, in the same system – relations and systems being complicated predicates.

But not only more abstract features may thus act as the qualities invoked in an icon; these qualities may be of widely varying generality:

But instead of a single icon, or sign by resemblance of a familiar image or ‘dream’, evocable at will, there may be a complexus of such icons, forming a composite image of which the whole is not familiar. But though the whole is not familiar, yet not only are the parts familiar images, but there will also be a familiar image in its mode of composition. ( ) The sort of idea which an icon embodies, if it be such that it can convey any positive information, being applicable to some things but not to others, is called a first intention. The idea embodied by an icon, which cannot of itself convey any information, being applicable to everything or nothing, but which may, nevertheless, be useful in modifying other icons, is called a second intention. 

What Peirce distinguishes in these scholastic standard notions borrowed from Aquinas via Scotus, is, in fact, the difference between Husserlian formal and material ontology. Formal qualities like genus, species, dependencies, quantities, spatial and temporal extension, and so on are of course attributable to any phenomenon and do not as such, in themselves, convey any information in so far as they are always instantiated in and thus, like other Second Intentions, in the Husserlian manner dependent upon First Intentions, but they are nevertheless indispensable in the composition of first intentional descriptions. The fact that a certain phenomenon is composed of parts, has a form, belongs to a species, has an extension, has been mentioned in a sentence etc. does not convey the slightest information of it until it by means of first intentional icons is specified which parts in which composition, which species, which form, etc. Thus, here Peirce makes a hierarchy of icons which we could call material and formal, respectively, in which the latter are dependent on the former. One may note in passing that the distinctions in Peirce’s semiotics are themselves built upon such Second Intentions; thus it is no wonder that every sign must possess some Iconic element. Furthermore, the very anatomy of the proposition becomes just like in Husserlian rational grammar a question of formal, synthetic a priori regularities.

Among Peirce’s forms of inference, similarity plays a certain role within abduction, his notion for a ‘qualified guess’ in which a particular fact gives rise to the formation of a hypothesis which would have the fact in question as a consequence. Many such different hypotheses are of course possible for a given fact, and this inference is not necessary, but merely possible, suggestive. Precisely for this reason, similarity plays a seminal role here: an

originary Argument, or Abduction, is an argument which presents facts in its Premiss which presents a similarity to the fact stated in the conclusion but which could perfectly be true without the latter being so.

The hypothesis proposed is abducted by some sort of iconic relation to the fact to be explained. Thus, similarity is the very source of new ideas – which must subsequently be controlled deductively and inductively, to be sure. But iconicity does not only play this role in the contents of abductive inference, it plays an even more important role in the very form of logical inference in general:

Given a conventional or other general sign of an object, to deduce any other truth than that which it explicitly signifies, it is necessary, in all cases, to replace that sign by an icon. This capacity of revealing unexpected truth is precisely that wherein the utility of algebraic formulae consists, so that the iconic character is the prevailing one.

The very form of inferences depends on it being an icon; thus for Peirce the syllogistic schema inherent in reasoning has an iconic character:

‘Whenever one thing suggests another, both are together in the mind for an instant. [ ] every proposition like the premiss, that is having an icon like it, would involve [ ] a proposition related to it as the conclusion [ ]’. Thus, first and foremost deduction is an icon: ‘I suppose it would be the general opinion of logicians, as it certainly was long mine, that the Syllogism is a Symbol, because of its Generality.’ …. The truth, however, appears to be that all deductive reasoning, even simple syllogism, involves an element of observation; namely deduction consists in constructing an icon or diagram the relation of whose parts shall present a complete analogy with those of the parts of the objects of reasoning, of experimenting upon this image in the imagination, and of observing the result so as to discover unnoticed and hidden relations among the parts. 

It then is no wonder that synthetic a priori truths exist – even if Peirce prefers notions like ‘observable, universal truths’ – the result of a deduction may contain more than what is immediately present in the premises, due to the iconic quality of the inference.

Metaphysical Would-Be(s). Drunken Risibility.

2483194094_be8c241308_b

If one were to look at Quine’s commitment to similarity, natural kinds, dispositions, causal statements, etc., it is evident, that it takes him close to Peirce’s conception of Thirdness – even if Quine in an utopian vision imagines that all such concepts in a remote future will dissolve and vanish in favor of purely microstructural descriptions.

A crucial difference remains, however, which becomes evident when one looks at Quine’s brief formula for ontological commitment, the famous idea that ‘to be is to be the value of a bound variable’. For even if this motto is stated exactly to avoid commitment to several different types of being, it immediately prompts the question: the equation, in which the variable is presumably bound, which status does it have? Governing the behavior of existing variable values, is that not in some sense being real?

This will be Peirce’s realist idea – that regularities, tendencies, dispositions, patterns, may possess real existence, independent of any observer. In Peirce, this description of Thirdness is concentrated in the expression ‘real possibility’, and even it may sound exceedingly metaphysical at a first glance, it amounts, at a closer look, to regularities charted by science that are not mere shorthands for collections of single events but do possess reality status. In Peirce, the idea of real possibilities thus springs from his philosophy of science – he observes that science, contrary to philosophy, is spontaneously realist, and is right in being so. Real possibilities are thus counterposed to mere subjective possibilities due to lack of knowledge on the part of the subject speaking: the possibility of ‘not known not to be true’.

In a famous piece of self-critique from his late, realist period, Peirce attacks his earlier arguments (from ‘How to Make Our Ideas Clear’, in the late 1890s considered by himself the birth certificate of pragmatism after James’s reference to Peirce as pragmatism’s inventor). Then, he wrote

let us ask what we mean by calling a thing hard. Evidently that it will not be scratched by many other substances. The whole conception of this quality, as of every other, lies in its conceived effects. There is absolutely no difference between a hard thing and a soft thing so long as they are not brought to the test. Suppose, then, that a diamond could be crystallized in the midst of a cushion of soft cotton, and should remain there until it was finally burned up. Would it be false to say that that diamond was soft? […] Reflection will show that the reply is this: there would be no falsity in such modes of speech.

