Hypostatic Abstraction. Thought of the Day 138.0

maxresdefault

Hypostatic abstraction is linguistically defined as the process of making a noun out of an adjective; logically as making a subject out of a predicate. The idea here is that in order to investigate a predicate – which other predicates it is connected to, which conditions it is subjected to, in short to test its possible consequences using Peirce’s famous pragmatic maxim – it is necessary to posit it as a subject for investigation.

Hypostatic abstraction is supposed to play a crucial role in the reasoning process for several reasons. The first is that by making a thing out of a thought, it facilitates the possibility for thought to reflect critically upon the distinctions with which it operates, to control them, reshape them, combine them. Thought becomes emancipated from the prison of the given, in which abstract properties exist only as Husserlian moments, and even if prescission may isolate those moments and induction may propose regularities between them, the road for thought to the possible establishment of abstract objects and the relations between them seems barred. The object created by a hypostatic abstraction is a thing, but it is of course no actually existing thing, rather it is a scholastic ens rationis, it is a figment of thought. It is a second intention thought about a thought – but this does not, in Peirce’s realism, imply that it is necessarily fictitious. In many cases it may indeed be, but in other cases we may hit upon an abstraction having real existence:

Putting aside precisive abstraction altogether, it is necessary to consider a little what is meant by saying that the product of subjectal abstraction is a creation of thought. (…) That the abstract subject is an ens rationis, or creation of thought does not mean that it is a fiction. The popular ridicule of it is one of the manifestations of that stoical (and Epicurean, but more marked in stoicism) doctrine that existence is the only mode of being which came in shortly before Descartes, in concsequence of the disgust and resentment which progressive minds felt for the Dunces, or Scotists. If one thinks of it, a possibility is a far more important fact than any actuality can be. (…) An abstraction is a creation of thought; but the real fact which is important in this connection is not that actual thinking has caused the predicate to be converted into a subject, but that this is possible. The abstraction, in any important sense, is not an actual thought but a general type to which thought may conform.

The seemingly scepticist pragmatic maxim never ceases to surprise: if we take all possible effects we can conceive an object to have, then our conception of those effects is identical with our conception of that object, the maxim claims – but if we can conceive of abstract properties of the objects to have effects, then they are part of our conception of it, and hence they must possess reality as well. An abstraction is a possible way for an object to behave – and if certain objects do in fact conform to this behavior, then that abstraction is real; it is a ‘real possibility’ or a general object. If not, it may still retain its character of possibility. Peirce’s definitions of hypostatic abstractions now and then confuse this point. When he claims that

An abstraction is a substance whose being consists in the truth of some proposition concerning a more primary substance,

then the abstraction’s existence depends on the truth of some claim concerning a less abstract substance. But if the less abstract substance in question does not exist, and the claim in question consequently will be meaningless or false, then the abstraction will – following that definition – cease to exist. The problem is only that Peirce does not sufficiently clearly distinguish between the really existing substances which abstractive expressions may refer to, on the one hand, and those expressions themselves, on the other. It is the same confusion which may make one shuttle between hypostatic abstraction as a deduction and as an abduction. The first case corresponds to there actually existing a thing with the quality abstracted, and where we consequently may expect the existence of a rational explanation for the quality, and, correlatively, the existence of an abstract substance corresponding to the supposed ens rationis – the second case corresponds to the case – or the phase – where no such rational explanation and corresponding abstract substance has yet been verified. It is of course always possible to make an abstraction symbol, given any predicate – whether that abstraction corresponds to any real possibility is an issue for further investigation to estimate. And Peirce’s scientific realism makes him demand that the connections to actual reality of any abstraction should always be estimated (The Essential Peirce):

every kind of proposition is either meaningless or has a Real Secondness as its object. This is a fact that every reader of philosophy should carefully bear in mind, translating every abstractly expressed proposition into its precise meaning in reference to an individual experience.

This warning is directed, of course, towards empirical abstractions which require the support of particular instances to be pragmatically relevant but could hardly hold for mathematical abstraction. But in any case hypostatic abstraction is necessary for the investigation, be it in pure or empirical scenarios.

The Third Trichotomy. Thought of the Day 121.0

peircetriangle

The decisive logical role is played by continuity in the third trichotomy which is Peirce’s generalization of the old distinction between term, proposition and argument in logic. In him, the technical notions are rhema, dicent and argument, and all of them may be represented by symbols. A crucial step in Peirce’s logic of relations (parallel to Frege) is the extension of the predicate from having only one possible subject in a proposition – to the possibility for a predicate to take potentially infinitely many subjects. Predicates so complicated may be reduced, however, to combination of (at most) three-subject predicates, according to Peirce’s reduction hypothesis. Let us consider the definitions from ‘Syllabus (The Essential Peirce Selected Philosophical Writings, Volume 2)’ in continuation of the earlier trichotomies:

According to the third trichotomy, a Sign may be termed a Rheme, a Dicisign or Dicent Sign (that is, a proposition or quasi-proposition), or an Argument.

