Orgies of the Atheistic Materialism: Barthes Contra Sade. Drunken Risibility.

The language and style of Justine are inextricably tied to sexual pleasure. Sade makes it impossible for the reader to ignore this aspect of the text. Roland Barthes, whose essays in Sade, Fourier, Loyola describe the innovative language of each author, underscores the importance of pleasure when discussing the Sadian voyage:

If the Sadian novel is excluded from our literature, it is because in it novelistic peregrination is never a quest for the Unique (temporal essence, truth, happiness), but a repetition of pleasure; Sadian errancy is unseemly, not because it is vicious and criminal, but because it is dull and somehow insignificant, withdrawn from transcendency, void of term: it does not re­veal, does not transform, does not develop, does not edu­cate, does not sublimate, does not accomplish, recuperates nothing, save for the present itself, cut up, glittering, repeated; no patience, no experience; everything is carried immediately to the acme of knowledge, of power, of ejacula­tion; time does not arrange or derange it, it repeats, recalls, recommences, there is no scansion other than that which al­ternates the formation and the expenditure of sperm.

Barthes’s observation reflects La Mettrie’s influence on Sade, whose libertine characters parrot in both speech and action the philosopher’s view that the pursuit of pleasure is man’s raison d’être. Sexuality permeates a great many linguistic and stylistic features of Justine, for example, names of characters (onomastics), literal and figurative language, grammatical structures, cultural and class references, dramatic effects, repetition and exaggeration, and use of parody and caricature. Justine is traditionally the name of a female domestic (soubrette), connoting a person of the lower classes, who falls prey to promiscuous behavior. Near the beginning of Justine, Sade renames the heroine the moment she accepts employment at the home of the miserly Monsieur Du Harpin, surname evocative of Molière’s Harpagon. Sophie, the wise example of womanly Christian virtue in the first version, becomes Thérèse, the anti- philosophe in the second, who chooses to ignore the brutally realistic counsel of her libertine persecutors. Sade’s Thérèse recalls the heroine of Thérèse philosophe who, unlike his protagonist, profited from an erotic lifestyle.

Sade may manipulate language to enhance erotic description but he also relies upon his observation of everyday life and class division of the ancien régime to provide him with models for his libertine characters, their mores, and their lifestyles. In Justine, he presents a socio-cultural microcosm of France during the reign of Louis XV. The power brokers of Sade’s youth who, for the most part, enriched themselves in his Majesty’s wars by means of corruption and influence, resurface in print as Justine’s exploiters. The noblemen, the financiers, the legal and medical professionals, the clergymen, and the thieves-robber barons representative of each social class-sexually maneuver their subjects to establish control. While we learn what the classes of mid-eighteenth-century France ate, how they dressed, where they lived, we also witness the ongoing struggle between victim and victimizer, the former personified by Justine, an ordinary bourgeois individual who can never vanquish the tyrant who maintains authority through sexual prowess rather than through wealth.

Barthes tells us that Sade’s passion was not erotic but theatrical. The marquis’s infatuation with the theater was inspired early on by the lavish productions staged by the Jesuits during his three and a half years at the Collège Louis-le-Grand. Later, his romantic dalliances with actresses and his own involvements in acting, writing, and production attest to his enormous attraction to the theater. In his libertine works, Sade incorporates theatricality, especially in his orgiastic scenes; in his own way, he creates the necessary horror and suspense to first seduce the reader and then to maintain his/her attention. Like a spectator in the audience, the reader observes well-rehearsed productions whose decor, script, and players have been predetermined, and where they are shown her various props in the form of “sadistic” paraphernalia.

Sade makes certain that the lesson given by her libertine victimizers following her forced participation in their orgies is not forgotten. Once again, Sade relies on man’s innate need for sexual pleasure to intellectualize the universe in a manner similar to his own. By using sexual desire as a ploy, Sade inculcates the atheistic materialism he so strongly proclaims into both an attentive Justine and reader. Justine cooperates with her depraved persecutors but refuses to adopt their way of thinking and thus continues to suffer at the hands of society’s exploiters. Sade, however, seizes the opportunity to convince his invisible readership that his concept of the universe is the right one. No matter how monotonous it may seem, repetition, whether in the form of licentious behavior or pseudo-philosophical diatribe, serves as a time-tested, powerful didactic tool.