More than twenty-five years later, however, he attacks this argument as bearing witness to the nominalism of his youth. Now instead he supports the

scholastic doctrine of realism. This is usually defined as the opinion that there are real objects that are general, among the number being the modes of determination of existent singulars, if, indeed, these be not the only such objects. But the belief in this can hardly escape being accompanied by the acknowledgment that there are, besides, real vagues, and especially real possibilities. For possibility being the denial of a necessity, which is a kind of generality, is vague like any other contradiction of a general. Indeed, it is the reality of some possibilities that pragmaticism is most concerned to insist upon. The article of January 1878 endeavored to gloze over this point as unsuited to the exoteric public addressed; or perhaps the writer wavered in his own mind. He said that if a diamond were to be formed in a bed of cotton-wool, and were to be consumed there without ever having been pressed upon by any hard edge or point, it would be merely a question of nomenclature whether that diamond should be said to have been hard or not. No doubt this is true, except for the abominable falsehood in the word MERELY, implying that symbols are unreal. Nomenclature involves classification; and classification is true or false, and the generals to which it refers are either reals in the one case, or figments in the other. For if the reader will turn to the original maxim of pragmaticism at the beginning of this article, he will see that the question is, not what did happen, but whether it would have been well to engage in any line of conduct whose successful issue depended upon whether that diamond would resist an attempt to scratch it, or whether all other logical means of determining how it ought to be classed would lead to the conclusion which, to quote the very words of that article, would be ‘the belief which alone could be the result of investigation carried sufficiently far.’ Pragmaticism makes the ultimate intellectual purport of what you please to consist in conceived conditional resolutions, or their substance; and therefore, the conditional propositions, with their hypothetical antecedents, in which such resolutions consist, being of the ultimate nature of meaning, must be capable of being true, that is, of expressing whatever there be which is such as the proposition expresses, independently of being thought to be so in any judgment, or being represented to be so in any other symbol of any man or men. But that amounts to saying that possibility is sometimes of a real kind. (The Essential Peirce Selected Philosophical Writings, Volume 2)

In the same year, he states, in a letter to the Italian pragmatist Signor Calderoni:

I myself went too far in the direction of nominalism when I said that it was a mere question of the convenience of speech whether we say that a diamond is hard when it is not pressed upon, or whether we say that it is soft until it is pressed upon. I now say that experiment will prove that the diamond is hard, as a positive fact. That is, it is a real fact that it would resist pressure, which amounts to extreme scholastic realism. I deny that pragmaticism as originally defined by me made the intellectual purport of symbols to consist in our conduct. On the contrary, I was most careful to say that it consists in our concept of what our conduct would be upon conceivable occasions. For I had long before declared that absolute individuals were entia rationis, and not realities. A concept determinate in all respects is as fictitious as a concept definite in all respects. I do not think we can ever have a logical right to infer, even as probable, the existence of anything entirely contrary in its nature to all that we can experience or imagine. 

Here lies the core of Peirce’s metaphysical insistence on the reality of ‘would-be’s. Real possibilities, or would-bes, are vague to the extent that they describe certain tendential, conditional behaviors only, while they do not prescribe any other aspect of the single objects they subsume. They are, furthermore, represented in rationally interrelated clusters of concepts: the fact that the diamond is in fact hard, no matter if it scratches anything or not, lies in the fact that the diamond’s carbon structure displays a certain spatial arrangement – so it is an aspect of the very concept of diamond. And this is why the old pragmatic maxim may not work without real possibilities: it is they that the very maxim rests upon, because it is they that provide us with the ‘conceived consequences’ of accepting a concept. The maxim remains a test to weed out empty concepts with no conceived consequences – that is, empty a priori reasoning and superfluous metaphysical assumptions. But what remains after the maxim has been put to use, is real possibilities. Real possibilities thus connect epistemology, expressed in the pragmatic maxim, to ontology: real possibilities are what science may grasp in conditional hypotheses.

The question is whether Peirce’s revision of his old ‘nominalist’ beliefs form part of a more general development in Peirce from nominalism to realism. The locus classicus of this idea is Max Fisch (Peirce, Semeiotic and Pragmatism) where Fisch outlines a development from an initial nominalism (albeit of a strange kind, refusing, as always in Peirce, the existence of individuals determinate in all respects) via a series of steps towards realism, culminating after the turn of the century. Fisch’s first step is then Peirce’s theory of the real as that which reasoning would finally have as its result; the second step his Berkeley review with its anti-nominalism and the idea that the real is what is unaffected by what we may think of it; the third step is his pragmatist idea that beliefs are conceived habits of action, even if he here clings to the idea that the conditionals in which habits are expressed are material implications only – like the definition of ‘hard’; the fourth step his reading of Abbott’s realist Scientific Theism (which later influenced his conception of scientific universals) and his introduction of the index in his theory of signs; the fifth step his acceptance of the reality of continuity; the sixth the introduction of real possibilities, accompanied by the development of existential graphs, topology and Peirce’s changing view of Hegelianism; the seventh, the identification of pragmatism with realism; the eighth ‘his last stronghold, that of Philonian or material implication’. A further realist development exchanging Peirce’s early frequentist idea of probability for a dispositional theory of probability was, according to Fisch, never finished.

The issue of implication concerns the old discussion quoted by Cicero between the Hellenistic logicians Philo and Diodorus. The former formulated what we know today as material implication, while the latter objected on common-sense ground that material implication does not capture implication in everyday language and thought and another implication type should be sought. As is well known, material implication says that p ⇒ q is equivalent to the claim that either p is false or q is true – so that p ⇒ q is false only when p is true and q is false. The problems arise when p is false, for any false p makes the implication true, and this leads to strange possibilities of true inferences. The two parts of the implication have no connection with each other at all, such as would be the spontaneous idea in everyday thought. It is true that Peirce as a logician generally supports material (‘Philonian’) implication – but it is also true that he does express some second thoughts at around the same time as the afterthoughts on the diamond example.