A Rheme is a Sign which, for its Interpretant, is a Sign of qualitative possibility, that is, is understood as representing such and such a kind of possible Object. Any Rheme, perhaps, will afford some information; but it is not interpreted as doing so.

A Dicent Sign is a Sign, which, for its Interpretant, is a Sign of actual existence. It cannot, therefore, be an Icon, which affords no ground for an interpretation of it as referring to actual existence. A Dicisign necessarily involves, as a part of it, a Rheme, to describe the fact which it is interpreted as indicating. But this is a peculiar kind of Rheme; and while it is essential to the Dicisign, it by no means constitutes it.

An Argument is a Sign which, for its Interpretant, is a Sign of a law. Or we may say that a Rheme is a sign which is understood to represent its object in its characters merely; that a Dicisign is a sign which is understood to represent its object in respect to actual existence; and that an Argument is a Sign which is understood to represent its Object in its character as Sign. ( ) The proposition need not be asserted or judged. It may be contemplated as a sign capable of being asserted or denied. This sign itself retains its full meaning whether it be actually asserted or not. ( ) The proposition professes to be really affected by the actual existent or real law to which it refers. The argument makes the same pretension, but that is not the principal pretension of the argument. The rheme makes no such pretension.

The interpretant of the Argument represents it as an instance of a general class of Arguments, which class on the whole will always tend to the truth. It is this law, in some shape, which the argument urges; and this ‘urging’ is the mode of representation proper to Arguments.

Predicates being general is of course a standard logical notion; in Peirce’s version this generality is further emphasized by the fact that the simple predicate is seen as relational and containing up to three subject slots to be filled in; each of them may be occupied by a continuum of possible subjects. The predicate itself refers to a possible property, a possible relation between subjects; the empty – or partly satiated – predicate does not in itself constitute any claim that this relation does in fact hold. The information it contains is potential, because no single or general indication has yet been chosen to indicate which subjects among the continuum of possible subjects it refers to. The proposition, on the contrary, the dicisign, is a predicate where some of the empty slots have been filled in with indices (proper names, demonstrative pronomina, deixis, gesture, etc.), and is, in fact, asserted. It thus consists of an indexical part and an iconical part, corresponding to the usual distinction between subject and predicate, with its indexical part connecting it to some level of reference reality. This reality needs not, of course, be actual reality; the subject slots may be filled in with general subjects thus importing pieces of continuity into it – but the reality status of such subjects may vary, so it may equally be filled in with fictitious references of all sorts. Even if the dicisign, the proposition, is not an icon, it contains, via its rhematic core, iconical properties. Elsewhere, Peirce simply defines the dicisign as a sign making explicit its reference. Thus a portrait equipped with a sign indicating the portraitee will be a dicisign, just like a charicature draft with a pointing gesture towards the person it depicts will be a dicisign. Even such dicisigns may be general; the pointing gesture could single out a group or a representative for a whole class of objects. While the dicisign specifies its object, the argument is a sign specifying its interpretant – which is what is normally called the conclusion. The argument thus consists of two dicisigns, a premiss (which may be, in turn, composed of several dicisigns and is traditionally seen as consisting of two dicisigns) and a conclusion – a dicisign represented as ensuing from the premiss due to the power of some law. The argument is thus – just like the other thirdness signs in the trichotomies – in itself general. It is a legisign and a symbol – but adds to them the explicit specification of a general, lawlike interpretant. In the full-blown sign, the argument, the more primitive degenerate sign types are orchestrated together in a threefold generality where no less than three continua are evoked: first, the argument itself is a legisign with a halo of possible instantions of itself as a sign; second, it is a symbol referring to a general object, in turn with a halo of possible instantiations around it; third, the argument implies a general law which is represented by one instantiation (the premiss and the rule of inference) but which has a halo of other, related inferences as possible instantiations. As Peirce says, the argument persuades us that this lawlike connection holds for all other cases being of the same type.

The Second Trichotomy. Thought of the Day 120.0

Figure-2-Peirce's-triple-trichotomy

The second trichotomy (here is the first) is probably the most well-known piece of Peirce’s semiotics: it distinguishes three possible relations between the sign and its (dynamical) object. This relation may be motivated by similarity, by actual connection, or by general habit – giving rise to the sign classes icon, index, and symbol, respectively.

According to the second trichotomy, a Sign may be termed an Icon, an Index, or a Symbol.

An Icon is a sign which refers to the Object that it denotes merely by virtue of characters of its own, and which it possesses, just the same, whether any such Object actually exists or not. It is true that unless there really is such an Object, the Icon does not act as a sign; but this has nothing to do with its character as a sign. Anything whatever, be it quality, existent individual, or law, is an Icon of anything, in so far as it is like that thing and used as a sign of it.

An Index is a sign which refers to the Object that it denotes by virtue of being really affected by that Object. It cannot, therefore, be a Qualisign, because qualities are whatever they are independently of anything else. In so far as the Index is affected by the Object, it necessarily has some Quality in common with the Object, and it is in respect to these that it refers to the Object. It does, therefore, involve a sort of Icon, although an Icon of a peculiar kind; and it is not the mere resemblance of its Object, even in these respects which makes it a sign, but it is the actual modification of it by the Object. 

