Superfluid He-3. Thought of the Day 130.0


At higher temperatures 3He is a gas, while below temperature of 3K – due to van der Walls forces – 3He is a normal liquid with all symmetries which a condensed matter system can have: translation, gauge symmetry U(1) and two SO(3) symmetries for the spin (SOS(3)) and orbital (SOL(3)) rotations. At temperatures below 100 mK, 3He behaves as a strongly interacting Fermi liquid. Its physical properties are well described by Landau’s theory. Quasi-particles of the 3He (i.e. 3He atoms “dressed” into mutual interactions) have spin equal to 1/2 and similar to the electrons, they can create Cooper pairs as well. However, different from electrons in a metal, 3He is a liquid without a lattice and the electron-phonon interaction, responsible for superconductivity, can not be applied here. As the 3He quasiparticles have spin, the magnetic interaction between spins rises up when the temperature falls down until, at a certain temperature, Cooper pairs are created – the coupled pairs of 3He quasiparticles – and the normal 3He liquid becomes a superfluid. The Cooper pairs produce a superfluid component and the rest, unpaired 3He quasiparticles, generate a normal component (N -phase).

A physical picture of the superfluid 3He is more complicated than for superconducting electrons. First, the 3He quasiparticles are bare atoms and creating the Cooper pair they have to rotate around its common center of mass, generating an orbital angular momentum of the pair (L = 1). Secondly, the spin of the Cooper pair is equal to one (S = 1), thus superfluid 3He has magnetic properties. Thirdly, the orbital and spin angular momenta of the pair are coupled via a dipole-dipole interaction.

It is evident that the phase transition of 3He into the superfluid state is accompanied by spontaneously broken symmetry: orbital, spin and gauge: SOL(3)× SOS(3) × U(1), except the translational symmetry, as the superfluid 3He is still a liquid. Finally, an energy gap ∆ appears in the energy spectrum separating the Cooper pairs (ground state) from unpaired quasiparticles – Fermi excitations.

In superfluid 3He the density of Fermi excitations decreases upon further cooling. For temperatures below around 0.25Tc (where Tc is the superfluid transition temperature), the density of the Fermi excitations is so low that the excitations can be regarded as a non-interacting gas because almost all of them are paired and occupy the ground state. Therefore, at these very low temperatures, the superfluid phases of helium-3 represent well defined models of the quantum vacua, which allows us to study any influences of various external forces on the ground state and excitations from this state as well.

The ground state of superfluid 3He is formed by the Cooper pairs having both spin (S = 1) and orbital momentum (L = 1). As a consequence of this spin-triplet, orbital p-wave pairing, the order parameter (or wave function) is far more complicated than that of conventional superconductors and superfluid 4He. The order parameter of the superfluid 3He joins two spaces: the orbital (or k space) and spin and can be expressed as:

Ψ(k) = Ψ↑↑(kˆ)|↑↑⟩ + Ψ↓↓(kˆ)|↓↓⟩ + √2Ψ↑↓(kˆ)(|↑↓⟩ + |↓↑⟩) —– (1)

where kˆ is a unit vector in k space defining a position on the Fermi surface, Ψ↑↑(kˆ), Ψ↓↓(kˆ) a Ψ↑↓(kˆ) are amplitudes of the spin sub-states operators determined by its projection |↑↑⟩, |↓↓⟩ a (|↑↓⟩ + |↓↑⟩) on a quantization axis z.

The order parameter is more often written in a vector representation as a vector d(k) in spin space. For any orientation of the k on the Fermi surface, d(k) is in the direction for which the Cooper pairs have zero spin projection. Moreover, the amplitude of the superfluid condensate at the same point is defined by |d(k)|2 = 1/2tr(ΨΨH). The vector form of the order parameter d(k) for its components can be written as:

dν(k) = ∑μ Aνμkμ —– (2)

where ν (1,2,3) are orthogonal directions in spin space and μ (x,y,z) are those for orbital space. The matrix components Aνμ are complex and theoretically each of them represents possible superfluid phase of 3He. Experimentally, however, only three are stable.

phasediagramLooking at the phase diagram of 3He we can see the presence of two main superfluid phases: A – phase and B – phase. While B – phase consists of all three spin components, the A – phase does not have the component (|↑↓⟩ + |↓↑⟩). There is also a narrow region of the A1 superfluid phase which exists only at higher pressures and temperatures and in nonzero magnetic field. The A1 – phase has only one spin component |↑↑⟩. The phase transition from N – phase to the A or B – phase is a second order transition, while the phase transition between the superfluid A and B phases is of first order.