Peirce is a forerunner of the attempts to construct alternatives such as strict implication, and the reason why is, of course, that real possibilities are not adequately depicted by material implication. Peirce is in need of an implication which may somehow picture the causal dependency of q on p. The basic reason for the mature Peirce’s problems with the representation of real possibilities is not primarily logical, however. It is scientific. Peirce realizes that the scientific charting of anything but singular, actual events necessitates the real existence of tendencies and relations connecting singular events. Now, what kinds are those tendencies and relations? The hard diamond example seems to emphasize causality, but this probably depends on the point of view chosen. The ‘conceived consequences’ of the pragmatic maxim may be causal indeed: if we accept gravity as a real concept, then masses will attract one another – but they may all the same be structural: if we accept horse riders as a real concept, then we should expect horses, persons, the taming of horses, etc. to exist, or they may be teleological. In any case, the interpretation of the pragmatic maxim in terms of real possibilities paves the way for a distinction between empty a priori suppositions and real a priori structures.

Metaphysical Continuity in Peirce. Thought of the Day 122.0

image12

Continuity has wide implications in the different parts of Peirce’s architectonics of theories. Time and time again, Peirce refers to his ‘principle of continuity’ which has not immediately anything to do with Poncelet’s famous such principle in geometry, but, is rather, a metaphysical implication taken to follow from fallibilism: if all more or less distinct phenomena swim in a vague sea of continuity then it is no wonder that fallibilism must be accepted. And if the world is basically continuous, we should not expect conceptual borders to be definitive but rather conceive of terminological distinctions as relative to an underlying, monist continuity. In this system, mathematics is first science. Thereafter follows philosophy which is distinguished form purely hypothetical mathematics by having an empirical basis. Philosophy, in turn, has three parts, phenomenology, the normative sciences, and metaphysics. The first investigates solely ‘the Phaneron’ which is all what could be imagined to appear as an object for experience: ‘ by the word phaneron I mean the collective total of all that is in any way or in any sense present to the mind, quite regardless whether it corresponds to any real thing or not.’ (Charles Sanders Peirce – Collected Papers of Charles Sanders Peirce) As is evident, this definition of Peirce’s ‘phenomenology’ is parallel to Husserl’s phenomenological reduction in bracketing the issue of the existence of the phenomenon in question. Even if it thus is built on introspection and general experience, it is – analogous to Husserl and other Brentano disciples at the same time – conceived in a completely antipsychological manner: ‘It religiously abstains from all speculation as to any relations between its categories and physiological facts, cerebral or other.’ and ‘ I abstain from psychology which has nothing to do with ideoscopy.’ (Letter to Lady Welby). The normative sciences fall in three: aesthetics, ethics, logic, in that order (and hence decreasing generality), among which Peirce does not spend very much time on the former two. Aesthetics is the investigation of which possible goals it is possible to aim at (Good, Truth, Beauty, etc.), and ethics how they may be reached. Logic is concerned with the grasping and conservation of Truth and takes up the larger part of Peirce’s interest among the normative sciences. As it deals with how truth can be obtained by means of signs, it is also called semiotics (‘logic is formal semiotics’) which is thus coextensive with theory of science – logic in this broad sense contains all parts of philosophy of science, including contexts of discovery as well as contexts of justification. Semiotics has, in turn, three branches: grammatica speculativa (or stekheiotics), critical logic, and methodeutic (inspired by mediaeval trivium: grammar, logic, and rhetoric). The middle one of these three lies closest to our days’ conception of logic; it is concerned with the formal conditions for truth in symbols – that is, propositions, arguments, their validity and how to calculate them, including Peirce’s many developments of the logic of his time: quantifiers, logic of relations, ab-, de-, and induction, logic notation systems, etc. All of these, however, presuppose the existence of simple signs which are investigated by what is often seen as semiotics proper, the grammatica speculativa; it may also be called formal grammar. It investigates the formal condition for symbols having meaning, and it is here we find Peirce’s definition of signs and his trichotomies of different types of sign aspects. Methodeutic or formal rhetorics, on the other hand, concerns the pragmatical use of the former two branches, that is, the study of how to use logic in a fertile way in research, the formal conditions for the ‘power’ of symbols, that is, their reference to their interpretants; here can be found, e.g., Peirce’s famous definitions of pragmati(ci)sm and his directions for scientific investigation. To phenomenology – again in analogy to Husserl – logic adds the interest in signs and their truth. After logic, metaphysics follows in Peirce’s system, concerning the inventarium of existing objects, conceived in general – and strongly influenced by logic in the Kantian tradition for seeing metaphysics mirroring logic. Also here, Peirce has several proposals for subtypologies, even if none of them seem stable, and under this headline classical metaphysical issues mix freely with generalizations of scientific results and cosmological speculations.

Peirce himself saw this classification in an almost sociological manner, so that the criteria of distinction do not stem directly from the implied objects’ natural kinds, but after which groups of persons study which objects: ‘the only natural lines of demarcation between nearly related sciences are the divisions between the social groups of devotees of those sciences’. Science collects scientists into bundles, because they are defined by their causa finalis, a teleologial intention demanding of them to solve a central problem.

Measured on this definition, one has to say that Peirce himself was not modest, not only does he continuously transgress such boundaries in his production, he frequently does so even within the scope of single papers. There is always, in his writings, a brief distance only from mathematics to metaphysics – or between any other two issues in mathematics and philosophy, and this implies, first, that the investigation of continuity and generality in Peirce’s system is more systematic than any actually existing exposition of these issues in Peirce’s texts, second, that the discussion must constantly rely on cross-references. This has the structural motivation that as soon as you are below the level of mathematics in Peirce’s system, inspired by the Comtean system, the single science receives determinations from three different directions, each science consisting of material and formal aspects alike. First, it receives formal directives ‘from above’, from those more general sciences which stand above it, providing the general frameworks in which it must unfold. Second, it receives material determinations from its own object, requiring it to make certain choices in its use of formal insights from the higher sciences. The cosmological issue of the character of empirical space, for instance, can take from mathematics the different (non-)Euclidean geometries and investigate which of these are fit to describe spatial aspects of our universe, but it does not, in itself, provide the formal tools. Finally, the single sciences receive in practice determinations ‘from below’, from more specific sciences, when their results by means of abstraction, prescission, induction, and other procedures provide insights on its more general, material level. Even if cosmology is, for instance, part of metaphysics, it receives influences from the empirical results of physics (or biology, from where Peirce takes the generalized principle of evolution). The distinction between formal and material is thus level specific: what is material on one level is a formal bundle of possibilities for the level below; what is formal on one level is material on the level above.