A Symbol is a sign which refers to the Object that it denotes by virtue of a law, usually an association of general ideas, which operates to cause the Symbol to be interpreted as referring to that Object. It is thus itself a general type or law, that is, a Legisign. As such it acts through a Replica. Not only is it general in itself, but the Object to which it refers is of general nature. Now that which is general has its being in the instances it will determine. There must, therefore, be existent instances of what the Symbol denotes, although we must here understand by ‘existent’, existent in the possibly imaginary universe to which the Symbol refers. The Symbol will indirectly, through the association or other law, be affected by those instances; and thus the Symbol will involve a sort of Index, although an Index of a peculiar kind. It will not, however, be by any means true that the slight effect upon the Symbol of those instances accounts for the significant character of the Symbol.

The icon refers to its object solely by means of its own properties. This implies that an icon potentially refers to an indefinite class of objects, namely all those objects which have, in some respect, a relation of similarity to it. In recent semiotics, it has often been remarked by someone like Nelson Goodman that any phenomenon can be said to be like any other phenomenon in some respect, if the criterion of similarity is chosen sufficiently general, just like the establishment of any convention immediately implies a similarity relation. If Nelson Goodman picks out two otherwise very different objects, then they are immediately similar to the extent that they now have the same relation to Nelson Goodman. Goodman and others have for this reason deemed the similarity relation insignificant – and consequently put the whole burden of semiotics on the shoulders of conventional signs only. But the counterargument against this rejection of the relevance of the icon lies close at hand. Given a tertium comparationis, a measuring stick, it is no longer possible to make anything be like anything else. This lies in Peirce’s observation that ‘It is true that unless there really is such an Object, the Icon does not act as a sign ’ The icon only functions as a sign to the extent that it is, in fact, used to refer to some object – and when it does that, some criterion for similarity, a measuring stick (or, at least, a delimited bundle of possible measuring sticks) are given in and with the comparison. In the quote just given, it is of course the immediate object Peirce refers to – it is no claim that there should in fact exist such an object as the icon refers to. Goodman and others are of course right in claiming that as ‘Anything whatever ( ) is an Icon of anything ’, then the universe is pervaded by a continuum of possible similarity relations back and forth, but as soon as some phenomenon is in fact used as an icon for an object, then a specific bundle of similarity relations are picked out: ‘ in so far as it is like that thing.’

Just like the qualisign, the icon is a limit category. ‘A possibility alone is an Icon purely by virtue of its quality; and its object can only be a Firstness.’ (Charles S. PeirceThe Essential Peirce_ Selected Philosophical Writings). Strictly speaking, a pure icon may only refer one possible Firstness to another. The pure icon would be an identity relation between possibilities. Consequently, the icon must, as soon as it functions as a sign, be more than iconic. The icon is typically an aspect of a more complicated sign, even if very often a most important aspect, because providing the predicative aspect of that sign. This Peirce records by his notion of ‘hypoicon’: ‘But a sign may be iconic, that is, may represent its object mainly by its similarity, no matter what its mode of being. If a substantive is wanted, an iconic representamen may be termed a hypoicon’. Hypoicons are signs which to a large extent makes use of iconical means as meaning-givers: images, paintings, photos, diagrams, etc. But the iconic meaning realized in hypoicons have an immensely fundamental role in Peirce’s semiotics. As icons are the only signs that look-like, then they are at the same time the only signs realizing meaning. Thus any higher sign, index and symbol alike, must contain, or, by association or inference terminate in, an icon. If a symbol can not give an iconic interpretant as a result, it is empty. In that respect, Peirce’s doctrine parallels that of Husserl where merely signitive acts require fulfillment by intuitive (‘anschauliche’) acts. This is actually Peirce’s continuation of Kant’s famous claim that intuitions without concepts are blind, while concepts without intuitions are empty. When Peirce observes that ‘With the exception of knowledge, in the present instant, of the contents of consciousness in that instant (the existence of which knowledge is open to doubt) all our thought and knowledge is by signs’ (Letters to Lady Welby), then these signs necessarily involve iconic components. Peirce has often been attacked for his tendency towards a pan-semiotism which lets all mental and physical processes take place via signs – in the quote just given, he, analogous to Husserl, claims there must be a basic evidence anterior to the sign – just like Husserl this evidence before the sign must be based on a ‘metaphysics of presence’ – the ‘present instant’ provides what is not yet mediated by signs. But icons provide the connection of signs, logic and science to this foundation for Peirce’s phenomenology: the icon is the only sign providing evidence (Charles S. Peirce The New Elements of Mathematics Vol. 4). The icon is, through its timeless similarity, apt to communicate aspects of an experience ‘in the present instant’. Thus, the typical index contains an icon (more or less elaborated, it is true): any symbol intends an iconic interpretant. Continuity is at stake in relation to the icon to the extent that the icon, while not in itself general, is the bearer of a potential generality. The infinitesimal generality is decisive for the higher sign types’ possibility to give rise to thought: the symbol thus contains a bundle of general icons defining its meaning. A special icon providing the condition of possibility for general and rigorous thought is, of course, the diagram.