Comment on Purely Random Correlations of the Matrix, or Studying Noise in Neural Networks

ED_Matrix

In the presence of two-body interactions the many-body Hamiltonian matrix elements vJα,α′ of good total angular momentum J in the shell-model basis |α⟩ generated by the mean field, can be expressed as follows:

vJα,α′ = ∑J’ii’ cJαα’J’ii’ gJ’ii’ —– (4)

The summation runs over all combinations of the two-particle states |i⟩ coupled to the angular momentum J′ and connected by the two-body interaction g. The analogy of this structure to the one schematically captured by the eq. (2) is evident. gJ’ii’ denote here the radial parts of the corresponding two-body matrix elements while cJαα’J’ii’ globally represent elements of the angular momentum recoupling geometry. gJ’ii’ are drawn from a Gaussian distribution while the geometry expressed by cJαα’J’ii’ enters explicitly. This originates from the fact that a quasi-random coupling of individual spins results in the so-called geometric chaoticity and thus cJαα’ coefficients are also Gaussian distributed. In this case, these two (gJ’ii’ and c) essentially random ingredients lead however to an order of magnitude larger separation of the ground state from the remaining states as compared to a pure Random Matrix Theory (RMT) limit. Due to more severe selection rules the effect of geometric chaoticity does not apply for J = 0. Consistently, the ground state energy gaps measured relative to the average level spacing characteristic for a given J is larger for J > 0 than for J = 0, and also J > 0 ground states are more orderly than those for J = 0, as it can be quantified in terms of the information entropy.

Interestingly, such reductions of dimensionality of the Hamiltonian matrix can also be seen locally in explicit calculations with realistic (non-random) nuclear interactions. A collective state, the one which turns out coherent with some operator representing physical external field, is always surrounded by a reduced density of states, i.e., it repells the other states. In all those cases, the global fluctuation characteristics remain however largely consistent with the corresponding version of the random matrix ensemble.

Recently, a broad arena of applicability of the random matrix theory opens in connection with the most complex systems known to exist in the universe. With no doubt, the most complex is the human’s brain and those phenomena that result from its activity. From the physics point of view the financial world, reflecting such an activity, is of particular interest because its characteristics are quantified directly in terms of numbers and a huge amount of electronically stored financial data is readily available. An access to a single brain activity is also possible by detecting the electric or magnetic fields generated by the neuronal currents. With the present day techniques of electro- or magnetoencephalography, in this way it is possible to generate the time series which resolve neuronal activity down to the scale of 1 ms.

One may debate over what is more complex, the human brain or the financial world, and there is no unique answer. It seems however to us that it is the financial world that is even more complex. After all, it involves the activity of many human brains and it seems even less predictable due to more frequent changes between different modes of action. Noise is of course owerwhelming in either of these systems, as it can be inferred from the structure of eigen-spectra of the correlation matrices taken across different space areas at the same time, or across different time intervals. There however always exist several well identifiable deviations, which, with help of reference to the universal characteristics of the random matrix theory, and with the methodology briefly reviewed above, can be classified as real correlations or collectivity. An easily identifiable gap between the corresponding eigenvalues of the correlation matrix and the bulk of its eigenspectrum plays the central role in this connection. The brain when responding to the sensory stimulations develops larger gaps than the brain at rest. The correlation matrix formalism in its most general asymmetric form allows to study also the time-delayed correlations, like the ones between the oposite hemispheres. The time-delay reflecting the maximum of correlation (time needed for an information to be transmitted between the different sensory areas in the brain is also associated with appearance of one significantly larger eigenvalue. Similar effects appear to govern formation of the heteropolymeric biomolecules. The ones that nature makes use of are separated by an energy gap from the purely random sequences.