For these reasons, the single step on the ladder of sciences is only partially independent in Peirce, hence also the tendency of his own investigations to zigzag between the levels. His architecture of theories thus forms a sort of phenomenological theory of aspects: the hierarchy of sciences is an architecture of more and less general aspects of the phenomena, not completely independent domains. Finally, Peirce’s realism has as a result a somewhat disturbing style of thinking: many of his central concepts receive many, often highly different determinations which has often led interpreters to assume inconsistencies or theoretical developments in Peirce where none necessarily exist. When Peirce, for instance, determines the icon as the sign possessing a similarity to its object, and elsewhere determines it as the sign by the contemplation of which it is possible to learn more about its object, then they are not conflicting definitions. Peirce’s determinations of concepts are rarely definitions at all in the sense that they provide necessary and sufficient conditions exhausting the phenomenon in question. His determinations should rather be seen as descriptions from different perspectives of a real (and maybe ideal) object – without these descriptions necessarily conflicting. This style of thinking can, however, be seen as motivated by metaphysical continuity. When continuous grading between concepts is the rule, definitions in terms of necessary and sufficient conditions should not be expected to be exhaustive.

The Third Trichotomy. Thought of the Day 121.0

peircetriangle

The decisive logical role is played by continuity in the third trichotomy which is Peirce’s generalization of the old distinction between term, proposition and argument in logic. In him, the technical notions are rhema, dicent and argument, and all of them may be represented by symbols. A crucial step in Peirce’s logic of relations (parallel to Frege) is the extension of the predicate from having only one possible subject in a proposition – to the possibility for a predicate to take potentially infinitely many subjects. Predicates so complicated may be reduced, however, to combination of (at most) three-subject predicates, according to Peirce’s reduction hypothesis. Let us consider the definitions from ‘Syllabus (The Essential Peirce Selected Philosophical Writings, Volume 2)’ in continuation of the earlier trichotomies:

According to the third trichotomy, a Sign may be termed a Rheme, a Dicisign or Dicent Sign (that is, a proposition or quasi-proposition), or an Argument.

A Rheme is a Sign which, for its Interpretant, is a Sign of qualitative possibility, that is, is understood as representing such and such a kind of possible Object. Any Rheme, perhaps, will afford some information; but it is not interpreted as doing so.

A Dicent Sign is a Sign, which, for its Interpretant, is a Sign of actual existence. It cannot, therefore, be an Icon, which affords no ground for an interpretation of it as referring to actual existence. A Dicisign necessarily involves, as a part of it, a Rheme, to describe the fact which it is interpreted as indicating. But this is a peculiar kind of Rheme; and while it is essential to the Dicisign, it by no means constitutes it.

An Argument is a Sign which, for its Interpretant, is a Sign of a law. Or we may say that a Rheme is a sign which is understood to represent its object in its characters merely; that a Dicisign is a sign which is understood to represent its object in respect to actual existence; and that an Argument is a Sign which is understood to represent its Object in its character as Sign. ( ) The proposition need not be asserted or judged. It may be contemplated as a sign capable of being asserted or denied. This sign itself retains its full meaning whether it be actually asserted or not. ( ) The proposition professes to be really affected by the actual existent or real law to which it refers. The argument makes the same pretension, but that is not the principal pretension of the argument. The rheme makes no such pretension.

The interpretant of the Argument represents it as an instance of a general class of Arguments, which class on the whole will always tend to the truth. It is this law, in some shape, which the argument urges; and this ‘urging’ is the mode of representation proper to Arguments.

Predicates being general is of course a standard logical notion; in Peirce’s version this generality is further emphasized by the fact that the simple predicate is seen as relational and containing up to three subject slots to be filled in; each of them may be occupied by a continuum of possible subjects. The predicate itself refers to a possible property, a possible relation between subjects; the empty – or partly satiated – predicate does not in itself constitute any claim that this relation does in fact hold. The information it contains is potential, because no single or general indication has yet been chosen to indicate which subjects among the continuum of possible subjects it refers to. The proposition, on the contrary, the dicisign, is a predicate where some of the empty slots have been filled in with indices (proper names, demonstrative pronomina, deixis, gesture, etc.), and is, in fact, asserted. It thus consists of an indexical part and an iconical part, corresponding to the usual distinction between subject and predicate, with its indexical part connecting it to some level of reference reality. This reality needs not, of course, be actual reality; the subject slots may be filled in with general subjects thus importing pieces of continuity into it – but the reality status of such subjects may vary, so it may equally be filled in with fictitious references of all sorts. Even if the dicisign, the proposition, is not an icon, it contains, via its rhematic core, iconical properties. Elsewhere, Peirce simply defines the dicisign as a sign making explicit its reference. Thus a portrait equipped with a sign indicating the portraitee will be a dicisign, just like a charicature draft with a pointing gesture towards the person it depicts will be a dicisign. Even such dicisigns may be general; the pointing gesture could single out a group or a representative for a whole class of objects. While the dicisign specifies its object, the argument is a sign specifying its interpretant – which is what is normally called the conclusion. The argument thus consists of two dicisigns, a premiss (which may be, in turn, composed of several dicisigns and is traditionally seen as consisting of two dicisigns) and a conclusion – a dicisign represented as ensuing from the premiss due to the power of some law. The argument is thus – just like the other thirdness signs in the trichotomies – in itself general. It is a legisign and a symbol – but adds to them the explicit specification of a general, lawlike interpretant. In the full-blown sign, the argument, the more primitive degenerate sign types are orchestrated together in a threefold generality where no less than three continua are evoked: first, the argument itself is a legisign with a halo of possible instantions of itself as a sign; second, it is a symbol referring to a general object, in turn with a halo of possible instantiations around it; third, the argument implies a general law which is represented by one instantiation (the premiss and the rule of inference) but which has a halo of other, related inferences as possible instantiations. As Peirce says, the argument persuades us that this lawlike connection holds for all other cases being of the same type.

The Second Trichotomy. Thought of the Day 120.0

Figure-2-Peirce's-triple-trichotomy

The second trichotomy (here is the first) is probably the most well-known piece of Peirce’s semiotics: it distinguishes three possible relations between the sign and its (dynamical) object. This relation may be motivated by similarity, by actual connection, or by general habit – giving rise to the sign classes icon, index, and symbol, respectively.