The index connects the sign directly with its object via connection in space and time; as an actual sign connected to its object, the index is turned towards the past: the action which has left the index as a mark must be located in time earlier than the sign, so that the index presupposes, at least, the continuity of time and space without which an index might occur spontaneously and without any connection to a preceding action. Maybe surprisingly, in the Peircean doctrine, the index falls in two subtypes: designators vs. reagents. Reagents are the simplest – here the sign is caused by its object in one way or another. Designators, on the other hand, are more complex: the index finger as pointing to an object or the demonstrative pronoun as the subject of a proposition are prototypical examples. Here, the index presupposes an intention – the will to point out the object for some receiver. Designators, it must be argued, presuppose reagents: it is only possible to designate an object if you have already been in reagent contact (simulated or not) with it (this forming the rational kernel of causal reference theories of meaning). The closer determination of the object of an index, however, invariably involves selection on the background of continuities.

On the level of the symbol, continuity and generality play a main role – as always when approaching issues defined by Thirdness. The symbol is, in itself a legisign, that is, it is a general object which exists only due to its actual instantiations. The symbol itself is a real and general recipe for the production of similar instantiations in the future. But apart from thus being a legisign, it is connected to its object thanks to a habit, or regularity. Sometimes, this is taken to mean ‘due to a convention’ – in an attempt to distinguish conventional as opposed to motivated sign types. This, however, rests on a misunderstanding of Peirce’s doctrine in which the trichotomies record aspects of sign, not mutually exclusive, independent classes of signs: symbols and icons do not form opposed, autonomous sign classes; rather, the content of the symbol is constructed from indices and general icons. The habit realized by a symbol connects it, as a legisign, to an object which is also general – an object which just like the symbol itself exists in instantiations, be they real or imagined. The symbol is thus a connection between two general objects, each of them being actualized through replicas, tokens – a connection between two continua, that is:

Definition 1. Any Blank is a symbol which could not be vaguer than it is (although it may be so connected with a definite symbol as to form with it, a part of another partially definite symbol), yet which has a purpose.

Axiom 1. It is the nature of every symbol to blank in part. [ ]

Definition 2. Any Sheet would be that element of an entire symbol which is the subject of whatever definiteness it may have, and any such element of an entire symbol would be a Sheet. (‘Sketch of Dichotomic Mathematics’ (The New Elements of Mathematics Vol. 4 Mathematical Philosophy)

The symbol’s generality can be described as it having always blanks having the character of being indefinite parts of its continuous sheet. Thus, the continuity of its blank parts is what grants its generality. The symbol determines its object according to some rule, granting the object satisfies that rule – but leaving the object indeterminate in all other respects. It is tempting to take the typical symbol to be a word, but it should rather be taken as the argument – the predicate and the proposition being degenerate versions of arguments with further continuous blanks inserted by erasure, so to speak, forming the third trichotomy of term, proposition, argument.

Quantifier – Ontological Commitment: The Case for an Agnostic. Note Quote.

1442843080570

What about the mathematical objects that, according to the platonist, exist independently of any description one may offer of them in terms of comprehension principles? Do these objects exist on the fictionalist view? Now, the fictionalist is not committed to the existence of such mathematical objects, although this doesn’t mean that the fictionalist is committed to the non-existence of these objects. The fictionalist is ultimately agnostic about the issue. Here is why.

There are two types of commitment: quantifier commitment and ontological commitment. We incur quantifier commitment to the objects that are in the range of our quantifiers. We incur ontological commitment when we are committed to the existence of certain objects. However, despite Quine’s view, quantifier commitment doesn’t entail ontological commitment. Fictional discourse (e.g. in literature) and mathematical discourse illustrate that. Suppose that there’s no way of making sense of our practice with fiction but to quantify over fictional objects. Still, people would strongly resist the claim that they are therefore committed to the existence of these objects. The same point applies to mathematical objects.

This move can also be made by invoking a distinction between partial quantifiers and the existence predicate. The idea here is to resist reading the existential quantifier as carrying any ontological commitment. Rather, the existential quantifier only indicates that the objects that fall under a concept (or have certain properties) are less than the whole domain of discourse. To indicate that the whole domain is invoked (e.g. that every object in the domain have a certain property), we use a universal quantifier. So, two different functions are clumped together in the traditional, Quinean reading of the existential quantifier: (i) to assert the existence of something, on the one hand, and (ii) to indicate that not the whole domain of quantification is considered, on the other. These functions are best kept apart. We should use a partial quantifier (that is, an existential quantifier free of ontological commitment) to convey that only some of the objects in the domain are referred to, and introduce an existence predicate in the language in order to express existence claims.

By distinguishing these two roles of the quantifier, we also gain expressive resources. Consider, for instance, the sentence:

(∗) Some fictional detectives don’t exist.