The B – phase occupies a low field region and it is stable down to the lowest temperatures. In zero field, the B – phase is a pure manifestation of p-wave superfluidity. Having equal numbers of all possible spin and angular momentum projections, the energy gap separating ground state from excitation is isotropic in k space.

The A – phase is preferable at higher pressures and temperatures in zero field. In limit T → 0K, the A – phase can exist at higher magnetic fields (above 340 mT) at zero pressure and this critical field needed for creation of the A – phase rises up as the pressure increases. In this phase, all Cooper pairs have orbital momenta orientated in a common direction defined by the vector lˆ, that is the direction in which the energy gap is reduced to zero. It results in a remarkable difference between these superfluid phases. The B – phase has an isotropic gap, while the A – phase energy spectrum consists of two Fermi points i.e. points with zero energy gap. The difference in the gap structure leads to the different thermodynamic properties of quasiparticle excitations in the limit T → 0K. The density of excitation in the B – phase falls down exponentially with temperature as exp(−∆/kBT), where kB is the Boltzman constant. At the lowest temperatures their density is so low that the excitations can be regarded as a non-interacting gas with a mean free path of the order of kilometers. On the other hand, in A – phase the Fermi points (or nodes) are far more populated with quasiparticle excitations. The nodes orientation in the lˆ direction make the A – phase excitations almost perfectly one-dimensional. The presence of the nodes in the energy spectrum leads to a T3 temperature dependence of the density of excitations and entropy. As a result, as T → 0K, the specific heat of the A – phase is far greater than that of the B – phase. In this limit, the A – phase represents a model system for a vacuum of the Standard model and B – phase is a model system for a Dirac vacuum.

In experiments with superfluid 3He phases, application of different external forces can excite the collective modes of the order parameter representing so called Bose excitations, while the Fermi excitations are responsible for the energy dissipation. Coexistence and mutual interactions of these excitations in the limit T → 0K (in limit of low energies), can be described by quantum field theory, where Bose and Fermi excitations represent Bose and Fermi quantum fields. Thus, 3He has a much broader impact by offering the possibility of experimentally investigating quantum field/cosmological theories via their analogies with the superfluid phases of 3He.

Superstrings as Grand Unifier. Thought of the Day 86.0


The first step of deriving General Relativity and particle physics from a common fundamental source may lie within the quantization of the classical string action. At a given momentum, quantized strings exist only at discrete energy levels, each level containing a finite number of string states, or particle types. There are huge energy gaps between each level, which means that the directly observable particles belong to a small subset of string vibrations. In principle, a string has harmonic frequency modes ad infinitum. However, the masses of the corresponding particles get larger, and decay to lighter particles all the quicker.

Most importantly, the ground energy state of the string contains a massless, spin-two particle. There are no higher spin particles, which is fortunate since their presence would ruin the consistency of the theory. The presence of a massless spin-two particle is undesirable if string theory has the limited goal of explaining hadronic interactions. This had been the initial intention. However, attempts at a quantum field theoretic description of gravity had shown that the force-carrier of gravity, known as the graviton, had to be a massless spin-two particle. Thus, in string theory’s comeback as a potential “theory of everything,” a curse turns into a blessing.

Once again, as with the case of supersymmetry and supergravity, we have the astonishing result that quantum considerations require the existence of gravity! From this vantage point, right from the start the quantum divergences of gravity are swept away by the extended string. Rather than being mutually exclusive, as it seems at first sight, quantum physics and gravitation have a symbiotic relationship. This reinforces the idea that quantum gravity may be a mandatory step towards the unification of all forces.

Unfortunately, the ground state energy level also includes negative-mass particles, known as tachyons. Such particles have light speed as their limiting minimum speed, thus violating causality. Tachyonic particles generally suggest an instability, or possibly even an inconsistency, in a theory. Since tachyons have negative mass, an interaction involving finite input energy could result in particles of arbitrarily high energies together with arbitrarily many tachyons. There is no limit to the number of such processes, thus preventing a perturbative understanding of the theory.

An additional problem is that the string states only include bosonic particles. However, it is known that nature certainly contains fermions, such as electrons and quarks. Since supersymmetry is the invariance of a theory under the interchange of bosons and fermions, it may come as no surprise, post priori, that this is the key to resolving the second issue. As it turns out, the bosonic sector of the theory corresponds to the spacetime coordinates of a string, from the point of view of the conformal field theory living on the string worldvolume. This means that the additional fields are fermionic, so that the particle spectrum can potentially include all observable particles. In addition, the lowest energy level of a supersymmetric string is naturally massless, which eliminates the unwanted tachyons from the theory.