According to the second trichotomy, a Sign may be termed an Icon, an Index, or a Symbol.

An Icon is a sign which refers to the Object that it denotes merely by virtue of characters of its own, and which it possesses, just the same, whether any such Object actually exists or not. It is true that unless there really is such an Object, the Icon does not act as a sign; but this has nothing to do with its character as a sign. Anything whatever, be it quality, existent individual, or law, is an Icon of anything, in so far as it is like that thing and used as a sign of it.

An Index is a sign which refers to the Object that it denotes by virtue of being really affected by that Object. It cannot, therefore, be a Qualisign, because qualities are whatever they are independently of anything else. In so far as the Index is affected by the Object, it necessarily has some Quality in common with the Object, and it is in respect to these that it refers to the Object. It does, therefore, involve a sort of Icon, although an Icon of a peculiar kind; and it is not the mere resemblance of its Object, even in these respects which makes it a sign, but it is the actual modification of it by the Object. 

A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an association of general ideas, which operates to cause the Symbol to be interpreted as referring to that Object. It is thus itself a general type or law, that is, a Legisign. As such it acts through a Replica. Not only is it general in itself, but the Object to which it refers is of general nature. Now that which is general has its being in the instances it will determine. There must, therefore, be existent instances of what the Symbol denotes, although we must here understand by ‘existent’, existent in the possibly imaginary universe to which the Symbol refers. The Symbol will indirectly, through the association or other law, be affected by those instances; and thus the Symbol will involve a sort of Index, although an Index of a peculiar kind. It will not, however, be by any means true that the slight effect upon the Symbol of those instances accounts for the significant character of the Symbol.

The icon refers to its object solely by means of its own properties. This implies that an icon potentially refers to an indefinite class of objects, namely all those objects which have, in some respect, a relation of similarity to it. In recent semiotics, it has often been remarked by someone like Nelson Goodman that any phenomenon can be said to be like any other phenomenon in some respect, if the criterion of similarity is chosen sufficiently general, just like the establishment of any convention immediately implies a similarity relation. If Nelson Goodman picks out two otherwise very different objects, then they are immediately similar to the extent that they now have the same relation to Nelson Goodman. Goodman and others have for this reason deemed the similarity relation insignificant – and consequently put the whole burden of semiotics on the shoulders of conventional signs only. But the counterargument against this rejection of the relevance of the icon lies close at hand. Given a tertium comparationis, a measuring stick, it is no longer possible to make anything be like anything else. This lies in Peirce’s observation that ‘It is true that unless there really is such an Object, the Icon does not act as a sign ’ The icon only functions as a sign to the extent that it is, in fact, used to refer to some object – and when it does that, some criterion for similarity, a measuring stick (or, at least, a delimited bundle of possible measuring sticks) are given in and with the comparison. In the quote just given, it is of course the immediate object Peirce refers to – it is no claim that there should in fact exist such an object as the icon refers to. Goodman and others are of course right in claiming that as ‘Anything whatever ( ) is an Icon of anything ’, then the universe is pervaded by a continuum of possible similarity relations back and forth, but as soon as some phenomenon is in fact used as an icon for an object, then a specific bundle of similarity relations are picked out: ‘ in so far as it is like that thing.’

Just like the qualisign, the icon is a limit category. ‘A possibility alone is an Icon purely by virtue of its quality; and its object can only be a Firstness.’ (Charles S. PeirceThe Essential Peirce_ Selected Philosophical Writings). Strictly speaking, a pure icon may only refer one possible Firstness to another. The pure icon would be an identity relation between possibilities. Consequently, the icon must, as soon as it functions as a sign, be more than iconic. The icon is typically an aspect of a more complicated sign, even if very often a most important aspect, because providing the predicative aspect of that sign. This Peirce records by his notion of ‘hypoicon’: ‘But a sign may be iconic, that is, may represent its object mainly by its similarity, no matter what its mode of being. If a substantive is wanted, an iconic representamen may be termed a hypoicon’. Hypoicons are signs which to a large extent makes use of iconical means as meaning-givers: images, paintings, photos, diagrams, etc. But the iconic meaning realized in hypoicons have an immensely fundamental role in Peirce’s semiotics. As icons are the only signs that look-like, then they are at the same time the only signs realizing meaning. Thus any higher sign, index and symbol alike, must contain, or, by association or inference terminate in, an icon. If a symbol can not give an iconic interpretant as a result, it is empty. In that respect, Peirce’s doctrine parallels that of Husserl where merely signitive acts require fulfillment by intuitive (‘anschauliche’) acts. This is actually Peirce’s continuation of Kant’s famous claim that intuitions without concepts are blind, while concepts without intuitions are empty. When Peirce observes that ‘With the exception of knowledge, in the present instant, of the contents of consciousness in that instant (the existence of which knowledge is open to doubt) all our thought and knowledge is by signs’ (Letters to Lady Welby), then these signs necessarily involve iconic components. Peirce has often been attacked for his tendency towards a pan-semiotism which lets all mental and physical processes take place via signs – in the quote just given, he, analogous to Husserl, claims there must be a basic evidence anterior to the sign – just like Husserl this evidence before the sign must be based on a ‘metaphysics of presence’ – the ‘present instant’ provides what is not yet mediated by signs. But icons provide the connection of signs, logic and science to this foundation for Peirce’s phenomenology: the icon is the only sign providing evidence (Charles S. Peirce The New Elements of Mathematics Vol. 4). The icon is, through its timeless similarity, apt to communicate aspects of an experience ‘in the present instant’. Thus, the typical index contains an icon (more or less elaborated, it is true): any symbol intends an iconic interpretant. Continuity is at stake in relation to the icon to the extent that the icon, while not in itself general, is the bearer of a potential generality. The infinitesimal generality is decisive for the higher sign types’ possibility to give rise to thought: the symbol thus contains a bundle of general icons defining its meaning. A special icon providing the condition of possibility for general and rigorous thought is, of course, the diagram.