Can this expression be translated in the usual formalism of classical first-order logic with the Quinean interpretation of the existential quantifier? Prima facie, that doesn’t seem to be possible. The sentence would be contradictory! It would state that ∃ fictional detectives who don’t exist. The obvious consistent translation here would be: ¬∃x Fx, where F is the predicate is a fictional detective. But this states that fictional detectives don’t exist. Clearly, this is a different claim from the one expressed in (∗). By declaring that some fictional detectives don’t exist, (∗) is still compatible with the existence of some fictional detectives. The regimented sentence denies this possibility.

However, it’s perfectly straightforward to express (∗) using the resources of partial quantification and the existence predicate. Suppose that “∃” stands for the partial quantifier and “E” stands for the existence predicate. In this case, we have: ∃x (Fx ∧¬Ex), which expresses precisely what we need to state.

Now, under what conditions is the fictionalist entitled to conclude that certain objects exist? In order to avoid begging the question against the platonist, the fictionalist cannot insist that only objects that we can causally interact with exist. So, the fictionalist only offers sufficient conditions for us to be entitled to conclude that certain objects exist. Conditions such as the following seem to be uncontroversial. Suppose we have access to certain objects that is such that (i) it’s robust (e.g. we blink, we move away, and the objects are still there); (ii) the access to these objects can be refined (e.g. we can get closer for a better look); (iii) the access allows us to track the objects in space and time; and (iv) the access is such that if the objects weren’t there, we wouldn’t believe that they were. In this case, having this form of access to these objects gives us good grounds to claim that these objects exist. In fact, it’s in virtue of conditions of this sort that we believe that tables, chairs, and so many observable entities exist.

But recall that these are only sufficient, and not necessary, conditions. Thus, the resulting view turns out to be agnostic about the existence of the mathematical entities the platonist takes to exist – independently of any description. The fact that mathematical objects fail to satisfy some of these conditions doesn’t entail that these objects don’t exist. Perhaps these entities do exist after all; perhaps they don’t. What matters for the fictionalist is that it’s possible to make sense of significant features of mathematics without settling this issue.

Now what would happen if the agnostic fictionalist used the partial quantifier in the context of comprehension principles? Suppose that a vector space is introduced via suitable principles, and that we establish that there are vectors satisfying certain conditions. Would this entail that we are now committed to the existence of these vectors? It would if the vectors in question satisfied the existence predicate. Otherwise, the issue would remain open, given that the existence predicate only provides sufficient, but not necessary, conditions for us to believe that the vectors in question exist. As a result, the fictionalist would then remain agnostic about the existence of even the objects introduced via comprehension principles!

|, ||, |||, ||||| . The Non-Metaphysics of Unprediction. Thought of the day 67.1

1*pYpVJs_n4yh_3fnGaCbwKA

The cornerstone of Hilbert’s philosophy of mathematics was the so-called finitary standpoint. This methodological standpoint consists in a restriction of mathematical thought to objects which are “intuitively present as immediate experience prior to all thought,” and to those operations on and methods of reasoning about such objects which do not require the introduction of abstract concepts, in particular, require no appeal to completed infinite totalities.

Hilbert characterized the domain of finitary reasoning in a well-known paragraph:

[A]s a condition for the use of logical inferences and the performance of logical operations, something must already be given to our faculty of representation, certain extra-logical concrete objects that are intuitively present as immediate experience prior to all thought. If logical inference is to be reliable, it must be possible to survey these objects completely in all their parts, and the fact that they occur, that they differ from one another, and that they follow each other, or are concatenated, is immediately given intuitively, together with the objects, as something that can neither be reduced to anything else nor requires reduction. This is the basic philosophical position that I consider requisite for mathematics and, in general, for all scientific thinking, understanding, and communication. [Hilbert in German + DJVU link here in English]

These objects are, for Hilbert, the signs. For the domain of contentual number theory, the signs in question are sequences of strokes (“numerals”) such as

|, ||, |||, ||||| .

The question of how exactly Hilbert understood the numerals is difficult to answer. What is clear in any case is that they are logically primitive, i.e., they are neither concepts (as Frege’s numbers are) nor sets. For Hilbert, the important issue is not primarily their metaphysical status (abstract versus concrete in the current sense of these terms), but that they do not enter into logical relations, e.g., they cannot be predicated of anything.

Sometimes Hilbert’s view is presented as if Hilbert claimed that the numbers are signs on paper. It is important to stress that this is a misrepresentation, that the numerals are not physical objects in the sense that truths of elementary number theory are dependent only on external physical facts or even physical possibilities. Hilbert made too much of the fact that for all we know, neither the infinitely small nor the infinitely large are actualized in physical space and time, yet he certainly held that the number of strokes in a numeral is at least potentially infinite. It is also essential to the conception that the numerals are sequences of one kind of sign, and that they are somehow dependent on being grasped as such a sequence, that they do not exist independently of our intuition of them. Only our seeing or using “||||” as a sequence of 4 strokes as opposed to a sequence of 2 symbols of the form “||” makes “||||” into the numeral that it is. This raises the question of individuation of stroke symbols. An alternative account would have numerals be mental constructions. According to Hilber, the numerals are given in our representation, but they are not merely subjective “mental cartoons”.