The inclusion of supersymmetry has some additional bonuses. Firstly, supersymmetry enforces the cancellation of zero-point energies between the bosonic and fermionic sectors. Since gravity couples to all energy, if these zero-point energies were not canceled, as in the case of non-supersymmetric particle physics, then they would have an enormous contribution to the cosmological constant. This would disagree with the observed cosmological constant being very close to zero, on the positive side, relative to the energy scales of particle physics.

Also, the weak, strong and electromagnetic couplings of the Standard Model differ by several orders of magnitude at low energies. However, at high energies, the couplings take on almost the same value, almost but not quite. It turns out that a supersymmetric extension of the Standard Model appears to render the values of the couplings identical at approximately 1016 GeV. This may be the manifestation of the fundamental unity of forces. It would appear that the “bottom-up” approach to unification is winning. That is, gravitation arises from the quantization of strings. To put it another way, supergravity is the low-energy limit of string theory, and has General Relativity as its own low-energy limit.

Arbitrage, or Tensors thereof…


What is an arbitrage? Basically it means ”to get something from nothing” and a free lunch after all. More strict definition states the arbitrage as an operational opportunity to make a risk-free profit with a rate of return higher than the risk-free interest rate accured on deposit.

The arbitrage appears in the theory when we consider a curvature of the connection. A rate of excess return for an elementary arbitrage operation (a difference between rate of return for the operation and the risk-free interest rate) is an element of curvature tensor calculated from the connection. It can be understood keeping in mind that a curvature tensor elements are related to a difference between two results of infinitesimal parallel transports performed in different order. In financial terms it means that the curvature tensor elements measure a difference in gains accured from two financial operations with the same initial and final points or, in other words, a gain from an arbitrage operation.

In a certain sense, the rate of excess return for an elementary arbitrage operation is an analogue of the electromagnetic field. In an absence of any uncertanty (or, in other words, in an absense of walks of prices, exchange and interest rates) the only state is realised is the state of zero arbitrage. However, if we place the uncertenty in the game, prices and the rates move and some virtual arbitrage possibilities to get more than less appear. Therefore we can say that the uncertanty play the same role in the developing theory as the quantization did for the quantum gauge theory.

What of “matter” fields then, which interact through the connection. The “matter” fields are money flows fields, which have to be gauged by the connection. Dilatations of money units (which do not change a real wealth) play a role of gauge transformation which eliminates the effect of the dilatation by a proper tune of the connection (interest rate, exchange rates, prices and so on) exactly as the Fisher formula does for the real interest rate in the case of an inflation. The symmetry of the real wealth to a local dilatation of money units (security splits and the like) is the gauge symmetry of the theory.

A theory may contain several types of the “matter” fields which may differ, for example, by a sign of the connection term as it is for positive and negative charges in the electrodynamics. In the financial stage it means different preferances of investors. Investor’s strategy is not always optimal. It is due to partially incomplete information in hands, choice procedure, partially, because of investors’ (or manager’s) internal objectives. Physics of Finance



Quantum Music

Human neurophysiology suggests that artistic beauty cannot easily be disentangled from sexual attraction. It is, for instance, very difficult to appreciate Sandro Botticelli’s Primavera, the arguably “most beautiful painting ever painted,” when a beautiful woman or man is standing in front of that picture. Indeed so strong may be the distraction, and so deep the emotional impact, that it might not be unreasonable to speculate whether aesthetics, in particular beauty and harmony in art, could be best understood in terms of surrogates for natural beauty. This might be achieved through the process of artistic creation, idealization and “condensation.”


In this line of thought, in Hegelian terms, artistic beauty is the sublimation, idealization, completion, condensation and augmentation of natural beauty. Very different from Hegel who asserts that artistic beauty is “born of the spirit and born again, and the higher the spirit and its productions are above nature and its phenomena, the higher, too, is artistic beauty above the beauty of nature” what is believed here is that human neurophysiology can hardly be disregarded for the human creation and perception of art; and, in particular, of beauty in art. Stated differently, we are inclined to believe that humans are invariably determined by (or at least intertwined with) their natural basis that any neglect of it results in a humbling experience of irritation or even outright ugliness; no matter what social pressure groups or secret services may want to promote.

Thus, when it comes to the intensity of the experience, the human perception of artistic beauty, as sublime and refined as it may be, can hardly transcend natural beauty in its full exposure. In that way, art represents both the capacity as well as the humbling ineptitude of its creators and audiences.