The index connects the sign directly with its object via connection in space and time; as an actual sign connected to its object, the index is turned towards the past: the action which has left the index as a mark must be located in time earlier than the sign, so that the index presupposes, at least, the continuity of time and space without which an index might occur spontaneously and without any connection to a preceding action. Maybe surprisingly, in the Peircean doctrine, the index falls in two subtypes: designators vs. reagents. Reagents are the simplest – here the sign is caused by its object in one way or another. Designators, on the other hand, are more complex: the index finger as pointing to an object or the demonstrative pronoun as the subject of a proposition are prototypical examples. Here, the index presupposes an intention – the will to point out the object for some receiver. Designators, it must be argued, presuppose reagents: it is only possible to designate an object if you have already been in reagent contact (simulated or not) with it (this forming the rational kernel of causal reference theories of meaning). The closer determination of the object of an index, however, invariably involves selection on the background of continuities.

On the level of the symbol, continuity and generality play a main role – as always when approaching issues defined by Thirdness. The symbol is, in itself a legisign, that is, it is a general object which exists only due to its actual instantiations. The symbol itself is a real and general recipe for the production of similar instantiations in the future. But apart from thus being a legisign, it is connected to its object thanks to a habit, or regularity. Sometimes, this is taken to mean ‘due to a convention’ – in an attempt to distinguish conventional as opposed to motivated sign types. This, however, rests on a misunderstanding of Peirce’s doctrine in which the trichotomies record aspects of sign, not mutually exclusive, independent classes of signs: symbols and icons do not form opposed, autonomous sign classes; rather, the content of the symbol is constructed from indices and general icons. The habit realized by a symbol connects it, as a legisign, to an object which is also general – an object which just like the symbol itself exists in instantiations, be they real or imagined. The symbol is thus a connection between two general objects, each of them being actualized through replicas, tokens – a connection between two continua, that is:

Definition 1. Any Blank is a symbol which could not be vaguer than it is (although it may be so connected with a definite symbol as to form with it, a part of another partially definite symbol), yet which has a purpose.

Axiom 1. It is the nature of every symbol to blank in part. [ ]

Definition 2. Any Sheet would be that element of an entire symbol which is the subject of whatever definiteness it may have, and any such element of an entire symbol would be a Sheet. (‘Sketch of Dichotomic Mathematics’ (The New Elements of Mathematics Vol. 4 Mathematical Philosophy)

The symbol’s generality can be described as it having always blanks having the character of being indefinite parts of its continuous sheet. Thus, the continuity of its blank parts is what grants its generality. The symbol determines its object according to some rule, granting the object satisfies that rule – but leaving the object indeterminate in all other respects. It is tempting to take the typical symbol to be a word, but it should rather be taken as the argument – the predicate and the proposition being degenerate versions of arguments with further continuous blanks inserted by erasure, so to speak, forming the third trichotomy of term, proposition, argument.

The First Trichotomy. Thought of the Day 119.0

sign_aspects

As the sign consists of three components it comes hardly as a surprise that it may be analyzed in nine aspects – every one of the sign’s three components may be viewed under each of the three fundamental phenomenological categories. The least discussed of these so-called trichotomies is probably the first, concerning which property in the sign it is that functions, in fact, to make it a sign. It gives rise to the trichotomy qualisign, sinsign, legisign, or, in a little more sexy terminology, tone, token, type.

The oftenmost quoted definition is from ‘Syllabus’ (Charles S. Peirce, The Essential Peirce Selected Philosophical Writings, Volume 2):

According to the first division, a Sign may be termed a Qualisign, a Sinsign, or a Legisign.

A Qualisign is a quality which is a Sign. It cannot actually act as a sign until it is embodied; but the embodiment has nothing to do with its character as a sign.

A Sinsign (where the syllable sin is taken as meaning ‘being only once’, as in single, simple, Latin semel, etc.) is an actual existent thing or event which is a sign. It can only be so through its qualities; so that it involves a qualisign, or rather, several qualisigns. But these qualisigns are of a peculiar kind and only form a sign through being actually embodied.

A Legisign is a law that is a Sign. This law is usually [sic] established by men. Every conventional sign is a legisign. It is not a single object, but a general type which, it has been agreed, shall be significant. Every legisign signifies through an instance of its application, which may be termed a Replica of it. Thus, the word ‘the’ will usually occur from fifteen to twenty-five times on a page. It is in all these occurrences one and the same word, the same legisign. Each single instance of it is a Replica. The Replica is a Sinsign. Thus, every Legisign requires Sinsigns. But these are not ordinary Sinsigns, such as are peculiar occurrences that are regarded as significant. Nor would the Replica be significant if it were not for the law which renders it so.

In some sense, it is a strange fact that this first and basic trichotomy has not been widely discussed in relation to the continuity concept in Peirce, because it is crucial. It is evident from the second noticeable locus where this trichotomy is discussed, the letters to Lady Welby – here Peirce continues (after an introduction which brings less news):

The difference between a legisign and a qualisign, neither of which is an individual thing, is that a legisign has a definite identity, though usually admitting a great variety of appearances. Thus, &, and, and the sound are all one word. The qualisign, on the other hand, has no identity. It is the mere quality of an appearance and is not exactly the same throughout a second. Instead of identity, it has great similarity, and cannot differ much without being called quite another qualisign.