One version of this view would be to hold that the numerals are types of stroke-symbols as represented in intuition. At first glance, this seems to be a viable reading of Hilbert. It takes care of the difficulties that the reading of numerals-as-tokens (both physical and mental) faces, and it gives an account of how numerals can be dependent on their intuitive construction while at the same time not being created by thought.

Types are ordinarily considered to be abstract objects and not located in space or time. Taking the numerals as intuitive representations of sign types might commit us to taking these abstract objects as existing independently of their intuitive representation. That numerals are “space- and timeless” is a consequence that already thought could be drawn from Hilbert’s statements. The reason is that a view on which numerals are space- and timeless objects existing independently of us would be committed to them existing simultaneously as a completed totality, and this is exactly what Hilbert is objecting to.

It is by no means compatible, however, with Hilbert’s basic thoughts to introduce the numbers as ideal objects “with quite different determinations from those of sensible objects,” “which exist entirely independent of us.” By this we would go beyond the domain of the immediately certain. In particular, this would be evident in the fact that we would consequently have to assume the numbers as all existing simultaneously. But this would mean to assume at the outset that which Hilbert considers to be problematic.  Another open question in this regard is exactly what Hilbert meant by “concrete.” He very likely did not use it in the same sense as it is used today, i.e., as characteristic of spatio-temporal physical objects in contrast to “abstract” objects. However, sign types certainly are different from full-fledged abstracta like pure sets in that all their tokens are concrete.

Now what is the epistemological status of the finitary objects? In order to carry out the task of providing a secure foundation for infinitary mathematics, access to finitary objects must be immediate and certain. Hilbert’s philosophical background was broadly Kantian. Hilbert’s characterization of finitism often refers to Kantian intuition, and the objects of finitism as objects given intuitively. Indeed, in Kant’s epistemology, immediacy is a defining characteristic of intuitive knowledge. The question is, what kind of intuition is at play? Whereas the intuition involved in Hilbert’s early papers was a kind of perceptual intuition, in later writings it is identified as a form of pure intuition in the Kantian sense. Hilbert later sees the finite mode of thought as a separate source of a priori knowledge in addition to pure intuition (e.g., of space) and reason, claiming that he has “recognized and characterized the third source of knowledge that accompanies experience and logic.” Hilbert justifies finitary knowledge in broadly Kantian terms (without however going so far as to provide a transcendental deduction), characterizing finitary reasoning as the kind of reasoning that underlies all mathematical, and indeed, scientific, thinking, and without which such thought would be impossible.

The simplest finitary propositions are those about equality and inequality of numerals. The finite standpoint moreover allows operations on finitary objects. Here the most basic is that of concatenation. The concatenation of the numerals || and ||| is communicated as “2 + 3,” and the statement that || concatenated with ||| results in the same numeral as ||| concatenated with || by “2 + 3 = 3 + 2.” In actual proof-theoretic practice, as well as explicitly, these basic operations are generalized to operations defined by recursion, paradigmatically, primitive recursion, e.g., multiplication and exponentiation. Roughly, a primitive recursive definition of a numerical operation is one in which the function to be defined, f , is given by two equations

f(0, m) = g(m)

f(n′, m) = h(n, m, f(n, m)),

where g and h are functions already defined, and n′ is the successor numeral to n. For instance, if we accept the function g(m) = m (the constant function) and h(n, m, k) = m + k as finitary, then the equations above define a finitary function, in this case, multiplication f (n, m) = n × m. Similarly, finitary judgments may involve not just equality or inequality but also basic decidable properties, such as “is a prime.” This is finitarily acceptable as long as the characteristic function of such a property is itself finitary: For instance, the operation which transforms a numeral to | if it is prime and to || otherwise can be defined by primitive recursion and is hence finitary. Such finitary propositions may be combined by the usual logical operations of conjunction, disjunction, negation, but also bounded quantification. The problematic finitary propositions are those that express general facts about numerals such as that 1 + n = n + 1 for any given numeral n. It is problematic because, for Hilbert it is from the finitist point of view incapable of being negated. By this he means that the contradictory proposition that there is a numeral n for which 1 + n ≠ n + 1 is not finitarily meaningful. A finitary general proposition is not to be understood as an infinite conjunction but only as a hypothetical judgment that comes to assert something when a numeral is given. Even though they are problematic in this sense, general finitary statements are of particular importance to Hilbert’s proof theory, since the statement of consistency of a formal system T is of such a general form: for any given sequence p of formulas, p is not a derivation of a contradiction in T. Even though in general existential statements are not finitarily meaningful, they may be given finitary meaning if the witness is given by a finitary function. For instance, the finitary content of Euclid’s theorem that for every prime p there is a prime > p, is that given a specific prime p one can produce, by a finitary operation, another prime > p (viz., by testing all numbers between p and p! + 1.).

Abstract Expressions of Time’s Modalities. Thought of the Day 21.0

00_Pask_Archtecture_of_Knowledge_24

According to Gregory Bateson,

What we mean by information — the elementary unit of information — is a difference which makes a difference, and it is able to make a difference because the neural pathways along which it travels and is continually transformed are themselves provided with energy. The pathways are ready to be triggered. We may even say that the question is already implicit in them.