Leaving these idealistic realms and come back to the quantization of musical systems. The universe of music consists of an infinity – indeed a continuum – of tones and ways to compose, correlate and arrange them. It is not evident how to quantize sounds, and in particular music, in general. One way to proceed would be a microphysical one: to start with frequencies of sound waves in air and quantize the spectral modes of these (longitudinal) vibrations very similar to phonons in solid state physics.

For the sake of relating to music, however, a different approach that is not dissimilar to the Deutsch-Turing approach to universal (quantum) computability, or Moore’s automata analogues to complementarity: a musical instrument is quantized, concerned with an octave, realized by the eight white keyboard keys typically written c, d, e, f, g, a, b, c′ (in the C major scale).

In analogy to quantum information quantization of tones is considered for a nomenclature in analogy to classical musical representation to be further followed up by introducing typical quantum mechanical features such as the coherent superposition of classically distinct tones, as well as entanglement and complementarity in music…..quantum music

Osteo Myological Quantization. Note Quote.

The site of the parameters in a higher order space can also be quantized into segments, the limits of which can be no more decomposed. Such a limit may be nearly a rigid piece. In the animal body such quanta cannot but be bone pieces forming parts of the skeleton, whether lying internally as [endo]-skeleton or as almost rigid shell covering the body as external skeleton.

Note the partition of the body into three main segments: Head (cephalique), pectral (breast), caudal (tail), materializing the KH order limit M>= 3 or the KHK dimensional limit N>= 3. Notice also the quantization into more macroscopic segments such as of the abdominal part into several smaller segments beyond the KHK lower bound N=3. Lateral symmetry with a symmetry axis is remarkable. This is of course an indispensable consequence of the modified Zermelo conditions, which entails also locomotive appendages differentiating into legs for walking and wings for flying in the case of insects.


Two paragraphs of Kondo addressing the simple issues of what bones are, mammalian bi-lateral symmetry, the numbers of major body parts and their segmentation, the notion of the mathematical origins of wings, legs and arms. The dimensionality of eggs being zero, hence their need of warmth for progression to locomotion and the dimensionality of snakes being one, hence their mode of locomotion. A feature of the biological is their attention to detail, their use of line art to depict the various forms of living being – from birds to starfish to dinosaurs, the use of the full latin terminology and at all times the relationship of the various form of living being to the underlying higher order geometry and the mathematical notion of principle ideals. The human skeleton is treated as a hierarchical Kawaguchi tree with its characteristic three pronged form. The Riemannian arc length of the curve k(t) is given by the integral of the square root of a quadratic form in x’ with coefficients dependent in x’. This integrand is homogenous of the first order in x’. If we drop the quadratic property and retain the homogeneity, then we obtain the Finsler geometry. Kawaguchi geometry supposes that the integrand depends upon the higher derivatives x’’ up to the k-th derivative xk. The notation that Kondo uses is:



L Parameters N Dimensions M Derivatives

The lower part of the skeleton can be divided into three prongs, each starting from the centre as a single parametric Kawaguchi tree.

…the skeletal, muscular, gastrointestinal, circulation systems etc combine into a holo-parametric whole that can be more generally quantized, each quantum involving some osteological, neural, circulatory functions etc.

…thus globally the human body from head through trunk to limbs are quantized into a finite number of quanta.

Conjuncted: Unitary Representation of the Poincaré Group is a Fock Representation


The Fock space story is not completely abandoned within the algebraic approach to Quantum Field Theory. In fact, when conditions are good, Fock space emerges as the GNS Hilbert space for some privileged vacuum state of the algebra of observables. We briefly describe how this emergence occurs before proceeding to raise some problems for the naive Fock space story.

The algebraic reconstruction of Fock space arises from the algebraic version of canonical quantization. Suppose that S is a real vector space (equipped with some suitable topology), and that σ is a symplectic form on S. So, S represents a classical phase space . The Weyl algebra U[S,σ] is a specific C∗-algebra generated by elements of the form W(f), with f ∈ S and satisfying the canonical commutation relations in the Weyl-Segal form:

W(f)W(g) = e−iσ(f,g)/2W(f + g)

Suppose that there is also some notion of spacetime localization for elements of S, i.e. a mapping O → S(O) from double cones in Minkowski spacetime to subspaces of S. Then, if certain constraints are satisfied, the pair of mappings

O → S(O) → U(O) ≡ C{W(f) : f ∈ S(O)},

can be composed to give a net of C∗-algebras over Minkowski spacetime. (Here C∗X is the C∗-algebra generated by the set X.)