The legisign or type is distinguished as being general which is, in turn, defined by continuity: the type has a ‘great variety of appearances’; as a matter of fact, a continuous variation of appearances. In many cases even several continua of appearances (as &, and, and the spoken sound of ‘and’). Each continuity of appearances is gathered into one identity thanks to the type, making possible the repetition of identical signs. Reference is not yet discussed (it concerns the sign’s relation to its object), nor is meaning (referring to its relation to its interpretant) – what is at stake is merely the possibility for a type to incarnate a continuum of possible actualizations, however this be possible, and so repeatedly appear as one and the same sign despite other differences. Thus the reality of the type is the very foundation for Peirce’s ‘extreme realism’, and this for two reasons. First, seen from the side of the sign, the type provides the possibility of stable, repeatable signs: the type may – opposed to qualisigns and those sinsigns not being replicas of a type – be repeated as a self-identical occurrence, and this is what in the first place provides the stability which renders repeated sign use possible. Second, seen from the side of reality: because types, legisigns, are realized without reference to human subjectivity, the existence of types is the condition of possibility for a sign, in turn, to stably refer to stably occurring entities and objects. Here, the importance of the irreducible continuity in philosophy of mathematics appears for semiotics: it is that which grants the possibility of collecting a continuum in one identity, the special characteristic of the type concept. The opposition to the type is the qualisign or tone lacking the stability of the type – they are not self-identical even through a second, as Peirce says – they have, of course, the character of being infinitesimal entities, about which the principle of contradiction does not hold. The transformation from tone to type is thus the transformation from unstable pre-logic to stable logic – it covers, to phrase it in a Husserlian way, the phenomenology of logic. The legisign thus exerts its law over specific qualisigns and sinsigns – like in all Peirce’s trichotomies the higher sign types contain and govern specific instances of the lower types. The legisign is incarnated in singular, actual sinsigns representing the type – they are tokens of the type – and what they have in common are certain sets of qualities or qualisigns – tones – selected from continua delimited by the legisign. The amount of possible sinsigns, tokens, are summed up by a type, a stable and self-identical sign. Peirce’s despised nominalists would to some degree agree here: the universal as a type is indeed a ‘mere word’ – but the strong counterargument which Peirce’s position makes possible says that if ‘mere words’ may possess universality, then the world must contain it as well, because words are worldly phenomena like everything else. Here, nominalists will typically exclude words from the world and make them privileges of the subject, but for Peirce’s welding of idealism and naturalism nothing can be truly separated from the world – all what basically is in the mind must also exist in the world. Thus the synthetical continuum, which may, in some respects, be treated as one entity, becomes the very condition of possibility for the existence of types.

Whether some types or legisigns now refer to existing general objects or not is not a matter for the first trichotomy to decide; legisigns may be part of any number of false or nonsensical propositions, and not all legisigns are symbols, just like arguments, in turn, are only a subset of symbols – but all of them are legisigns because they must in themselves be general in order to provide the condition of possibility of identical repetition, of reference to general objects and of signifying general interpretants.

Triadomania. Thought of the Day 117.0

figure-2

Peirce’s famous ‘triadomania’ lets most of his decisive distinctions appear in threes, following the tripartition of his list of categories, the famous triad of First, Second, and Third, or Quality, Reaction, Representation, or Possibility, Actuality, Reality.

Firstness is the mode of being of that which is such as it is, positively and without reference to anything else.

Secondness is the mode of being of that which is such as it is, with respect to a second but regardless of any third.

Thirdness is the mode of being of that which is such as it is, in bringing a second and third into relation to each other.

Firstness constitutes the quality of experience: in order for something to appear at all, it must do so due to a certain constellation of qualitative properties. Peirce often uses sensory qualities as examples, but it is important for the understanding of his thought that the examples may refer to phenomena very far from our standard conception of ‘sensory data’, e.g. forms or the ‘feeling’ of a whole melody or of a whole mathematical proof, not to be taken in a subjective sense but as a concept for the continuity of melody or proof as a whole, apart from the analytical steps and sequences in which it may be, subsequently, subdivided. In short, all sorts of simple and complex Gestalt qualities also qualify as Firstnesses. Firstness tend to form continua of possibilities such as the continua of shape, color, tone, etc. These qualities, however, are, taken in themselves, pure possibilities and must necessarily be incarnated in phenomena in order to appear. Secondness is the phenomenological category of ‘incarnation’ which makes this possible: it is the insistency, then, with which the individuated, actualized, existent phenomenon appears. Thus, Secondness necessarily forms discontinuous breaks in Firstness, allowing for particular qualities to enter into existence. The mind may imagine anything whatever in all sorts of quality combinations, but something appears with an irrefutable insisting power, reacting, actively, yielding resistance. Peirce’s favorite example is the resistance of the closed door – which might be imagined reduced to the quality of resistance feeling and thus degenerate to pure Firstness so that his theory imploded into a Hume-like solipsism – but to Peirce this resistance, surprise, event, this thisness, ‘haecceity’ as he calls it with a Scotist term, remains irreducible in the description of the phenomenon (a Kantian idea, at bottom: existence is no predicate). About Thirdness, Peirce may directly state that continuity represents it perfectly: ‘continuity and generality are two names of the same absence of distinction of individuals’. As against Secondness, Thirdness is general; it mediates between First and Second. The events of Secondness are never completely unique, such an event would be inexperiencable, but relates (3) to other events (2) due to certain features (1) in them; Thirdness is thus what facilitates understanding as well as pragmatic action, due to its continuous generality. With a famous example: if you dream about an apple pie, then the very qualities of that dream (taste, smell, warmth, crustiness, etc.) are pure Firstnesses, while the act of baking is composed of a series of actual Secondnesses. But their coordination is governed by a Thirdness: the recipe, being general, can never specify all properties in the individual apple pie, it has a schematic frame-character and subsumes an indefinite series – a whole continuum – of possible apple pies. Thirdness is thus necessarily general and vague. Of course, the recipe may be more or less precise, but no recipe exists which is able to determine each and every property in the cake, including date, hour, place, which tree the apples stem from, etc. – any recipe is necessarily general. In this case, the recipe (3) mediates between dream (1) and fulfilment (2) – its generality, symbolicity, relationality and future orientation are all characteristic for Thirdness. An important aspect of Peirce’s realism is that continuous generality may be experienced directly in perceptual judgments: ‘Generality, Thirdness, pours in upon us in our very perceptual judgments’.

All these determinations remain purely phenomenological, even if the later semiotic and metaphysical interpretations clearly shine through. In a more general, non-Peircean terminology, his phenomenology can be seen as the description of minimum aspects inherent in any imaginable possible world – for this reason it is imaginability which is the main argument, and this might point in the direction that Peirce could be open to critique for subjectivism, so often aimed at Husserl’s project, in some respects analogous. The concept of consciousness is invoked as the basis of imaginability: phenomenology is the study of invariant properties in any phenomenon appearing for a mind. Peirce’s answer would here be, on the one hand, the research community which according to him defines reality – an argument which structurally corresponds to Husserl’s reference to intersubjectivity as a necessary ingredient in objectivity (an object is a phenomenon which is intersubjectively accessible). Peirce, however, has a further argument here, namely his consequent refusal to delimit his concept of mind exclusively to human subjects (a category the use of which he obviously tries to minimize), mind-like processes may take place in nature without any subject being responsible. Peirce will, for continuity reasons, never accept any hard distinction between subject and object and remains extremely parsimonious in the employment of such terms.