In other words, we always need to know some second order logic, and presuppose a second order of “order” (cybernetics) usually shared within a distinct community, to realize what a certain claim, hypothesis or theory means. In Koichiro Matsuno’s opinion Bateson’s phrase

must be a prototypical example of second-order logic in that the difference appearing both in the subject and predicate can accept quantification. Most statements framed in second-order logic are not decidable. In order to make them decidable or meaningful, some qualifier needs to be used. A popular example of such a qualifier is a subjective observer. However, the point is that the subjective observer is not limited to Alice or Bob in the QBist parlance.

This is what is necessitated in order understand the different viewpoints in logic of mathematicians, physicists and philosophers in the dispute about the existence of time. An essential aspect of David Bohm‘s “implicate order” can be seen in the grammatical formulation of theses such as the law of motion:

While it is legitimate in its own light, the physical law of motion alone framed in eternal time referable in the present tense, whether in classical or quantum mechanics, is not competent enough to address how the now could be experienced. … Measurement differs from the physical law of motion as much as the now in experience differs from the present tense in description. The watershed separating between measurement and the law of motion is in the distinction between the now and the present tense. Measurement is thus subjective and agential in making a punctuation at the moment of now. (Matsuno)

The distinction between experiencing and capturing experience of time in terms of language is made explicit in Heidegger’s Being and Time

… by passing away constantly, time remains as time. To remain means: not to disappear, thus, to presence. Thus time is determined by a kind of Being. How, then, is Being supposed to be determined by time?

Koichiro Matsuno’s comment on this is:

Time passing away is an abstraction from accepting the distinction of the grammatical tenses, while time remaining as time refers to the temporality of the durable now prior to the abstraction of the tenses.

Therefore, when trying to understand the “local logics/phenomenologies” of the individual disciplines (mathematics physics, philosophy, etc., including their fields), one should be aware of the fact that the capabilities of our scientific language are not limitless:

…the now of the present moment is movable and dynamic in updating the present perfect tense in the present progressive tense. That is to say, the now is prior and all of the grammatical tenses including the ubiquitous present tense are the abstract derivatives from the durable now. (Matsuno)

This presupposes the adequacy of mathematical abstractions specifically invented or adopted and elaborated for the expression of more sophisticated modalities of time’s now than those currently used in such formalisms as temporal logic.

Representation in the Philosophy of Science.

Scerri-OUPblog-Featured

The concept of representation has gained momentum in the philosophy of science. The simplest concept of representation conceivable is expressed by the following dyadic predicate: structure S(HeB) represents HeB. Steven French defended that to represent something in science is the same as to have a model for it, where models are set-structures; then ‘representation’ and ‘model’ become synonyms and so do ‘to represent’ and ‘to model’. Nevertheless, this simplest conception was quickly thrown overboard as too simple by amongst others Ronald Giere, who replaced this dyadic predicate with a quadratic predicate to express a more involved concept of representation:

Scientist S uses model S to represent being B for purpose P,

where ‘model’ can here be identified with ‘structure’. Another step was set by Bas van Fraassen. As early as 1994, in his contribution to J. Hilgevoord’s Physics and our View of the World, Van Fraassen brought Nelson Goodman’s distinction between representation-of and representation-as — drawn in his seminal Languages of Art – to bear on science; he went on to argue that all representation in science is representation-as. We represent a Helium atom in a uniform magnetic field as a set-theoretical wave-mechanical structure S(HeB). In his new tome Scientific Representation, Van Fraassen has moved essentially to a hexadic predicate to express the most fundamental and most involved concept of representation to date:

Repr(S, V, S, B, F, P) ,

which reads: subject or scientist S is V -ing artefact S to represent B as an F for purpose P. Example: In the 1920ies, Heisenberg (S) constructed (V) a mathematical object (S) to represent a Helium atom (B) as a wave-mechanical structure (F) to calculate its electro-magnetic spectrum (P). We concentrate on the following triadic predicate, which is derived from the fundamental hexadic one:

ReprAs(S, B, F) iff ∃S, ∃V, ∃P : Repr(S, V, A, B, F, P)

which reads: abstract object S represents being B as an F, so that F(S).

Giere, Van Fraassen and contemporaries are not the first to include manifestations of human agency in their analysis of models and representation in science. A little more than most half a century ago, Peter Achinstein expounded the following as a characteristic of models in science:

A theoretical model is treated as an approximation useful for certain purposes. (…) The value of a given model, therefore, can be judged from different though related viewpoints: how well it serves the purposes for which it is eimployed, and the completeness and accuracy of the representation it proposes. (…) To propose something as a model of X is to suggest it as way of representing X which provides at least some approximation of the actual situation; moreover, it is to admit the possibility of alternative representations useful for different purposes.