Now if we are given some dynamics on S, then we can — again, if certain criteria are satisfied — define a corresponding dynamical automorphism group αt on U[S,σ]. There is then a unique dynamically stable pure state ω0 of U[S,σ], and we consider the GNS representation (H,π) of U[S,σ] induced by ω0. To our delight, we find that the infinitesimal generators Φ(f) of the one-parameter groups {π(W(f))}t∈R behave just like the field operators in the old-fashioned Fock space approach. Furthermore, if we define operators

a(f) = 2−1/2(Φ(f) + iΦ(Jf)),
a∗(f) = 2−1/2(Φ(f)−iΦ(Jf)),

we find that they behave like creation and annihilation operators of particles. (Here J is the unique “complex structure” on S that is compatible with the dynamics.) In particular, by applying them to the vacuum state Ω, we get the entire GNS Hilbert space H. Finally, if we take an orthonormal basis {fi} of S, then the sum

i=1 a∗(fi)a(fi),

is the number operator N. Thus, the traditional Fock space formalism emerges as one special case of the GNS representation of a state of the Weyl algebra.

The Minkowski vacuum representation (H00) of A is Poincaré covariant, i.e. the action α(a,Λ) of the Poincaré group by automorphisms on A is implemented by unitary operators U(a,Λ) on H. When we say that H is isomorphic to Fock space F(H), we do not mean the trivial fact that H and F(H) have the same dimension. Rather, we mean that the unitary representation (H,U) of the Poincaré group is a Fock representation.


“approximandum,” will not be General Theory of Relativity, but only its vacuum sector of spacetimes of topology Σ × R, or quantum gravity as a fecund ground for metaphysician. Note Quote.


In string theory as well as in Loop Quantum Gravity, and in other approaches to quantum gravity, indications are coalescing that not only time, but also space is no longer a fundamental entity, but merely an “emergent” phenomenon that arises from the basic physics. In the language of physics, spacetime theories such as GTR are “effective” theories and spacetime itself is “emergent”. However, unlike the notion that temperature is emergent, the idea that the universe is not in space and time arguably shocks our very idea of physical existence as profoundly as any scientific revolution ever did. It is not even clear whether we can coherently formulate a physical theory in the absence of space and time. Space disappears in LQG insofar as the physical structures it describes bear little, if any, resemblance to the spatial geometries found in GTR. These structures are discrete and not continuous as classical spacetimes are. They represent the fundamental constitution of our universe that correspond, somehow, to chunks of physical space and thus give rise – in a way yet to be elucidated – to the spatial geometries we find in GTR. The conceptual problem of coming to grasp how to do physics in the absence of an underlying spatio-temporal stage on which the physics can play out is closely tied to the technical difficulty of mathematically relating LQG back to GTR. Physicists have yet to fully understand how classical spacetimes emerge from the fundamental non-spatio-temporal structure of LQG, and philosophers are only just starting to study its conceptual foundations and the implications of quantum gravity in general and of the disappearance of space-time in particular. Even though the mathematical heavy-lifting will fall to the physicists, there is a role for philosophers here in exploring and mapping the landscape of conceptual possibilites, bringing to bear the immense philosophical literature in emergence and reduction which offers a variegated conceptual toolbox.

To understand how classical spacetime re-emerges from the fundamental quantum structure involves what the physicists call “taking the classical limit.” In a sense, relating the spin network states of LQG back to the spacetimes of GTR is a reversal of the quantization procedure employed to formulate the quantum theory in the first place. Thus, while the quantization can be thought of as the “context of discovery,” finding the classical limit that relates the quantum theory of gravity to GTR should be considered the “context of (partial) justification.” It should be emphasized that understanding how (classical) spacetime re-emerges by retrieving GTR as a low-energy limit of a more fundamental theory is not only important to “save the appearances” and to accommodate common sense – although it matters in these respects as well, but must also be considered a methodologically central part of the enterprise of quantum gravity. If it cannot be shown that GTR is indeed related to LQG in some mathematically well-understood way as the approximately correct theory when energies are sufficiently low or, equivalently, when scales are sufficiently large, then LQG cannot explain why GTR has been empirically as successful as it has been. But a successful theory can only be legitimately supplanted if the successor theory not only makes novel predictions or offers deeper explanations, but is also able to replicate the empirical success of the theory it seeks to replace.