From Peirce’s New Elements of Mathematics (The New Elements of Mathematics Vol. 4),

But just as the qualities, which as they are for themselves, are equally unrelated to one other, each being mere nothing for any other, yet form a continuum in which and because of their situation in which they acquire more or less resemblance and contrast with one another; and then this continuum is amplified in the continuum of possible feelings of quality, so the accidents of reaction, which are waking consciousnesses of pairs of qualities, may be expected to join themselves into a continuum. 

Since, then an accidental reaction is a combination or bringing into special connection of two qualities, and since further it is accidental and antigeneral or discontinuous, such an accidental reaction ought to be regarded as an adventitious singularity of the continuum of possible quality, just as two points of a sheet of paper might come into contact.

But although singularities are discontinuous, they may be continuous to a certain extent. Thus the sheet instead of touching itself in the union of two points may cut itself all along a line. Here there is a continuous line of singularity. In like manner, accidental reactions though they are breaches of generality may come to be generalized to a certain extent.

Secondness is now taken to actualize these quality possibilities based on an idea that any actual event involves a clash of qualities – in the ensuing argumentation Peirce underlines that the qualities involved in actualization need not be restrained to two but may be many, if they may only be ‘dissolved’ into pairs and hence do not break into the domain of Thirdness. This appearance of actuality, hence, has the property of singularities, spontaneously popping up in the space of possibilities and actualizing pairs of points in it. This transition from First to Second is conceived of along Aristotelian lines: as an actualization of a possibility – and this is expressed in the picture of a discontinuous singularity in the quality continuum. The topological fact that singularities must in general be defined with respect to the neighborhood of the manifold in which they appear, now becomes the argument for the fact that Secondness can never be completely discontinuous but still ‘inherits’ a certain small measure of continuity from the continuum of Firstness. Singularities, being discontinuous along certain dimensions, may be continuous in others, which provides the condition of possibility for Thirdness to exist as a tendency for Secondness to conform to a general law or regularity. As is evident, a completely pure Secondness is impossible in this continuous metaphysics – it remains a conceivable but unrealizable limit case, because a completely discon- tinuous event would amount to nothing. Thirdness already lies as a germ in the non-discontinuous aspects of the singularity. The occurrences of Secondness seem to be infinitesimal, then, rather than completely extensionless points.

Whitehead and Peirce’s Synchronicity with Hegel’s Capital Error. Thought of the Day 97.0

6a00d83451aec269e201b8d28c1a40970c-800wi

The focus on experience ensures that Whitehead’s metaphysics is grounded. Otherwise the narrowness of approach would only culminate in sterile measurement. This becomes especially evident with regard to the science of history. Whitehead gives a lucid example of such ‘sterile measurement’ lacking the immediacy of experience.

Consider, for example, the scientific notion of measurement. Can we elucidate the turmoil of Europe by weighing its dictators, its prime ministers, and its editors of newspapers? The idea is absurd, although some relevant information might be obtained. (Alfred North Whitehead – Modes of Thought)

The wealth of experience leaves us with the problem of how to cope with it. Selection of data is required. This selection is done by a value judgment – the judgment of importance. Although Whitehead opposes the dichotomy of the two notions ‘importance’ and ‘matter of fact’, it is still necessary to distinguish grades and types of importance, which enables us to structure our experience, to focus it. This is very similar to hermeneutical theories in Schleiermacher, Gadamer and Habermas: the horizon of understanding structures the data. Therefore, we not only need judgment but the process of concrescence implicitly requires an aim. Whitehead explains that

By this term ‘aim’ is meant the exclusion of the boundless wealth of alternative potentiality and the inclusion of that definite factor of novelty which constitutes the selected way of entertaining those data in that process of unification.

The other idea that underlies experience is “matter of fact.”

There are two contrasted ideas which seem inevitably to underlie all width of experience, one of them is the notion of importance, the sense of importance, the presupposition of importance. The other is the notion of matter of fact. There is no escape from sheer matter of fact. It is the basis of importance; and importance is important because of the inescapable character of matter of fact.

By stressing the “alien character” of feeling that enters into the privately felt feeling of an occasion, Whitehead is able to distinguish the responsive and the supplemental stages of concrescence. The responsive stage being a purely receptive phase, the latter integrating the former ‘alien elements’ into a unity of feeling. The alien factor in the experiencing subjects saves Whitehead’s concept from being pure Spirit (Geist) in a Hegelian sense. There are more similarities between Hegelian thinking and Whitehead’s thought than his own comments on Hegel may suggest. But, his major criticism could probably be stated with Peirce, who wrote that

The capital error of Hegel which permeates his whole system in every part of it is that he almost altogether ignores the Outward clash. (The Essential Peirce 1)

Whitehead refers to that clash as matter of fact. Although, even there, one has to keep in mind that matter-of-fact is an abstraction. 

Matter of fact is an abstraction, arrived at by confining thought to purely formal relations which then masquerade as the final reality. This is why science, in its perfection, relapses into the study of differential equations. The concrete world has slipped through the meshes of the scientific net.

Whitehead clearly keeps the notion of prehension in his late writings as developed in Process and Reality. Just to give one example, 

I have, in my recent writings, used the word ‘prehension’ to express this process of appropriation. Also I have termed each individual act of immediate self-enjoyment an ‘occasion of experience’. I hold that these unities of existence, these occasions of experience, are the really real things which in their collective unity compose the evolving universe, ever plunging into the creative advance. 

Process needs an aim in Process and Reality as much as in Modes of Thought:

We must add yet another character to our description of life. This missing characteristic is ‘aim’. By this term ‘aim’ is meant the exclusion of the boundless wealth of alternative potentiality, and the inclusion of that definite factor of novelty which constitutes the selected way of entertaining those data in that process of unification. The aim is at that complex of feeling which is the enjoyment of those data in that way. ‘That way of enjoyment’ is selected from the boundless wealth of alternatives. It has been aimed at for actualization in that process.