One year later, M.W. Wartofsky explicitly proposed, during the Annual Meeting of the American Philosophical Association, Western Division, Philadelphia, 1966, to consider a model as a genus of representation, to take in that representation involves “relevant respects for relevant for purposes”, and to consider “the modelling relation triadically in this way: M(S,x,y), where S takes x as a model of y”.20 Two years later, in 1968, Wartofsky wrote in his essay ‘Telos and Technique: Models as Modes of Action’ the following:

In this sense, models are embodiments of purpose and, at the same time, instruments for carrying out such purposes. Let me attempt to clarify this idea. No entity is a model of anything simply by virtue of looking like, or being like, that thing. Anything is like anything else in an infinite number of respects and certainly in some specifiable respect; thus, if I like, I may take anything as a model of anything else, as long as I can specify the respect in which I take it. There is no restriction on this. Thus an array of teacups, for example, may be take as a model for the employment of infantry battalions, and matchsticks as models of mu-mesons, there being some properties that any of these things share with the others. But when we choose something to be a model, we choose it with some end in view, even when that end in view is simply to aid the imagination or the understanding. In the most trivial cases, then, the model is already normative and telic. It is normative in that is chosen to represent abstractly only certain features of the thing we model, not everything all at once, but those features we take to be important or significant or valuable. The model is telic in that significance and value can exist only with respect to some end in view or purpose that the model serves.

Further, during the 1950ies and 1960ies the role of analogies, besides that of models, was much discussed among philosophers of science (Hesse, Achinstein, Girill, Nagel, Braithwaite, Wartofsky).

On the basis of the general concept of representation, we can echo Wartofsky by asserting that almost anything can represent everything for someone for some purpose. In scientific representations, representans and representandum will share some features, but not all features, because to represent is neither to mirror nor to copy. Realists, a-realists and anti-realists will all agree that ReprAs(S, B, F) is true only if on the basis of F(S) one can save all phenomena that being B gives rise to, i.e. one can calculate or accommodate all measurement results obtained from observing B or experimenting with B. Whilst for structural empiricists like Van Fraassen this is also sufficient, for StrR it is not. StrR will want to add that structure S of type F ‘is realised’, that S of type F truly is the structure of being B or refers to B, so that also F(B). StrR will want to order the representations of being B that scientists have constructed during the course of history as approaching the one and only true structure of B, its structure an sich, the Kantian regulative ideal of StrR. But this talk of truth and reference, of beings and structures an sich, is in dissonance with the concept of representation-as.

Some being B can be represented as many other things and all the ensuing representations are all hunky-dory if each one serves some purpose of some subject. When the concept of representation-as is taken as pivotal to make sense of science, then the sort of ‘perspectivalism’ that Giere advocates is more in consonance with the ensuing view of science than realism is. Giere attempts to hammer a weak variety of realism into his ‘perspectivalism’: all perspectives are perspectives on one and the same reality and from every perspective something is said that can be interpreted realistically: in certain respects the representans resembles its representandum to certain degrees. A single unified picture of the world is however not to be had. Nancy Cartwright’s dappled world seems more near to Giere’s residence of patchwork realism. A unified picture of the physical world that realists dream of is completely out of the picture here. With friends like that, realism needs no enemies.

There is prima facie a way, however, for realists to express themselves in terms of representation, as follows. First, fix the purpose P to be: to describe the world as it is. When this fixed purpose leaves a variety of representations on the table, then choose the representation that is empirically superior, that is, that performs best in terms of describing the phenomena, because the phenomena are part of the world. This can be established objectively. When this still leaves more than one representation on the table, which thus save the phenomena equally well, choose the one that best explains the phenomena. In this context, Van Fraassen mentions the many interpretations of QM: each one constitutes a different representation of the same beings, or of only the same observable beings (phenomena), their similarities notwithstanding. Do all these interpre- tations provide equally good explanations? This can be established objectively too, but every judgment here will depend on which view of explanation is employed. Suppose we are left with a single structure A, of type G. Then we assert that ‘G(B)’ is true. When this ‘G’ predicates structure to B, we still need to know what ‘structure’ literally means in order to know what it is that we attribute to B, of what A is that B instantiates, and, even more important, we need to know this for our descriptivist account of reference, which realists need in order to be realists. Yes, we now have arrived where we were at the end of the previous two Sections. We conclude that this way for realists, to express themselves in terms of representation, is a dead end. The concept of representation is not going to help them.

The need for substantive accounts of truth and reference fade away as soon as one adopts a view of science that takes the concept of representation-as as its pivotal concept. Fundamentally different kinds of mathematical structure, set-theoretical and category-theoretical, can then easily be accommodated. They are ‘only representations’. That is moving away from realism, StrR included, dissolving rather than solving the problem for StrR of clarifying its Central Claim of what it means to say that being B is or has structure S — ‘dissolved’, because ‘is or has’ is replaced with ‘is represented-as’. Realism wants to know what B is, not only how it can be represented for someone who wants to do something for some purpose. When we take it for granted that StrR needs substantive accounts of truth and reference, more specifically a descriptivist account of reference and then an account of truth by means of reference, then a characterisation of structure as directly as possible, without committing one to a profusion of abstract objects, is mandatory.

The Characterisation of Structure