Ultimately, of course, the full analysis will depend on the full articulation of the theory. But focusing on the kinematical level, and thus avoiding having to fully deal with the problem of time, lets apply the concepts to the problem of the emergence of full spacetime, rather than just time. Chris Isham and Butterfield identify three types of reductive relations between theories: definitional extension, supervenience, and emergence, of which only the last has any chance of working in the case at hand. For Butterfield and Isham, a theory T1 emerges from another theory T2 just in case there exists either a limiting or an approximating procedure to relate the two theories (or a combination of the two). A limiting procedure is taking the mathematical limit of some physically relevant parameters, in general in a particular order, of the underlying theory in order to arrive at the emergent theory. A limiting procedure won’t work, at least not by itself, due to technical problems concerning the maximal loop density as well as to what essentially amounts to the measurement problem familiar from non-relativistic quantum physics.

An approximating procedure designates the process of either neglecting some physical magni- tudes, and justifying such neglect, or selecting a proper subset of states in the state space of the approximating theory, and justifying such selection, or both, in order to arrive at a theory whose values of physical quantities remain sufficiently close to those of the theory to be approximated. Note that the “approximandum,” the theory to be approximated, in our case will not be GTR, but only its vacuum sector of spacetimes of topology Σ × R. One of the central questions will be how the selection of states will be justified. Such a justification would be had if we could identify a mechanism that “drives the system” to the right kind of states. Any attempt to finding such a mechanism will foist a host of issues known from the traditional problem of relating quantum to classical mechanics upon us. A candidate mechanism, here and there, is some form of “decoherence,” even though that standardly involves an “environment” with which the system at stake can interact. But the system of interest in our case is, of course, the universe, which makes it hard to see how there could be any outside environment with which the system could interact. The challenge then is to conceptualize decoherence is a way to circumvents this problem.

Once it is understood how classical space and time disappear in canonical quantum gravity and how they might be seen to re-emerge from the fundamental, non-spatiotemporal structure, the way in which classicality emerges from the quantum theory of gravity does not radically differ from the way it is believed to arise in ordinary quantum mechanics. The project of pursuing such an understanding is of relevance and interest for at least two reasons. First, important foundational questions concerning the interpretation of, and the relation between, theories are addressed, which can lead to conceptual clarification of the foundations of physics. Such conceptual progress may well prove to be the decisive stepping stone to a full quantum theory of gravity. Second, quantum gravity is a fertile ground for any metaphysician as it will inevitably yield implications for specifically philosophical, and particularly metaphysical, issues concerning the nature of space and time.

Mapping Fields. Quantum Field Gravity. Note Quote.


Introducing a helpful taxonomic scheme, Chris Isham proposed to divide the many approaches to formulating a full, i.e. not semi-classical, quantum theory of gravity into four broad types of approaches: first, those quantizing GR; second, those “general-relativizing” quantum physics; third, construct a conventional quantum theory including gravity and regard GR as its low-energy limit; and fourth, consider both GR and conventional quantum theories of matter as low-energy limits of a radically novel fundamental theory.

The first family of strategies starts out from classical GR and seek to apply, in a mathematically rigorous and physically principled way, a “quantization” procedure, i.e. a recipe for cooking up a quantum theory from a classical theory such as GR. Of course, quantization proceeds, metaphysically speaking, backwards in that it starts out from the dubious classical theory – which is found to be deficient and hence in need of replacement – and tries to erect the sound building of a quantum theory of gravity on its ruin. But it should be understood, just like Wittgenstein’s ladder, as a methodologically promising means to an end. Quantization procedures have successfully been applied elsewhere in physics and produced, among others, important theories such as quantum electrodynamics.

The first family consists of two genera, the now mostly defunct covariant ansatz (Defunct because covariant quantizations of GR are not perturbatively renormalizable, a flaw usually considered fatal. This is not to say, however, that covariant techniques don’t play a role in contemporary quantum gravity.) and the vigorous canonical quantization approach. A canonical quantization requires that the theory to be quantized is expressed in a particular formalism, the so-called constrained Hamiltonian formalism. Loop quantum gravity (LQG) is the most prominent representative of this camp, but there are other approaches.

Secondly, there is to date no promising avenue to gaining a full quantum theory of gravity by “general-relativizing” quantum (field) theories, i.e. by employing techniques that permit the full incorporation of the lessons of GR into a quantum theory. The only existing representative of this approach consists of attempts to formulate a quantum field theory on a curved rather than the usual flat background spacetime. The general idea of this approach is to incorporate, in some local sense, GR’s principle of general covariance. It is important to note that, however, that the background spacetime, curved though it may be, is in no way dynamic. In other words, it cannot be interpreted, as it can in GR, to interact with the matter fields.

The third group also takes quantum physics as its vantage point, but instead of directly incorporating the lessons of GR, attempts to extend quantum physics with means as conventional as possible in order to include gravity. GR, it is hoped, will then drop out of the resulting theory in its low-energy limit. By far the most promising member of this family is string theory, which, however, goes well beyond conventional quantum field theory, both methodologically and in terms of ambition. Despite its extending the assumed boundaries of the family, string theory still takes conventional quantum field theory as its vantage point, both historically and systematically, and does not attempt to build a novel theory of quantum gravity dissociated from “old” physics. Again, there are other approaches in this family, such as topological quantum field theory, but none of them musters substantial support among physicists.

The fourth and final group of the Ishamian taxonomy is most aptly characterized by its iconoclastic attitude. For the heterodox approaches of this type, no known physics serves as starting point; rather, radically novel perspectives are considered in an attempt to formulate a quantum theory of gravity ab initio.

All these approaches have their attractions and hence their following. But all of them also have their deficiencies. To list them comprehensively would go well beyond the present endeavour. Apart from the two major challenges for LQG, a major problem common to all of them is their complete lack of a real connection to observations or experiments. Either the theory is too flexible so as to be able to accommodate almost any empirical data, such as string theory’s predictions of supersymmetric particles which have been constantly revised in light of particle detectors’ failures to find them at the predicted energies or as string theory’s embarras de richesses, the now notorious “landscape problem” of choosing among 10500 different models. Or the connection between the mostly understood data and the theories is highly tenuous and controversial, such as the issue of how and whether data narrowly confining possible violations of Lorentz symmetry relate to theories of quantum gravity predicting or assuming a discrete spacetime structure that is believed to violate, or at least modify, the Lorentz symmetry so well confirmed at larger scales. Or the predictions made by the theories are only testable in experimental regimes so far removed from present technological capacities, such as the predictions of LQG that spacetime is discrete at the Planck level at a quintillion (1018) times the energy scales probed by the Large Hadron Collider at CERN. Or simply no one remotely has a clue as to how the theory might connect to the empirical, such as is the case for the inchoate approaches of the fourth group like causal set theory.

Loop Quantum Gravity and Nature of Reality. Briefer.


To some “loop quantum gravity is an attempt to define a quantization of gravity paying special attention to the conceptual lessons of general relativity”, while to others it does not have to be about the quantization of gravity but should be “at least conceivable that such a theory marries a classical understanding of gravity with a quantum understanding of matter”

The term ‘loop’ comes from the solution written for every line closed on itself on the proposed structure of quanta’s interactions. John Archibald Wheeler was one of the pioneers in constructing a representation of space which had a granular structure on a very small scale. Together with Bryce DeWitt they produced a mathematical formula known as Wheeler-DeWitt equation, “an equation which should determine the probability of one or another curved space”. The starting point was spacetime of general relativity having “loop-like states”. Having a quantum approach to gravity on closed loops, which are threads of the Faraday lines of the quantum field, constitutes a gravitational field which looks like a spiderweb. A solution could be written for every line closed on itself. Moreover, every line determining a solution of the Wheeler-DeWitt equation describes one of the threads of the spiderweb created by Faraday force lines of the quantum field which are the threads with which the space is woven. The physical Hilbert space as the space of all quantum states of the theory solves all the constraints and thus ought to be considered as the physical states. This implies that the physical Hilbert space of Loop Quantum Gravity is not yet known. The larger space of states which satisfy the first two families of constraints is often termed the kinematical Hilbert space. The one constraint that has so far resisted resolution is the Hamiltonian constraint equation with the seemingly simple form Hˆ|ψ⟩ = 0, the Wheeler-DeWitt equation, where Hˆ is the Hamiltonian operator usually interpreted to generate the dynamical evolution and |ψ⟩ is a quantum state in the kinematical Hilbert space. Of course, the Hamiltonian operator Hˆ is a complicated function(al) of the basic operators corresponding to the basic canonical variables. In fact, the very functional form of Hˆ is debated as several inequivalent candidates are on the table. Insofar as the physical Hilbert space has thus not yet been constructed, Loop Quantum Gravity remains incomplete.

Space, then, is defined based on the nodes on this spiderweb, which is called a spin network, and time, which already lost its fundamental status with special and general relativity, vanishes from the picture of the universe altogether.

Loop quantum gravity combines the dynamic spacetime approach of general relativity with quanta nature of gravity fields. Accordingly, space that bends and stretches are made up of very small particles which are called quanta of space. If one had eyes capable zooming into the space and seeing magnetic fields and quanta, then, by observing the space, one would first witness the quantum field, and then would end up seeing quanta which are extremely small and granular.

Quantum Numbers as Representations of Gauge Groups


As emphasized by Klein and Weyl, a group is a collection of operations leaving a certain “object” unchanged. This amounts to classifying the symmetries of the object. When the “object” in question is the laws of Physics in a space-time with negligible gravitation-induced curvature, the symmetries can be classified as follows: (i) No point in four- dimensional space-time is privileged, hence one can shift or translate the origin of space-time arbitrarily in four directions. Noether’s theorem then implies there are four associated conserved quantities, namely the three components of space momentum and the energy. These four quantities naturally constitute the components of a 4-vector Pμ, μ = 0, 1, 2, 3. (ii) No direction is special in space; leading to three conserved quantities Ji, i = 1, 2, 3. (iii) There is no special inertial frame; the same laws of Physics hold in inertial frames moving with constant speed in any one of the three independent directions. What is generally known as Noether’s Theorem states that if the Lagrangian function for a physical system is not affected by a continuous change (transformation) in the coordinate system used to describe it, then there will be a corresponding conservation law; i.e. there is a quantity that is constant. For example, if the Lagrangian is independent of the location of the origin then the system will preserve (or conserve) linear momentum. If it is independent of the base time then energy is conserved. If it is independent of the angle of measurement then angular momentum is conserved.

As we suggested above, it is possible to get a non-mathematical insight into Noether’s theorem relating symmetries to conserved quantities. Consider a single particle moving in a completely homogeneous space. It cannot come to a stop or change its velocity because this would have to happen at some particular point, but all points being equal, it is impossible to choose one. Hence the particle has no choice but to move at constant velocity or, in other words, to conserve its linear momentum, which was anciently called “impetus”. It is easy to extend the argument to a rotating object in an isotropic space and conclude that it cannot come to a stop at any particular angle since there is no special angle; hence its angular momentum is conserved.

(ii) and (iii) amount to covariance of the laws of physics under rotations in a four-dimensional space with a metric that is not positive-definite. The squared length of a 4-vector defined via this metric must then be an important invariant independent of the orientation or the velocity of the frame. Indeed, for the 4-vector Pμ this is the squared mass m2 of the particle, and it is one of the two invariant labels used in specifying the representation. The other label is the squared length of another 4-vector called the Pauli-Lubanski vector. It then follows from the algebra of the group that this squared length takes on values s(s + 1) and that in contrast to m2, which assumes continuous values, s can only be zero, or a positive integer, or half a positive odd integer. The unitary representation of the Poincaré group for a particle of mass m and spin s provides its relativistic quantum mechanical wave function. The equation of motion the wave function must obey also comes with the representation; it is the Bargmann-Wigner equation for that spin and mass. In relativistic quantum mechanics and quantum field theory, the Bargmann–Wigner equations describe free particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 …) or half-integer for fermions (j = 123252 …). The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The procedure of second quantization then naturally promotes the wave functions to quantized field operators, and in a sense demotes the particles to quanta created or destroyed by these operators. Pauli’s spin-statistics theorem, based on a set of very general requirements such as the existence of a lowest energy vacuum state, the positivity of energy and probability, microcausality, and the invariance of the laws of Physics under the Poincaré group, leads to the result that the only acceptable quantum conditions for field operators of integer-spin particles are commutation relations, while those corresponding to half-integer spin must obey anticommutation relations. The standard terms for the two families of particles are bosons and fermions, respectively. The Pauli’s Exclusion Principle, or the impossibility of putting two electrons into the same state, is now seen to be the result of the anticommutation relation between electron creation operators: to place two fermions in the same state, the same creation operator has to be applied twice. The result must vanish, since the operator anticommutes with itself.

The symmetries of space-time are reflected in the fields which are representations of the symmetry groups; a quantum mechanical recipe called quantization then turns these fields into operators capable of creating and destroying quanta (or particles, in more common parlance) at all space-time points. Actually, the framework we have described only suffices to describe “Free fields” which do not interact with each other. In order to incorporate interactions, one has to resort to another kind of symmetry called gauge symmetry, which operates in an “internal” space attached to each point of space-time. While the identity of masses and spins of, say, electrons can be attributed to space-time symmetries, the identities of additional quantum numbers such as charge, isospin and “color” can only be explained in terms of the representations of these gauge groups.